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GABRIEL AGUILAR

Abstract. In this expository paper, we present the basic ideas behind recent

rigidity and comparison statements in geometry in relation to minimal surfaces.

Contents

1. Introduction 1
2. Preliminaries 1
2.1. First Variation Formula 2
3. Comparison of manifolds given embedded minimal surfaces 3
3.1. 3-dimensional version 5
3.2. Higher codimension case 7
4. Results on capillary surfaces 8
4.1. Manifolds with umbilic boundary and 0 ≤ Ksect ≤ 1 8
4.2. Manifolds with umbilic boundary and Ksect ≤ −1 10
Acknowledgments 13
References 13

1. Introduction

The question we’re interested in for this paper (and one which is very natural
to ask) is as follows: given the existence of minimal surfaces (or other non-trivial
submanifolds) in a manifold, and prescribed values for their volumes or areas, can
we extract any information about the metric on the manifold, or the manifold
itself? In a recent publication, L. Mazet and H. Rosenberg [3] demonstrated that
a minimal two sphere Σ satisfies a lower area bound when immersed in a manifold
with sectional curvatures bounded between 0 and 1. Furthermore, when equality
occurs, they uniquely determine the manifold, which can be either the standard
three sphere S3 with Σ being a totally geodesic submanifold, or as a quotient of
S2 × R. These lines of inquiry were prompted by Calabi’s characterization of the
2-sphere, which will be the first of the results we present. These rigidity statements
are an active area of research (see [7]), which is the reason for which we make an
effort to present this condensed version of recent important results to serve as a
guide into the subject.

2. Preliminaries

Let us start by giving a brief review of minimal surfaces by following [1].
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2.1. First Variation Formula. Let (Mn, g) be a Riemannian manifold and Σk ⊂ M
a submanifold. Consider (x1, . . . , xk) local coordinates on Σ and let

gij(x) = g

(
∂

∂xi
,

∂

∂xj

)
for 1 ≤ i, j ≤ k, be the components of g|Σ. The (Riemannian) volume element of
Σ is denoted by dΣ. The volume of Σ is given by

Vol(Σ) =

ˆ
Σ

dΣ.

Consider the variation of Σ given by a smooth map F : Σ × (−ε, ε) → M (which
we assume is a diffeomorphism onto its image). We use Ft(x) = F (x, t) and
Σt = Ft(Σ).

Definition 2.1. Let X be an arbitrary vector field on Σk ⊂ M . We define its
divergence as

divΣX(p) =

k∑
i=1

⟨∇eiX, ei⟩,

where {e1, . . . , ek} ⊂ TpΣ is an orthonormal basis and ∇ is the Levi-Civita connec-
tion with respect to g.

Lemma 2.2. We have that

∂

∂t
dΣt = divΣt

(
∂F

∂t

)
dΣt.

Proof. Note that
∂

∂t
det g = tr(g−1∂tg) det g,

where g−1 = (gij) = (gij)
−1. Then

∂

∂t
det g =

∑
i,j

(
gij∂tgij

)
det g.

We can calculate the first derivative of the metric using the compatibility of ∇ with
respect to g

∂tgij = g
(
∇∂F/∂t∂iF, ∂jF

)
+ g

(
∂iF,∇∂F/∂t∂jF

)
,

where ∂iF = ∂F/∂xi. Use the symmetry of∇ to commute∇∂F/∂t∂iF = ∇∂iF∂F/∂t.
Put everything together to obtain

∂

∂t
det g = 2

∑
i,j

gijg(∇∂iF∂F/∂t, ∂jF ) det g = 2divΣt

(
∂F

∂t

)
det g.

□

We denote the area of Σt by |Σt|.

Theorem 2.3 (First Variation Formula I). We have that

d

dt
|Σt| =

ˆ
Σt

divΣt

(
∂F

∂t

)
dΣt.
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Lemma 2.4. We have

divΣX = divΣX
T +

k∑
i=1

⟨∇eiX
N , ei⟩.

Theorem 2.5 (First variation formula II).

d

dt
|Σt| = −

ˆ
Σt

⟨∂F/∂t,H⟩dΣt = +

ˆ
∂Σt

⟨∂F/∂t, ν⟩dσt.

Moreover, if X = ∂F
∂t vanishes on ∂Σ at t = 0, then

d

dt

∣∣∣∣∣
t=0

|Σt| = −
ˆ
Σ

⟨X,H⟩dΣ,

where H is the mean curvature and ν the outer-pointing normal to Σ.

Corollary 2.6.

d

dt

∣∣∣∣∣
t=0

|Σt| = 0, for any X, with X = 0 on ∂Σ, iff H = 0.

Definition 2.7. Σk ⊂ M is a minimal submanifold of M if H = 0.

As one might intuit, geodesics are 1-dimensional minimal submanifolds, which
leads us to the first instance of our discussion.

3. Comparison of manifolds given embedded minimal surfaces

In a letter sent to the authors of [2], Calabi presented a proof for the following
first statement (although it is worth mentioning that the inequality part of the
proof is due to Pogorelov).

Theorem 3.1. Let (S2, g) be the two dimensional sphere with a metric of class C1,1

whose Gaussian curvature satisfies 0 ≤ K ≤ 1. Then any simple closed geodesic
γ on (S2, g) has length at least 2π. If the length of γ is 2π, then either (S2, g) is
isometric to the standard round sphere (S2, g0) and γ is a great circle on (S2, g0)
or (S2, g) is isometric to a circular cylinder of circumference 2π capped by two unit
hemispheres and γ is a belt around the cylinder. Thus, if K is continuous or if
K > 0, then (S2, g) is isometric to the standard round sphere.

Lemma 3.2. Let k(t) be an L∞ function on [0,∞) so that k(t) and y(t) with
0 ≤ k(t) ≤ y(t), are defined by the initial value problem

y′′(t) + k(t)y(t) = 0, y(0) = 1, y′(0) = 0.

Let us denote the smallest positive zero of y(t) by β (it may be the case that β = ∞).
Then 0 ≤ −y′(t) ≤ 1 for 0 ≤ t ≤ β. Moreover, if y′(t0) = −1 for some t0 ∈ [0, β],
then t0 = β < ∞, β ≥ π/2, and

y(t) =

{
1, 0 ≤ t < β − π/2,

cos(t− (β − π/2)), β − π/2 < t ≤ β,

k(t) =

{
0, 0 ≤ t < β − π/2,

1, β − π/2 < t ≤ β.
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Proof. First let us note that on [0, β), we have that

y′′(t) = −k(t)y(t) ≤ 0

by assumption. This means that y′(t) is monotone-decreasing, and since y′(0) = 0,
we conclude that y′ ≤ 0 on [0, β). Moreover, we have that

(y2 + (y′)2)′ = 2yy′ + 2y′y′′ = 2yy′ − 2y′yk = 2yy′(1− k) ≤ 0

on [0, β). Using the initial conditions, this means that y2 + (y′)2 ≤ 1, from which
we conclude that

0 ≤ −y′(t) ≤ 1,

as desired. Now, if t0 ∈ [0, β] is such that y′(t0) = −1, Then the previous inequality
implies that y2(t0) = 0, so by construction this means that t0 = β. Moreover, the
second inequality implies that y′(1 − k) = 0 on [0, β). Following the sequence of
inequalities and solving the differential equation gives the desired result. □

Proof of Theorem. Let c : [0, L] → S2 be a unit speed parametrization of the closed
geodesic γ, and let n be a unit normal along c. For each s ∈ [0, L] let β(s) be the
cut distance from the curve γ along the geodesic t 7→ expc(s)(tn(s)). Define a map

F (s, t) on the set of ordered pairs (s, t) with s ∈ [0, L] and 0 ≤ t ≤ β(s) by

F (s, t) = expc(s)(tn(s)), 0 ≤ s ≤ l, 0 ≤ t ≤ β(s).

Then s, t are Fermi coordinates on the disk M bounded by γ and with inner normal
n. In these coordinates the metric g, Gaussian curvature K and the area form dA
are given by

g = F 2ds2 + dt2, K =
−Ftt

F
, dA = Fds dt.

And because c is a geodesic, F (s, 0) ≡ 1 and Ft(s, 0) ≡ 0. Thus for fixed s the
function y(t) := F (s, t) satisfies y′′ +Ky = 0, y(0) = 1, and y′(0) = 0. Notice that
these are exactly the conditions of the previous lemma, from which we conclude
that

2π =

ˆ
M

K dA =

ˆ L

0

ˆ β(s)

0

−Ftt dtds

=

ˆ L

0

(−Ft(s, β(s))) ds

≤
ˆ L

0

1 ds

= L.

This gives the desired bound on the length of γ. If L = 2π, then Et(s, β(s)) = −1
for all s ∈ [0, L]. Again, by the lemma we have that

K(s, t) =

{
0, 0 ≤ t < β(s)− π/2,

1, β(s)− π/2 < t ≤ β(s).

Let M+1 denote the interior of the set {K(x) = +1} so that

M+1 =
{
expc(s)(tn(s)) : s ∈ [0, 2π], β(s)− π/2 < t ≤ β(s)

}
.

Let s0 ∈ [0, 2π] be a point where β(s) is maximal. Then the open disk B(x0, π/2) of
radius π/2 about x0 := expc(s0)(β(s0)n(s0)) is contained in M+1, for if not it would
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meet ∂M+1 at some point expc(s)((β(s) − π/2)n(s)) and this point is a distance

of β(s) − π/2 from γ. Thus the distance of x0 = expc(s0)(β(s0)n(s0)) to γ is less

than π/2 + (β(s)− π/2) = β(s), which contradicts the maximality of β(s0). Thus
B(x0, π/2) ⊆ M+1. But using the Gauss-Bonnet theorem and K ≡ +1 on M+1

2π ≥
ˆ
M+1

K dA = Area(M+1) ≥ Area(B(x0, π/2)) = 2π.

This means that M+1 = B(x0, π/2), and therefore s 7→ β(s) is constant, which
implies that the disk M is bounded by γ and with inner normal n is a cylinder
of circumference 2π capped at one end with a hemisphere. The same argument
applied to the disk bounded by γ and having −n as inward normal shows (S2, g)
is two of these capped cylinders glued together along γ, which is equivalent to the
statement of the problem. □

3.1. 3-dimensional version. In [3], Mazet and Rosenberg proved an analogous
theorem to Calabi’s for 2-spheres in 3-manifolds, which we present here (all the
proofs which we do not present here can be found in the authors’ paper). Following
a similar setting as above, let us consider what happens in a complete 3-manifold
M with sectional curvatures between 0 and 1.

Let Σ be an embedded minimal 2-sphere in M . Then the Gauss-Bonnet theorem
and the Gauss equation tells us that the area of S is at least 4π:

4π =

ˆ
Σ

KΣ =

ˆ
det(A) +KTΣ ≤

ˆ
Σ

1 = A(Σ),

with det(A) the determinant of the shape operator which is non positive because
Σ is minimal (and also using the Gauss equation).

We denote by Sn
1 the sphere of dimension n with constant sectional curvature 1.

We then have the following result.

Theorem 3.3. Let M be a complete Riemannian 3-manifold whose sectional cur-
vatures satisfy 0 ≤ K ≤ 1. Assume that there exists an embedded minimal sphere
Σ in M with area 4π. Then the manifold M is isometric either to the sphere S3

1 or
to a quotient of S2

1 × R.

Proof. Let Φ be the map Σ × R → M given by (p, t) 7→ expp(tN(q)) where N
is a unit normal vector field along Σ. In the following, we focus on Σ × R+; by
symmetry, the analysis is similar for Σ × R−. Since Σ is compact, there is ε > 0
such that Φ is an immersion on Σ× [0, ε). Let ε0 be the supremum of all such ε’s
(so it is possible that it equals +∞). This metric can be written as ds2 = dσ2

t +dt2,
where dσ2

t is a smooth family of metrics on Σ. With this metric, Φ becomes a local
isometry from Σ × [0, ε0) to M , and Σ × [0, ε0) has sectional curvatures bounded
between 0 and 1. Let us denote by Σt = Σ × {t} the equidistant surfaces. We
denote by H(p, t) the mean curvature of Σt at the point (p, t) with respect to the
unit normal vector ∂t. First note that Σ0 is minimal and has area 4π. Now we
prove that dσ2

0 has constant sectional curvature 1 so (Σ, dσ2
0) is isometric to S2

1 .
Moreover, we have two cases

(1) ε0 = π/2 and dσ2
t = sin2 tdσ2

0 or
(2) ε0 = +∞ and dσ2

t = dσ2
0 .
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Indeed, we define λ(p, t) ≥ 0 such that H+λ and H−λ are the principal curvature
of Σt at (p, t). We notice that λ = 0 if Σt is umbilical at (p, t). The surfaces Σt are
spheres, so using the Gauss equation, the Gauss-Bonnet formula implies

4π =

ˆ
Σt

KΣt =

ˆ
Σt

(H + λ)(H − λ) +Kt =

ˆ
Σt

H2 − λ2 +Kt

where KΣt
is the intrinsic curvature of Σt and Kt is the sectional curvature of the

ambient manifold of the tangent space to Σt. Since Kt ≤ 1, we obtainˆ
Σt

H2 +Kt − 4π ≤
ˆ
Σt

H2 +A(Σt)− 4π

where A(Σt) is the area of Σt. In the following, we denote by F (t) the right hand
side of this inequality, and we show that it vanishes on [0, ε0). Since Σ0 is minimal
and has area 4π, we have that F (0) = 0. This means that λ(p, 0) = 0, so Σ0 is
umbilical and KTΣ = 1, which implies that (Σ0, dσ0) is isometric to S2

1 . Now, the
first and second variation formula give

∂

∂t
A(Σt) = −

ˆ
Σt

2H and
∂H

∂t
=

1

2
(Ric(∂t) + |At|2),

where At is the shape operator of Σt and Ric is the Ricci curvature of Σ× [0, ε0).
Using the fact that the sectional curvatures of M × [0, ε0) are non-negative, we
conclude that Ric is non-negative too. Thus the second formula implies that H is
increasing, and therefore H ≥ 0 everywhere. Moreover, we have that

F ′(t) =

ˆ
Σt

(
2H

∂H

∂t
− 2H3

)
−
ˆ
Σt

2H

=

ˆ
Σt

H(Ric(∂t) + |At|2 − 2H2 − 2)

=

ˆ
Σt

H
(
(Ric(∂t)− 2) + (H + λ)2 + (H − λ)2 − 2H2

)
=

ˆ
Σt

H
(
(Ric(∂t)− 2) + 2λ2

)
≤ 2

ˆ
Σt

Hλ2

where the last inequality follows from Ric(∂t)−2 ≤ 0 by hypothesis on the sectional
curvatures. Now, choosing ε < ε0, there is a constant C ≥ 0 such that H ≤ C
on Σ × [0, ε]. So for t ∈ [0, ε], we obtain that F ′(t) ≤ 2CF (t). Then F (t) ≤
F (0)e2Ct = 0 on [0, ε]. Therefore F ≤ 0 on [0, ε0), and therefore F = 0 on [0, ε0).
As a consequence, we have that all the equidistant surfaces Σt are umbilical, so
λ ≡ 0. Taking the derivative of F , this implies thatˆ

Σt

H(Ric(∂t)− 2) = 0,

and by the inequality derived from the hypothesis above, we obtain

H(Ric(∂t)− 2) = 0 everywhere.

Moreover, umbilicity and the variation formulas imply that ∂H
∂t = 1

2Ric(∂t) +H2.
We now prove that given (p, t) ∈ Σ× [0, ε0) such that H(p, t) > 0, then H(q, t) > 0
for any q ∈ Σ. Indeed, consider Ω = {q ∈ Σ |H(q, t) > 0} which is a nonempty
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open subset of Σ. Let q ∈ Ω. Since H(q, t) > 0, then Ric(∂t)(q, t) = 2. Thus
Ric(∂t)(r, t) = 2 for any r ∈ Ω. So if r ∈ Ω, Ric(∂t)(r, s) > 0 for s < t, and
therefore H(r, t) > 0 and r ∈ Ω. Therefore Ω is closed and therefore Ω = Σ.

Now assume that there is some ε1 > 0 such that H(p, t) = 0 for (p, t) ∈ Σ× [0, ε1]
and H(p, t) > 0 for any (p, t) ∈ Σ×(ε1, ε0). Because of the evolution equation of H,
this implies that Ric(∂t) = 0 on Σ×[0, ε1], but on Σ×(ε1, ε0) we have Ric(∂t) = 2 by
the application of Gauss’ equation above, which is a contradiction by the continuity
of Ric(∂t). Thus we have two possibilities:

(1) H = 0 on Σ× [0, ε0) and Ric(∂t) = 0 on Σ× [0, ε0),
(2) H > 0 on Σ× (0, ε0) and Ric(∂t) = 2 on Σ× [0, ε0).

In the first case, this means that the sectional curvature of any 2-plane orthogonal
to Σt is zero, and therefore dσ2

t = dσ2
0 . Since Φ only fails to be an immersion if

dσ2
t becomes singular, it follows that in this case ε0 = +∞. Therefore Σ × R+ is

isometric to S2
1 × R+ with the induced metric, and Φ is a local isometry S2

1 × R+.

In the second case, the sectional curvature of any 2-plane orthogonal to Σt is
equal to 1. Therefore dσ2

t = sin2 tdσ0 and ε0 = π/2. This also implies that Φ(p, π/2)
is a point, and Σ× [0, π/2] with the metric ds2 is isometric to a hemisphere of S3

1 ,
and Φ is a local isometry from that hemisphere to M .

We can perform the same analysis for Σ×R−, for which we get that in the first
case Φ is a local isometry S2

1 × R → M , and in the second case a local isometry
Φ : S3

1 → M . Since S2
1 × R and S3

1 are simply connected, Φ is then the universal
cover of M and M is then isometric to a quotient of S2

1 × R or S3
1 . Since Φ is

injective on Σ, in the second case we see that actually Φ is injective and therefore
a global isometry. □

3.2. Higher codimension case. Perhaps not so surprisingly, this result can be
extended to higher codimension. This result is presented in [4] by Mazet.

Theorem 3.4. Let M be a Riemannian n ≥ 3-manifold whose sectional curvature
is bounded above by 1. Let us assume that M contains an immersed minimal 2-
sphere of area 4π which has index at least n− 2. Then the universal cover of M is
isometric to the unit sphere Sn

1 .

While the proof of this theorem is quite involved for the purposes of this paper,
the idea of the proof is as follows: if S is an immersed 2-sphere, we can define a
function F by

F (S) = A(S) +

ˆ
S

|H|2 − 4π,

where A(S) is the area of S and H is the mean curvature of S. If F (S) vanishes,
S is totally umbilical and we can extract information on the sectional curvature
of M along S. Therefore, if S0 is the minimal 2-sphere given by the statement
of the theorem, then F (S0) = 0. The idea is then to explore the geometry of M
by computing F (St) along a deformation {St}t of S0, and the proof in the paper
produces the family {St} as a mean curvature flow out of S0. More precisely, the
author constructs non trivial ancient solutions {St}t∈(−∞,b) of the mean curvature
flow such that St → S0 as t → −∞.
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4. Results on capillary surfaces

Similar to the statements we’ve considered so far, it is possible to consider anal-
ogous statements for non-minimal surfaces. These results are presented by Espinar
and Rosenberg in [5]. Let us first set up the notation and basic definitions.

Let (M,∂M) be a complete Riemannian 3-manifold with boundary. Throughout
this section, η will always stand for the inward normal along ∂M . Now, let Σ be an
oriented compact surface with boundary ∂Σ and unit normal N , N chosen so that
||H ′||N = H when H ̸= 0; H ′ = 2HN , where H ′ and H are the mean curvature
vector and mean curvature function respectively. If H is constant along Σ, we say
that Σ is a H-surface. Also, denote by IIΣ the second fundamental form of Σ in
M with respect to N and by Ke and KΣ its extrinsic and Gaussian curvature,
the extrinsic curvature Ke is nothing but the product of the principal curvatures.
Associated to the mean and extrinsic curvatures one can define the skew curva-
ture as Φ =

√
H2 −Ke that measures how far the surface is from being umbilic.

Throughout this section we will denote by |Σ| and |∂Σ| the area of Σ and the length
of ∂Σ respectively.

We assume that Σ ⊂ M and ∂Σ ⊂ ∂M . We say that Σ is a capillary surface
of angle β in M if the outer conormal ν along ∂Σ and the unit normal along ∂M
make a constant angle β along ∂Σ, i.e. there exists a constant β ∈ [0, π/2) so that
⟨ν, η⟩ = − cosβ. In particular, when β = 0 or, equivalently, Σ meets orthogonally
∂M , we say that Σ is a free boundary surface.

4.1. Manifolds with umbilic boundary and 0 ≤ Ksect ≤ 1.

Lemma 4.1. Let (M,∂M) be a complete orientable Riemannian 3-manifold with
boundary. Let Σ ⊂ M be a compact oriented H-disk (H ≥ 0) with boundary
∂Σ ⊂ ∂M . Assume that

• The sectional curvatures of M satisfy Ksect ≤ 1,
• ∂M is umbilic, with umbilicity factor α ∈ R,
• Σ is a capillary disk of angle β ∈ [0, π/2),

then

2π ≤ (1 +H2)|Σ|+ α+ (H +max∂Σ Φ) sinβ

cosβ
|∂Σ|.

Moreover, equality holds if, and only if, Σ is umbilic, KΣ = 1 +H2 and Ksect ≡ 1
along Σ.

Proof. First, by the Gauss equation and the AM-GM inequality, we obtain

KΣ = Ke +Ksect ≤ H2 + 1,

hence, integrating over Σ, the Gauss-Bonnet formula yields

2π =

ˆ
Σ

KΣ +

ˆ
∂Σ

kg ≤ (1 +H2)|Σ|+
ˆ
∂Σ

kg.

Now let t denote a unit tangent vector field along ∂Σ, clearly t ∈ (∂M), and let
n = Jt be the rotation by an angle of π/2 on ∂M . On the one hand, since {t, n} is
an orthonormal frame along ∂M , we have

2H∂M = −⟨t,∇tη⟩ − ⟨η,∇nη⟩,
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and since ∂M is umbilic, we obtain

−⟨t,∇tη⟩ = α.

On the other hand, by the capillary condition, −η = cosβν + sinβN along ∂Σ,
hence

−⟨t,∇tη⟩ = cosβ⟨t,∇tν⟩+ sinβ⟨t,∇tN⟩ = cosβkg − sinβ IIΣ(t, t).

Therefore, combining both equations we get

cosβkg = α+ sinβ IIΣ(t, t)

along ∂Σ. Finally, since Σ has constant mean curvature H, we have that IIΣ(t, t) ≤
H +Φ and hence we obtain

2π cosβ ≤ (1 +H2) cosβ|Σ|+ (α+ (H +max
∂Σ

Φ) sinβ)|∂Σ|,

as claimed. Moreover, equality holds if and only if it holds in the second equation,
that is KΣ = H2+1, which implies that Σ is umbilic and Ksect ≡ 1 along Σ. From
the Gauss equation we then deduce that KΣ = 1 +H2. □

When Σ is a free boundary disk and ∂M is totally geodesic, the above inequality
reads as 2π ≤ (1 +H2)|Σ|, and equality holds with the same conditions as above.
Now let us describe the model cases of Riemannian manifolds (M,∂M) where free
boundary disks achieve the equality. In this case we have two distinct models:

• Model 1: Let S3 ⊂ R4 be the standard unit three-sphere embedded in
the four dimensional Euclidean space with the standard Euclidean metric
⟨·, ·⟩0. Then, the upper hemisphere, given by

S3
+ = {(x1, x2, x3, x4) ∈ S3 : x4 > 0},

is a complete manifold with constant sectional curvatures equal to 1 and
totally geodesic boundary ∂S3

+ = {x ∈ S3
+ : x4 = 0}, which is isometric

to a two-sphere S2. From now on, we denote by Sn(r) the standard n-
dimensional sphere of constant sectional curvatures 1/r2.

For any x ∈ ∂S3
+, let Bx(R) be the geodesic ball of the standard three-

sphere S3 centered at x of radius R. Fix H ≥ 0 a constant and set RH =
π
2 − arctanH. Then, we have

DH := ∂Bx(RH) ∩ S3
+

is a umbilic H-disk orthogonal to ∂S3
+ such that

|DH | = 2π

1 +H2
.

• Model 2: Let S2
+ be the upper hemisphere of the standard 2-sphere.

Clearly, R×S2
+ with the standard product hemisphere is a complete mani-

fold with sectional curvatures between 0 and 1 and totally geodesic bound-
ary

∂(R× S2
+) = R× ∂S2

+.

For any t ∈ R, Dt = {t}×S2
+ is a totally geodesic minimal disk orthogonal

to R× ∂S2
+ such that

|Dt| = 2π.

Now we can state the following theorem.
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Theorem 4.2. Let (M,∂M) be a complete orientable Riemannian 3-manifold with
boundary. Assume that M has sectional curvatures 0 ≤ Ksect ≤ 1 and ∂M is
connected and totally geodesic. If there exists a compact oriented embedded H-disk
Σ ⊂ M orthogonal to ∂M such that

|Σ| = 2π

1 +H2
.

Then:

• If H > 0, the mean convex side of M \Σ, call it U , is isometric to Bx(RH)∩
S3
+ ⊂ S3 with the standard metric, RH = π/2 − arctanH and x ∈ ∂S3

+.
Moreover, Σ is a disk DH described in the model 1.

• If H = 0, M is isometric to either S3
+ with its standard metric of constant

sectional curvature one, or a quotient of R× S2
+ with the standard product

metric. Moreover, Σ is a disk DH or Dt as described in the models 1 and
2.

4.2. Manifolds with umbilic boundary and Ksect ≤ −1. In this section we’ll
study compact capillary H-surfaces of non-positive Euler characteristic immersed
in a three-manifold with umbilic boundary and section curvatures less or equal
to −1. We obtain an upper bound for the area of such capillary surfaces with a
corresponding rigidity statement.

Lemma 4.3. Let (M,∂M) be a complete orientable Riemannian 3-manifold with
boundary. Let Σ ⊂ M be a compact oriented H-surface (H ≥ 0) with boundary
∂Σ ⊂ ∂M . Assume that

• The sectional curvatures of M satisfy Ksect ≤ −1,
• ∂M is umbilic, with umbilicity factor α ∈ R,
• Σ is a capillary surface of angle βi ∈ [0, π/2) at each connected component

∂Σi of the boundary ∂Σ.

Then

−2πχ(Σ) +

k∑
i=1

α+ sinβi(H +max∂Σ Φ)

cosβi
|∂Σi| ≥ (1−H2)|Σ|,

where k is the number of connected components of ∂Σ. Moreover, equality holds if
and only if Σ is umbilic, KΣ = H2 − 1 and Ksect ≡ −1 along Σ.

Proof. As we did in the first lemma, by the Gauss-Bonnet formula and the hypoth-
esis we get

2πχ(Σ) =

ˆ
Σ

KΣ +

ˆ
∂Σ

kg

=

ˆ
Σ

H2 −
ˆ
Σ

Φ2 +

ˆ
Σ

Ksect +

k∑
i=1

ˆ
∂Σi

kg

≤ (H2 − 1)|Σ|+
k∑

i=1

α+ sinβi(H +max∂Σ Φ)

cosβi
|∂Σi|,

as claimed. □

As in the previous lemma, we will describe the model cases when equality is
achieved by a free boundary H-surface, H ∈ [0, 1], in a complete manifold with
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Ksect ≤ −1 and totally geodesic boundary.

In both cases, H = 1 and H ∈ [0, 1), M will be a hyperbolic manifold with
totally geodesic boundary and Σ will be a constant intrinsic curvature umbilical
H-surface orthogonal to ∂M .

• Model 3: We begin with the case H ∈ [0, 1). Let S be a closed oriented
surface of curvature −1. S is a quotient of H2 by a cocompact Fuchsian
group Γ of isometries of H2. Consider P0 ≡ H2 as isometrically embedded
in H3 as a totally geodesic plane, with n a unit normal vector field to P0 in
H3. We parametrize H3 in Fermi coordinates by F : R× P0 → H3, where

F (t, x) := expx(tn(x)).

The metric of H3 in these coordinates is dt2+cosh2(t)g−1, where g−1 is the
standard hyperbolic metric of curvature −1. Observe that

Pt := {F (t, x) : x ∈ H0}

is an equidistant surface of P0 of constant mean curvature tanh(t). The
group Γ extends to isometries of H3: for γ ∈ Γ, t ∈ R and x ∈ H0, define

γ(F (t, x)) = F (t, γ(x)).

The extended action leaves each Pt invariant and Pt/Γ = St is a constant
sectional curvature umbilical surface in H3/Γ. H3/Γ is homeomorphic to
R× S.

• Model 4: we describe the case H = 1. Consider a horosphere H0 of H3

and a Z2 group Γ of parabolic isometries leaving H0 invariant. Let n be a
unit normal vector field to H0 in H3, pointing to the mean convex side of
H0. H3 has the Fermi coordinates F : R×H0 → H3, where

F (t, x) := expx(tn(x)),

here exp denotes the exponential map in H3. the metric of H3 in these
coordinates is dt2 + e2tge, where ge is the standard Euclidean metric of
curvature 0. As before, Γ acts on H3, leaving each horosphere Ht invariant.
Each Ht has mean curvature 1. H3/Γ is a hyperbolic three manifold of
constant section curvature −1 isometric to R × T2 with the metric dt2 +
e−2tge, where ge is the standard flat metric of T 2.

Now we can characterize Riemannian manifolds (M,∂M) with totally geodesic
boundary and sectional curvaturesKsect ≤ −1 assuming the existence of an oriented
H-surface meeting ∂M orthogonally and of greatest area. By the lemma we just
proved, if Σ ⊂ M is an oriented compact H-surface, H2 ≤ 1, such that ∂Σ ⊂ ∂M
and meets ∂M orthogonally, then

(1−H2)|Σ| ≤ 2π|χ(Σ)|,

where we are assuming that ∂M is totally geodesic in M . Note that, in the case
χ(Σ) = 0, this says that if there exists a H-surface Σ, H2 ≤ 1, orthogonal to the
boundary with χ(Σ) = 0 then Σ has constant mean curvature H = 1, it is umbilic,
KΣ = 0 and Ksect ≡ −1 along Σ, without any area information. It is remarkable
that we cannot characterize the manifold when Σ is minimal.
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Theorem 4.4. Let (M,∂M) be a complete orientable Riemannian 3-manifold with
boundary. Assume that M has sectional curvatures Ksect ≤ −1 and ∂M is totally
geodesic. Assume that there exists a compact oriented embedded H-surface Σ ⊂ M ,
H ∈ (0, 1], orthogonal to ∂M with non-positive Euler characteristic. Then:

• If H ∈ (0, 1), Σ separates and |Σ| = 2π|χ(σ)|
1−H2 , χ(Σ) < 0, then there exists a

totally geodesic minimal surface Σm orthogonal to ∂M and an isometry

F : ([0, arctanhH)× Σ, dt2 + cosh2(t)g−1) → M,

where g−1 denotes the standard metric of constant curvature −1, such that
– F (0,Σ) = Σ and F (arctanhH,Σ) = Σm, and
– F (t,Σ) = Σt is an embedded totally umbilic H-surface, H = tanh(arctanh H−

t), orthogonal to ∂M for all t ∈ [0, arctanh H).
Moreover, if Σm is non-orientable, a tubular neighborhood of Σm is foliated
by its equidistants Σt.

• If H = 1 and χ(Σ) = 0, the mean convex side of M \Σ, call this component
U , is isometric to [0,∞) × Σ endowed with the product metric g = dt2 +
e−2tge, where ge is the standard Euclidean metric of curvature 0. That is,
U is isometric to a cusp hyperbolic end P corresponding to Model 4 and Σ
is a slice.

The reader is referred to the paper to see a proof of the theorems.
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