COMPARISON AND RIGIDITY STATEMENTS IN GEOMETRY

GABRIEL AGUILAR

Abstract

In this expository paper, we present the basic ideas behind recent rigidity and comparison statements in geometry in relation to minimal surfaces.

Contents

1. Introduction 1
2. Preliminaries 1
2.1. First Variation Formula 2
3. Comparison of manifolds given embedded minimal surfaces 3
3.1. 3-dimensional version 5
3.2. Higher codimension case 7
4. Results on capillary surfaces 8
4.1. Manifolds with umbilic boundary and $0 \leq K_{\text {sect }} \leq 1$ 8
4.2. Manifolds with umbilic boundary and $K_{\text {sect }} \leq-1$ 10
Acknowledgments 13
References 13

1. Introduction

The question we're interested in for this paper (and one which is very natural to ask) is as follows: given the existence of minimal surfaces (or other non-trivial submanifolds) in a manifold, and prescribed values for their volumes or areas, can we extract any information about the metric on the manifold, or the manifold itself? In a recent publication, L. Mazet and H. Rosenberg [3] demonstrated that a minimal two sphere Σ satisfies a lower area bound when immersed in a manifold with sectional curvatures bounded between 0 and 1 . Furthermore, when equality occurs, they uniquely determine the manifold, which can be either the standard three sphere S^{3} with Σ being a totally geodesic submanifold, or as a quotient of $S^{2} \times \mathbb{R}$. These lines of inquiry were prompted by Calabi's characterization of the 2 -sphere, which will be the first of the results we present. These rigidity statements are an active area of research (see [7]), which is the reason for which we make an effort to present this condensed version of recent important results to serve as a guide into the subject.

2. Preliminaries

Let us start by giving a brief review of minimal surfaces by following [1].

[^0]2.1. First Variation Formula. Let $\left(M^{n}, g\right)$ be a Riemannian manifold and $\Sigma^{k} \subset M$ a submanifold. Consider $\left(x_{1}, \ldots, x_{k}\right)$ local coordinates on Σ and let
$$
g_{i j}(x)=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)
$$
for $1 \leq i, j \leq k$, be the components of $\left.g\right|_{\Sigma}$. The (Riemannian) volume element of Σ is denoted by $d \Sigma$. The volume of Σ is given by
$$
\operatorname{Vol}(\Sigma)=\int_{\Sigma} d \Sigma
$$

Consider the variation of Σ given by a smooth map $F: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow M$ (which we assume is a diffeomorphism onto its image). We use $F_{t}(x)=F(x, t)$ and $\Sigma_{t}=F_{t}(\Sigma)$.

Definition 2.1. Let X be an arbitrary vector field on $\Sigma^{k} \subset M$. We define its divergence as

$$
\operatorname{div}_{\Sigma} X(p)=\sum_{i=1}^{k}\left\langle\nabla_{e_{i}} X, e_{i}\right\rangle
$$

where $\left\{e_{1}, \ldots, e_{k}\right\} \subset T_{p} \Sigma$ is an orthonormal basis and ∇ is the Levi-Civita connection with respect to g.

Lemma 2.2. We have that

$$
\frac{\partial}{\partial t} d \Sigma_{t}=\operatorname{div}_{\Sigma_{t}}\left(\frac{\partial F}{\partial t}\right) d \Sigma_{t}
$$

Proof. Note that

$$
\frac{\partial}{\partial t} \operatorname{det} g=\operatorname{tr}\left(g^{-1} \partial_{t} g\right) \operatorname{det} g
$$

where $g^{-1}=\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$. Then

$$
\frac{\partial}{\partial t} \operatorname{det} g=\sum_{i, j}\left(g^{i j} \partial_{t} g_{i j}\right) \operatorname{det} g
$$

We can calculate the first derivative of the metric using the compatibility of ∇ with respect to g

$$
\partial_{t} g_{i j}=g\left(\nabla_{\partial F / \partial t} \partial_{i} F, \partial_{j} F\right)+g\left(\partial_{i} F, \nabla_{\partial F / \partial t} \partial_{j} F\right)
$$

where $\partial_{i} F=\partial F / \partial x_{i}$. Use the symmetry of ∇ to commute $\nabla_{\partial F / \partial t} \partial_{i} F=\nabla_{\partial_{i} F} \partial F / \partial t$. Put everything together to obtain

$$
\frac{\partial}{\partial t} \operatorname{det} g=2 \sum_{i, j} g^{i j} g\left(\nabla_{\partial_{i} F} \partial F / \partial t, \partial_{j} F\right) \operatorname{det} g=2 \operatorname{div}_{\Sigma_{t}}\left(\frac{\partial F}{\partial t}\right) \operatorname{det} g
$$

We denote the area of Σ_{t} by $\left|\Sigma_{t}\right|$.
Theorem 2.3 (First Variation Formula I). We have that

$$
\frac{d}{d t}\left|\Sigma_{t}\right|=\int_{\Sigma_{t}} d i v_{\Sigma_{t}}\left(\frac{\partial F}{\partial t}\right) d \Sigma_{t}
$$

Lemma 2.4. We have

$$
d i v_{\Sigma} X=\operatorname{div}_{\Sigma} X^{T}+\sum_{i=1}^{k}\left\langle\nabla_{e_{i}} X^{N}, e_{i}\right\rangle
$$

Theorem 2.5 (First variation formula II).

$$
\frac{d}{d t}\left|\Sigma_{t}\right|=-\int_{\Sigma_{t}}\langle\partial F / \partial t, H\rangle d \Sigma_{t}=+\int_{\partial \Sigma_{t}}\langle\partial F / \partial t, \nu\rangle d \sigma_{t} .
$$

Moreover, if $X=\frac{\partial F}{\partial t}$ vanishes on $\partial \Sigma$ at $t=0$, then

$$
\left.\frac{d}{d t}\right|_{t=0}\left|\Sigma_{t}\right|=-\int_{\Sigma}\langle X, H\rangle d \Sigma
$$

where H is the mean curvature and ν the outer-pointing normal to Σ.

Corollary 2.6.

$$
\left.\frac{d}{d t}\right|_{t=0}\left|\Sigma_{t}\right|=0, \text { for any } X, \text { with } X=0 \text { on } \partial \Sigma, \text { iff } H=0
$$

Definition 2.7. $\Sigma^{k} \subset M$ is a minimal submanifold of M if $H=0$.
As one might intuit, geodesics are 1-dimensional minimal submanifolds, which leads us to the first instance of our discussion.

3. Comparison of manifolds given embedded minimal surfaces

In a letter sent to the authors of [2], Calabi presented a proof for the following first statement (although it is worth mentioning that the inequality part of the proof is due to Pogorelov).

Theorem 3.1. Let $\left(S^{2}, g\right)$ be the two dimensional sphere with a metric of class $C^{1,1}$ whose Gaussian curvature satisfies $0 \leq K \leq 1$. Then any simple closed geodesic γ on $\left(S^{2}, g\right)$ has length at least 2π. If the length of γ is 2π, then either $\left(S^{2}, g\right)$ is isometric to the standard round sphere $\left(S^{2}, g_{0}\right)$ and γ is a great circle on $\left(S^{2}, g_{0}\right)$ or $\left(S^{2}, g\right)$ is isometric to a circular cylinder of circumference 2π capped by two unit hemispheres and γ is a belt around the cylinder. Thus, if K is continuous or if $K>0$, then $\left(S^{2}, g\right)$ is isometric to the standard round sphere.

Lemma 3.2. Let $k(t)$ be an L^{∞} function on $[0, \infty)$ so that $k(t)$ and $y(t)$ with $0 \leq k(t) \leq y(t)$, are defined by the initial value problem

$$
y^{\prime \prime}(t)+k(t) y(t)=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Let us denote the smallest positive zero of $y(t)$ by β (it may be the case that $\beta=\infty$). Then $0 \leq-y^{\prime}(t) \leq 1$ for $0 \leq t \leq \beta$. Moreover, if $y^{\prime}\left(t_{0}\right)=-1$ for some $t_{0} \in[0, \beta]$, then $t_{0}=\beta<\infty, \beta \geq \pi / 2$, and

$$
\begin{gathered}
y(t)=\left\{\begin{array}{l}
1, \quad 0 \leq t<\beta-\pi / 2, \\
\cos (t-(\beta-\pi / 2)), \beta-\pi / 2<t \leq \beta,
\end{array}\right. \\
k(t)= \begin{cases}0, & 0 \leq t<\beta-\pi / 2 \\
1, & \beta-\pi / 2<t \leq \beta\end{cases}
\end{gathered}
$$

Proof. First let us note that on $[0, \beta)$, we have that

$$
y^{\prime \prime}(t)=-k(t) y(t) \leq 0
$$

by assumption. This means that $y^{\prime}(t)$ is monotone-decreasing, and since $y^{\prime}(0)=0$, we conclude that $y^{\prime} \leq 0$ on $[0, \beta)$. Moreover, we have that

$$
\left(y^{2}+\left(y^{\prime}\right)^{2}\right)^{\prime}=2 y y^{\prime}+2 y^{\prime} y^{\prime \prime}=2 y y^{\prime}-2 y^{\prime} y k=2 y y^{\prime}(1-k) \leq 0
$$

on $[0, \beta)$. Using the initial conditions, this means that $y^{2}+\left(y^{\prime}\right)^{2} \leq 1$, from which we conclude that

$$
0 \leq-y^{\prime}(t) \leq 1
$$

as desired. Now, if $t_{0} \in[0, \beta]$ is such that $y^{\prime}\left(t_{0}\right)=-1$, Then the previous inequality implies that $y^{2}\left(t_{0}\right)=0$, so by construction this means that $t_{0}=\beta$. Moreover, the second inequality implies that $y^{\prime}(1-k)=0$ on $[0, \beta)$. Following the sequence of inequalities and solving the differential equation gives the desired result.

Proof of Theorem. Let $c:[0, L] \rightarrow S^{2}$ be a unit speed parametrization of the closed geodesic γ, and let n be a unit normal along c. For each $s \in[0, L]$ let $\beta(s)$ be the cut distance from the curve γ along the geodesic $t \mapsto \exp _{c(s)}(\operatorname{tn}(s))$. Define a map $F(s, t)$ on the set of ordered pairs (s, t) with $s \in[0, L]$ and $0 \leq t \leq \beta(s)$ by

$$
F(s, t)=\exp _{c(s)}(\operatorname{tn}(s)), \quad 0 \leq s \leq l, \quad 0 \leq t \leq \beta(s)
$$

Then s, t are Fermi coordinates on the disk M bounded by γ and with inner normal n. In these coordinates the metric g, Gaussian curvature K and the area form $d A$ are given by

$$
g=F^{2} d s^{2}+d t^{2}, \quad K=\frac{-F_{t t}}{F}, \quad d A=F d s d t
$$

And because c is a geodesic, $F(s, 0) \equiv 1$ and $F_{t}(s, 0) \equiv 0$. Thus for fixed s the function $y(t):=F(s, t)$ satisfies $y^{\prime \prime}+K y=0, y(0)=1$, and $y^{\prime}(0)=0$. Notice that these are exactly the conditions of the previous lemma, from which we conclude that

$$
\begin{aligned}
2 \pi & =\int_{M} K d A=\int_{0}^{L} \int_{0}^{\beta(s)}-F_{t t} d t d s \\
& =\int_{0}^{L}\left(-F_{t}(s, \beta(s))\right) d s \\
& \leq \int_{0}^{L} 1 d s \\
& =L
\end{aligned}
$$

This gives the desired bound on the length of γ. If $L=2 \pi$, then $E_{t}(s, \beta(s))=-1$ for all $s \in[0, L]$. Again, by the lemma we have that

$$
K(s, t)= \begin{cases}0, & 0 \leq t<\beta(s)-\pi / 2 \\ 1, & \beta(s)-\pi / 2<t \leq \beta(s)\end{cases}
$$

Let M_{+1} denote the interior of the set $\{K(x)=+1\}$ so that

$$
M_{+1}=\left\{\exp _{c(s)}(\operatorname{tn}(s)): s \in[0,2 \pi], \quad \beta(s)-\pi / 2<t \leq \beta(s)\right\}
$$

Let $s_{0} \in[0,2 \pi]$ be a point where $\beta(s)$ is maximal. Then the open disk $B\left(x_{0}, \pi / 2\right)$ of radius $\pi / 2$ about $x_{0}:=\exp _{c\left(s_{0}\right)}\left(\beta\left(s_{0}\right) n\left(s_{0}\right)\right)$ is contained in M_{+1}, for if not it would
meet ∂M_{+1} at some point $\exp _{c(s)}((\beta(s)-\pi / 2) n(s))$ and this point is a distance of $\beta(s)-\pi / 2$ from γ. Thus the distance of $x_{0}=\exp _{c\left(s_{0}\right)}\left(\beta\left(s_{0}\right) n\left(s_{0}\right)\right)$ to γ is less than $\pi / 2+(\beta(s)-\pi / 2)=\beta(s)$, which contradicts the maximality of $\beta\left(s_{0}\right)$. Thus $B\left(x_{0}, \pi / 2\right) \subseteq M_{+1}$. But using the Gauss-Bonnet theorem and $K \equiv+1$ on M_{+1}

$$
2 \pi \geq \int_{M_{+1}} K d A=\operatorname{Area}\left(M_{+1}\right) \geq \operatorname{Area}\left(B\left(x_{0}, \pi / 2\right)\right)=2 \pi
$$

This means that $M_{+1}=B\left(x_{0}, \pi / 2\right)$, and therefore $s \mapsto \beta(s)$ is constant, which implies that the disk M is bounded by γ and with inner normal n is a cylinder of circumference 2π capped at one end with a hemisphere. The same argument applied to the disk bounded by γ and having $-n$ as inward normal shows $\left(S^{2}, g\right)$ is two of these capped cylinders glued together along γ, which is equivalent to the statement of the problem.
3.1. 3-dimensional version. In [3], Mazet and Rosenberg proved an analogous theorem to Calabi's for 2 -spheres in 3-manifolds, which we present here (all the proofs which we do not present here can be found in the authors' paper). Following a similar setting as above, let us consider what happens in a complete 3-manifold M with sectional curvatures between 0 and 1 .

Let Σ be an embedded minimal 2-sphere in M. Then the Gauss-Bonnet theorem and the Gauss equation tells us that the area of S is at least 4π :

$$
4 \pi=\int_{\Sigma} \bar{K}_{\Sigma}=\int \operatorname{det}(A)+K_{T \Sigma} \leq \int_{\Sigma} 1=A(\Sigma)
$$

with $\operatorname{det}(A)$ the determinant of the shape operator which is non positive because Σ is minimal (and also using the Gauss equation).

We denote by S_{1}^{n} the sphere of dimension n with constant sectional curvature 1 . We then have the following result.

Theorem 3.3. Let M be a complete Riemannian 3-manifold whose sectional curvatures satisfy $0 \leq K \leq 1$. Assume that there exists an embedded minimal sphere Σ in M with area 4π. Then the manifold M is isometric either to the sphere S_{1}^{3} or to a quotient of $S_{1}^{2} \times \mathbb{R}$.

Proof. Let Φ be the map $\Sigma \times \mathbb{R} \rightarrow M$ given by $(p, t) \mapsto \exp _{p}(t N(q))$ where N is a unit normal vector field along Σ. In the following, we focus on $\Sigma \times \mathbb{R}_{+}$; by symmetry, the analysis is similar for $\Sigma \times \mathbb{R}_{-}$. Since Σ is compact, there is $\varepsilon>0$ such that Φ is an immersion on $\Sigma \times[0, \varepsilon)$. Let ε_{0} be the supremum of all such ε 's (so it is possible that it equals $+\infty$). This metric can be written as $d s^{2}=d \sigma_{t}^{2}+d t^{2}$, where $d \sigma_{t}^{2}$ is a smooth family of metrics on Σ. With this metric, Φ becomes a local isometry from $\Sigma \times\left[0, \varepsilon_{0}\right)$ to M, and $\Sigma \times\left[0, \varepsilon_{0}\right)$ has sectional curvatures bounded between 0 and 1. Let us denote by $\Sigma_{t}=\Sigma \times\{t\}$ the equidistant surfaces. We denote by $H(p, t)$ the mean curvature of Σ_{t} at the point (p, t) with respect to the unit normal vector ∂_{t}. First note that Σ_{0} is minimal and has area 4π. Now we prove that $d \sigma_{0}^{2}$ has constant sectional curvature 1 so $\left(\Sigma, d \sigma_{0}^{2}\right)$ is isometric to S_{1}^{2}. Moreover, we have two cases
(1) $\varepsilon_{0}=\pi / 2$ and $d \sigma_{t}^{2}=\sin ^{2} t d \sigma_{0}^{2}$ or
(2) $\varepsilon_{0}=+\infty$ and $d \sigma_{t}^{2}=d \sigma_{0}^{2}$.

Indeed, we define $\lambda(p, t) \geq 0$ such that $H+\lambda$ and $H-\lambda$ are the principal curvature of Σ_{t} at (p, t). We notice that $\lambda=0$ if Σ_{t} is umbilical at (p, t). The surfaces Σ_{t} are spheres, so using the Gauss equation, the Gauss-Bonnet formula implies

$$
4 \pi=\int_{\Sigma_{t}} \bar{K}_{\Sigma_{t}}=\int_{\Sigma_{t}}(H+\lambda)(H-\lambda)+K_{t}=\int_{\Sigma_{t}} H^{2}-\lambda^{2}+K_{t}
$$

where $\bar{K}_{\Sigma_{t}}$ is the intrinsic curvature of Σ_{t} and K_{t} is the sectional curvature of the ambient manifold of the tangent space to Σ_{t}. Since $K_{t} \leq 1$, we obtain

$$
\int_{\Sigma_{t}} H^{2}+K_{t}-4 \pi \leq \int_{\Sigma_{t}} H^{2}+A\left(\Sigma_{t}\right)-4 \pi
$$

where $A\left(\Sigma_{t}\right)$ is the area of Σ_{t}. In the following, we denote by $F(t)$ the right hand side of this inequality, and we show that it vanishes on $\left[0, \varepsilon_{0}\right)$. Since Σ_{0} is minimal and has area 4π, we have that $F(0)=0$. This means that $\lambda(p, 0)=0$, so Σ_{0} is umbilical and $K_{T \Sigma}=1$, which implies that $\left(\Sigma_{0}, d \sigma_{0}\right)$ is isometric to S_{1}^{2}. Now, the first and second variation formula give

$$
\frac{\partial}{\partial t} A\left(\Sigma_{t}\right)=-\int_{\Sigma_{t}} 2 H \text { and } \frac{\partial H}{\partial t}=\frac{1}{2}\left(\operatorname{Ric}\left(\partial_{t}\right)+\left|A_{t}\right|^{2}\right),
$$

where A_{t} is the shape operator of Σ_{t} and Ric is the Ricci curvature of $\Sigma \times\left[0, \varepsilon_{0}\right)$. Using the fact that the sectional curvatures of $M \times\left[0, \varepsilon_{0}\right)$ are non-negative, we conclude that Ric is non-negative too. Thus the second formula implies that H is increasing, and therefore $H \geq 0$ everywhere. Moreover, we have that

$$
\begin{aligned}
F^{\prime}(t) & =\int_{\Sigma_{t}}\left(2 H \frac{\partial H}{\partial t}-2 H^{3}\right)-\int_{\Sigma_{t}} 2 H \\
& =\int_{\Sigma_{t}} H\left(\operatorname{Ric}\left(\partial_{t}\right)+\left|A_{t}\right|^{2}-2 H^{2}-2\right) \\
& =\int_{\Sigma_{t}} H\left(\left(\operatorname{Ric}\left(\partial_{t}\right)-2\right)+(H+\lambda)^{2}+(H-\lambda)^{2}-2 H^{2}\right) \\
& =\int_{\Sigma_{t}} H\left(\left(\operatorname{Ric}\left(\partial_{t}\right)-2\right)+2 \lambda^{2}\right) \\
& \leq 2 \int_{\Sigma_{t}} H \lambda^{2}
\end{aligned}
$$

where the last inequality follows from $\operatorname{Ric}\left(\partial_{t}\right)-2 \leq 0$ by hypothesis on the sectional curvatures. Now, choosing $\varepsilon<\varepsilon_{0}$, there is a constant $C \geq 0$ such that $H \leq C$ on $\Sigma \times[0, \varepsilon]$. So for $t \in[0, \varepsilon]$, we obtain that $F^{\prime}(t) \leq 2 C F(t)$. Then $F(t) \leq$ $F(0) e^{2 C t}=0$ on $[0, \varepsilon]$. Therefore $F \leq 0$ on $\left[0, \varepsilon_{0}\right)$, and therefore $F=0$ on $\left[0, \varepsilon_{0}\right)$. As a consequence, we have that all the equidistant surfaces Σ_{t} are umbilical, so $\lambda \equiv 0$. Taking the derivative of F, this implies that

$$
\int_{\Sigma_{t}} H\left(\operatorname{Ric}\left(\partial_{t}\right)-2\right)=0
$$

and by the inequality derived from the hypothesis above, we obtain

$$
H\left(\operatorname{Ric}\left(\partial_{t}\right)-2\right)=0 \text { everywhere } .
$$

Moreover, umbilicity and the variation formulas imply that $\frac{\partial H}{\partial t}=\frac{1}{2} \operatorname{Ric}\left(\partial_{t}\right)+H^{2}$. We now prove that given $(p, t) \in \Sigma \times\left[0, \varepsilon_{0}\right)$ such that $H(p, t)>0$, then $H(q, t)>0$ for any $q \in \Sigma$. Indeed, consider $\Omega=\{q \in \Sigma \mid H(q, t)>0\}$ which is a nonempty
open subset of Σ. Let $q \in \Omega$. Since $H(q, t)>0$, then $\operatorname{Ric}\left(\partial_{t}\right)(q, t)=2$. Thus $\operatorname{Ric}\left(\partial_{t}\right)(r, t)=2$ for any $r \in \bar{\Omega}$. So if $r \in \bar{\Omega}, \operatorname{Ric}\left(\partial_{t}\right)(r, s)>0$ for $s<t$, and therefore $H(r, t)>0$ and $r \in \Omega$. Therefore Ω is closed and therefore $\Omega=\Sigma$.

Now assume that there is some $\varepsilon_{1}>0$ such that $H(p, t)=0$ for $(p, t) \in \Sigma \times\left[0, \varepsilon_{1}\right]$ and $H(p, t)>0$ for any $(p, t) \in \Sigma \times\left(\varepsilon_{1}, \varepsilon_{0}\right)$. Because of the evolution equation of H, this implies that $\operatorname{Ric}\left(\partial_{t}\right)=0$ on $\Sigma \times\left[0, \varepsilon_{1}\right]$, but on $\Sigma \times\left(\varepsilon_{1}, \varepsilon_{0}\right)$ we have $\operatorname{Ric}\left(\partial_{t}\right)=2$ by the application of Gauss' equation above, which is a contradiction by the continuity of $\operatorname{Ric}\left(\partial_{t}\right)$. Thus we have two possibilities:
(1) $H=0$ on $\Sigma \times\left[0, \varepsilon_{0}\right)$ and $\operatorname{Ric}\left(\partial_{t}\right)=0$ on $\Sigma \times\left[0, \varepsilon_{0}\right)$,
(2) $H>0$ on $\Sigma \times\left(0, \varepsilon_{0}\right)$ and $\operatorname{Ric}\left(\partial_{t}\right)=2$ on $\Sigma \times\left[0, \varepsilon_{0}\right)$.

In the first case, this means that the sectional curvature of any 2-plane orthogonal to Σ_{t} is zero, and therefore $d \sigma_{t}^{2}=d \sigma_{0}^{2}$. Since Φ only fails to be an immersion if $d \sigma_{t}^{2}$ becomes singular, it follows that in this case $\varepsilon_{0}=+\infty$. Therefore $\Sigma \times \mathbb{R}_{+}$is isometric to $S_{1}^{2} \times \mathbb{R}_{+}$with the induced metric, and Φ is a local isometry $S_{1}^{2} \times \mathbb{R}_{+}$.

In the second case, the sectional curvature of any 2 -plane orthogonal to Σ_{t} is equal to 1 . Therefore $d \sigma_{t}^{2}=\sin ^{2} t d \sigma_{0}$ and $\varepsilon_{0}=\pi / 2$. This also implies that $\Phi(p, \pi / 2)$ is a point, and $\Sigma \times[0, \pi / 2]$ with the metric $d s^{2}$ is isometric to a hemisphere of S_{1}^{3}, and Φ is a local isometry from that hemisphere to M.

We can perform the same analysis for $\Sigma \times \mathbb{R}_{-}$, for which we get that in the first case Φ is a local isometry $S_{1}^{2} \times \mathbb{R} \rightarrow M$, and in the second case a local isometry $\Phi: S_{1}^{3} \rightarrow M$. Since $S_{1}^{2} \times \mathbb{R}$ and S_{1}^{3} are simply connected, Φ is then the universal cover of M and M is then isometric to a quotient of $S_{1}^{2} \times \mathbb{R}$ or S_{1}^{3}. Since Φ is injective on Σ, in the second case we see that actually Φ is injective and therefore a global isometry.
3.2. Higher codimension case. Perhaps not so surprisingly, this result can be extended to higher codimension. This result is presented in [4] by Mazet.

Theorem 3.4. Let M be a Riemannian $n \geq 3$-manifold whose sectional curvature is bounded above by 1. Let us assume that M contains an immersed minimal 2sphere of area 4π which has index at least $n-2$. Then the universal cover of M is isometric to the unit sphere S_{1}^{n}.

While the proof of this theorem is quite involved for the purposes of this paper, the idea of the proof is as follows: if S is an immersed 2 -sphere, we can define a function F by

$$
F(S)=A(S)+\int_{S}|H|^{2}-4 \pi
$$

where $A(S)$ is the area of S and H is the mean curvature of S. If $F(S)$ vanishes, S is totally umbilical and we can extract information on the sectional curvature of M along S. Therefore, if S_{0} is the minimal 2-sphere given by the statement of the theorem, then $F\left(S_{0}\right)=0$. The idea is then to explore the geometry of M by computing $F\left(S_{t}\right)$ along a deformation $\left\{S_{t}\right\}_{t}$ of S_{0}, and the proof in the paper produces the family $\left\{S_{t}\right\}$ as a mean curvature flow out of S_{0}. More precisely, the author constructs non trivial ancient solutions $\left\{S_{t}\right\}_{t \in(-\infty, b)}$ of the mean curvature flow such that $S_{t} \rightarrow S_{0}$ as $t \rightarrow-\infty$.

4. Results on capillary surfaces

Similar to the statements we've considered so far, it is possible to consider analogous statements for non-minimal surfaces. These results are presented by Espinar and Rosenberg in [5]. Let us first set up the notation and basic definitions.

Let $(M, \partial M)$ be a complete Riemannian 3-manifold with boundary. Throughout this section, η will always stand for the inward normal along ∂M. Now, let Σ be an oriented compact surface with boundary $\partial \Sigma$ and unit normal N, N chosen so that $\left\|H^{\prime}\right\| N=H$ when $H \neq 0 ; H^{\prime}=2 H N$, where H^{\prime} and H are the mean curvature vector and mean curvature function respectively. If H is constant along Σ, we say that Σ is a H-surface. Also, denote by $I I_{\Sigma}$ the second fundamental form of Σ in M with respect to N and by K_{e} and K_{Σ} its extrinsic and Gaussian curvature, the extrinsic curvature K_{e} is nothing but the product of the principal curvatures. Associated to the mean and extrinsic curvatures one can define the skew curvature as $\Phi=\sqrt{H^{2}-K_{e}}$ that measures how far the surface is from being umbilic. Throughout this section we will denote by $|\Sigma|$ and $|\partial \Sigma|$ the area of Σ and the length of $\partial \Sigma$ respectively.

We assume that $\Sigma \subset M$ and $\partial \Sigma \subset \partial M$. We say that Σ is a capillary surface of angle β in M if the outer conormal ν along $\partial \Sigma$ and the unit normal along ∂M make a constant angle β along $\partial \Sigma$, i.e. there exists a constant $\beta \in[0, \pi / 2)$ so that $\langle\nu, \eta\rangle=-\cos \beta$. In particular, when $\beta=0$ or, equivalently, Σ meets orthogonally ∂M, we say that Σ is a free boundary surface.

4.1. Manifolds with umbilic boundary and $0 \leq K_{\text {sect }} \leq 1$.

Lemma 4.1. Let $(M, \partial M)$ be a complete orientable Riemannian 3-manifold with boundary. Let $\Sigma \subset M$ be a compact oriented H-disk ($H \geq 0$) with boundary $\partial \Sigma \subset \partial M$. Assume that

- The sectional curvatures of M satisfy $K_{\text {sect }} \leq 1$,
- ∂M is umbilic, with umbilicity factor $\alpha \in \mathbb{R}$,
- Σ is a capillary disk of angle $\beta \in[0, \pi / 2)$,
then

$$
2 \pi \leq\left(1+H^{2}\right)|\Sigma|+\frac{\alpha+\left(H+\max _{\partial \Sigma} \Phi\right) \sin \beta}{\cos \beta}|\partial \Sigma|
$$

Moreover, equality holds if, and only if, Σ is umbilic, $K_{\Sigma}=1+H^{2}$ and $K_{\text {sect }} \equiv 1$ along Σ.

Proof. First, by the Gauss equation and the AM-GM inequality, we obtain

$$
K_{\Sigma}=K_{e}+K_{\text {sect }} \leq H^{2}+1,
$$

hence, integrating over Σ, the Gauss-Bonnet formula yields

$$
2 \pi=\int_{\Sigma} K_{\Sigma}+\int_{\partial \Sigma} k_{g} \leq\left(1+H^{2}\right)|\Sigma|+\int_{\partial \Sigma} k_{g} .
$$

Now let t denote a unit tangent vector field along $\partial \Sigma$, clearly $t \in(\partial M)$, and let $n=J t$ be the rotation by an angle of $\pi / 2$ on ∂M. On the one hand, since $\{t, n\}$ is an orthonormal frame along ∂M, we have

$$
2 H_{\partial M}=-\left\langle t, \bar{\nabla}_{t} \eta\right\rangle-\left\langle\eta, \bar{\nabla}_{n} \eta\right\rangle
$$

and since ∂M is umbilic, we obtain

$$
-\left\langle t, \bar{\nabla}_{t} \eta\right\rangle=\alpha
$$

On the other hand, by the capillary condition, $-\eta=\cos \beta \nu+\sin \beta N$ along $\partial \Sigma$, hence

$$
-\left\langle t, \bar{\nabla}_{t} \eta\right\rangle=\cos \beta\left\langle t, \bar{\nabla}_{t} \nu\right\rangle+\sin \beta\left\langle t, \bar{\nabla}_{t} N\right\rangle=\cos \beta k_{g}-\sin \beta I I_{\Sigma}(t, t)
$$

Therefore, combining both equations we get

$$
\cos \beta k_{g}=\alpha+\sin \beta I I_{\Sigma}(t, t)
$$

along $\partial \Sigma$. Finally, since Σ has constant mean curvature H, we have that $I_{\Sigma}(t, t) \leq$ $H+\Phi$ and hence we obtain

$$
2 \pi \cos \beta \leq\left(1+H^{2}\right) \cos \beta|\Sigma|+\left(\alpha+\left(H+\max _{\partial \Sigma} \Phi\right) \sin \beta\right)|\partial \Sigma|
$$

as claimed. Moreover, equality holds if and only if it holds in the second equation, that is $K_{\Sigma}=H^{2}+1$, which implies that Σ is umbilic and $K_{\text {sect }} \equiv 1$ along Σ. From the Gauss equation we then deduce that $K_{\Sigma}=1+H^{2}$.

When Σ is a free boundary disk and ∂M is totally geodesic, the above inequality reads as $2 \pi \leq\left(1+H^{2}\right)|\Sigma|$, and equality holds with the same conditions as above. Now let us describe the model cases of Riemannian manifolds ($M, \partial M$) where free boundary disks achieve the equality. In this case we have two distinct models:

- Model 1: Let $S^{3} \subset \mathbb{R}^{4}$ be the standard unit three-sphere embedded in the four dimensional Euclidean space with the standard Euclidean metric $\langle\cdot, \cdot\rangle_{0}$. Then, the upper hemisphere, given by

$$
S_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S^{3}: x_{4}>0\right\}
$$

is a complete manifold with constant sectional curvatures equal to 1 and totally geodesic boundary $\partial S_{+}^{3}=\left\{x \in S_{+}^{3}: x_{4}=0\right\}$, which is isometric to a two-sphere S^{2}. From now on, we denote by $S^{n}(r)$ the standard n dimensional sphere of constant sectional curvatures $1 / r^{2}$.

For any $x \in \partial S_{+}^{3}$, let $B_{x}(R)$ be the geodesic ball of the standard threesphere S^{3} centered at x of radius R. Fix $H \geq 0$ a constant and set $R_{H}=$ $\frac{\pi}{2}-\arctan H$. Then, we have

$$
D_{H}:=\partial B_{x}\left(R_{H}\right) \cap S_{+}^{3}
$$

is a umbilic H-disk orthogonal to ∂S_{+}^{3} such that

$$
\left|D_{H}\right|=\frac{2 \pi}{1+H^{2}}
$$

- Model 2: Let S_{+}^{2} be the upper hemisphere of the standard 2-sphere. Clearly, $\mathbb{R} \times S_{+}^{2}$ with the standard product hemisphere is a complete manifold with sectional curvatures between 0 and 1 and totally geodesic boundary

$$
\partial\left(\mathbb{R} \times S_{+}^{2}\right)=\mathbb{R} \times \partial S_{+}^{2}
$$

For any $t \in \mathbb{R}, D_{t}=\{t\} \times S_{+}^{2}$ is a totally geodesic minimal disk orthogonal to $\mathbb{R} \times \partial S_{+}^{2}$ such that

$$
\left|D_{t}\right|=2 \pi
$$

Now we can state the following theorem.

Theorem 4.2. Let $(M, \partial M)$ be a complete orientable Riemannian 3-manifold with boundary. Assume that M has sectional curvatures $0 \leq K_{\text {sect }} \leq 1$ and ∂M is connected and totally geodesic. If there exists a compact oriented embedded H-disk $\Sigma \subset M$ orthogonal to ∂M such that

$$
|\Sigma|=\frac{2 \pi}{1+H^{2}}
$$

Then:

- If $H>0$, the mean convex side of $M \backslash \Sigma$, call it U, is isometric to $B_{x}\left(R_{H}\right) \cap$ $S_{+}^{3} \subset S^{3}$ with the standard metric, $R_{H}=\pi / 2-\arctan H$ and $x \in \partial S_{+}^{3}$. Moreover, Σ is a disk D_{H} described in the model 1.
- If $H=0, M$ is isometric to either S_{+}^{3} with its standard metric of constant sectional curvature one, or a quotient of $\mathbb{R} \times S_{+}^{2}$ with the standard product metric. Moreover, Σ is a disk D_{H} or D_{t} as described in the models 1 and 2.
4.2. Manifolds with umbilic boundary and $K_{\text {sect }} \leq-1$. In this section we'll study compact capillary H-surfaces of non-positive Euler characteristic immersed in a three-manifold with umbilic boundary and section curvatures less or equal to -1 . We obtain an upper bound for the area of such capillary surfaces with a corresponding rigidity statement.

Lemma 4.3. Let $(M, \partial M)$ be a complete orientable Riemannian 3-manifold with boundary. Let $\Sigma \subset M$ be a compact oriented H-surface $(H \geq 0)$ with boundary $\partial \Sigma \subset \partial M$. Assume that

- The sectional curvatures of M satisfy $K_{\text {sect }} \leq-1$,
- ∂M is umbilic, with umbilicity factor $\alpha \in \mathbb{R}$,
- Σ is a capillary surface of angle $\beta_{i} \in[0, \pi / 2)$ at each connected component $\partial \Sigma_{i}$ of the boundary $\partial \Sigma$.
Then

$$
-2 \pi \chi(\Sigma)+\sum_{i=1}^{k} \frac{\alpha+\sin \beta_{i}\left(H+\max _{\partial \Sigma} \Phi\right)}{\cos \beta_{i}}\left|\partial \Sigma_{i}\right| \geq\left(1-H^{2}\right)|\Sigma|
$$

where k is the number of connected components of $\partial \Sigma$. Moreover, equality holds if and only if Σ is umbilic, $K_{\Sigma}=H^{2}-1$ and $K_{\text {sect }} \equiv-1$ along Σ.

Proof. As we did in the first lemma, by the Gauss-Bonnet formula and the hypothesis we get

$$
\begin{aligned}
2 \pi \chi(\Sigma) & =\int_{\Sigma} K_{\Sigma}+\int_{\partial \Sigma} k_{g} \\
& =\int_{\Sigma} H^{2}-\int_{\Sigma} \Phi^{2}+\int_{\Sigma} K_{s e c t}+\sum_{i=1}^{k} \int_{\partial \Sigma_{i}} k_{g} \\
& \leq\left(H^{2}-1\right)|\Sigma|+\sum_{i=1}^{k} \frac{\alpha+\sin \beta_{i}\left(H+\max _{\partial \Sigma} \Phi\right)}{\cos \beta_{i}}\left|\partial \Sigma_{i}\right|,
\end{aligned}
$$

as claimed.
As in the previous lemma, we will describe the model cases when equality is achieved by a free boundary H-surface, $H \in[0,1]$, in a complete manifold with
$K_{\text {sect }} \leq-1$ and totally geodesic boundary.

In both cases, $H=1$ and $H \in[0,1), M$ will be a hyperbolic manifold with totally geodesic boundary and Σ will be a constant intrinsic curvature umbilical H-surface orthogonal to ∂M.

- Model 3: We begin with the case $H \in[0,1)$. Let S be a closed oriented surface of curvature $-1 . S$ is a quotient of \mathbb{H}^{2} by a cocompact Fuchsian group Γ of isometries of \mathbb{H}^{2}. Consider $P_{0} \equiv \mathbb{H}^{2}$ as isometrically embedded in \mathbb{H}^{3} as a totally geodesic plane, with n a unit normal vector field to P_{0} in \mathbb{H}^{3}. We parametrize \mathbb{H}^{3} in Fermi coordinates by $F: \mathbb{R} \times P_{0} \rightarrow \mathbb{H}^{3}$, where

$$
F(t, x):=\exp _{x}(t n(x))
$$

The metric of \mathbb{H}^{3} in these coordinates is $d t^{2}+\cosh ^{2}(t) g_{-1}$, where g_{-1} is the standard hyperbolic metric of curvature -1 . Observe that

$$
P_{t}:=\left\{F(t, x): x \in H_{0}\right\}
$$

is an equidistant surface of P_{0} of constant mean curvature $\tanh (t)$. The group Γ extends to isometries of \mathbb{H}^{3} : for $\gamma \in \Gamma, t \in \mathbb{R}$ and $x \in H_{0}$, define

$$
\gamma(F(t, x))=F(t, \gamma(x))
$$

The extended action leaves each P_{t} invariant and $P_{t} / \Gamma=S_{t}$ is a constant sectional curvature umbilical surface in $\mathbb{H}^{3} / \Gamma . \mathbb{H}^{3} / \Gamma$ is homeomorphic to $\mathbb{R} \times S$.

- Model 4: we describe the case $H=1$. Consider a horosphere H_{0} of \mathbb{H}^{3} and a \mathbb{Z}^{2} group Γ of parabolic isometries leaving H_{0} invariant. Let n be a unit normal vector field to H_{0} in \mathbb{H}^{3}, pointing to the mean convex side of $H_{0} . \mathbb{H}^{3}$ has the Fermi coordinates $F: \mathbb{R} \times H_{0} \rightarrow \mathbb{H}^{3}$, where

$$
F(t, x):=\exp _{x}(t n(x))
$$

here \exp denotes the exponential map in \mathbb{H}^{3}. the metric of \mathbb{H}^{3} in these coordinates is $d t^{2}+e^{2 t} g_{e}$, where g_{e} is the standard Euclidean metric of curvature 0 . As before, Γ acts on \mathbb{H}^{3}, leaving each horosphere H_{t} invariant. Each H_{t} has mean curvature 1. \mathbb{H}^{3} / Γ is a hyperbolic three manifold of constant section curvature -1 isometric to $\mathbb{R} \times \mathbb{T}^{2}$ with the metric $d t^{2}+$ $e^{-2 t} g_{e}$, where g_{e} is the standard flat metric of T^{2}.

Now we can characterize Riemannian manifolds ($M, \partial M$) with totally geodesic boundary and sectional curvatures $K_{\text {sect }} \leq-1$ assuming the existence of an oriented H-surface meeting ∂M orthogonally and of greatest area. By the lemma we just proved, if $\Sigma \subset M$ is an oriented compact H-surface, $H^{2} \leq 1$, such that $\partial \Sigma \subset \partial M$ and meets ∂M orthogonally, then

$$
\left(1-H^{2}\right)|\Sigma| \leq 2 \pi|\chi(\Sigma)|
$$

where we are assuming that ∂M is totally geodesic in M. Note that, in the case $\chi(\Sigma)=0$, this says that if there exists a H-surface $\Sigma, H^{2} \leq 1$, orthogonal to the boundary with $\chi(\Sigma)=0$ then Σ has constant mean curvature $H=1$, it is umbilic, $K_{\Sigma}=0$ and $K_{\text {sect }} \equiv-1$ along Σ, without any area information. It is remarkable that we cannot characterize the manifold when Σ is minimal.

Theorem 4.4. Let $(M, \partial M)$ be a complete orientable Riemannian 3-manifold with boundary. Assume that M has sectional curvatures $K_{\text {sect }} \leq-1$ and ∂M is totally geodesic. Assume that there exists a compact oriented embedded H-surface $\Sigma \subset M$, $H \in(0,1]$, orthogonal to ∂M with non-positive Euler characteristic. Then:

- If $H \in(0,1), \Sigma$ separates and $|\Sigma|=\frac{2 \pi|\chi(\sigma)|}{1-H^{2}}, \chi(\Sigma)<0$, then there exists a totally geodesic minimal surface Σ_{m} orthogonal to ∂M and an isometry

$$
F:\left([0, \operatorname{arctanh} H) \times \Sigma, d t^{2}+\cosh ^{2}(t) g_{-1}\right) \rightarrow M
$$

where g_{-1} denotes the standard metric of constant curvature -1 , such that $-F(0, \Sigma)=\Sigma$ and $F(\operatorname{arctanh} H, \Sigma)=\Sigma_{m}$, and
$-F(t, \Sigma)=\Sigma_{t}$ is an embedded totally umbilic H-surface, $H=\tanh (\operatorname{arctanh} H-$ t), orthogonal to ∂M for all $t \in[0, \operatorname{arctanh} H)$.
Moreover, if Σ_{m} is non-orientable, a tubular neighborhood of Σ_{m} is foliated by its equidistants Σ_{t}.

- If $H=1$ and $\chi(\Sigma)=0$, the mean convex side of $M \backslash \Sigma$, call this component U, is isometric to $[0, \infty) \times \Sigma$ endowed with the product metric $g=d t^{2}+$ $e^{-2 t} g_{e}$, where g_{e} is the standard Euclidean metric of curvature 0. That is, U is isometric to a cusp hyperbolic end P corresponding to Model 4 and Σ is a slice.

The reader is referred to the paper to see a proof of the theorems.

Acknowledgments

I am extremely grateful to my mentor, Professor Ben Lowe, who was always available and willing to help with any question I had. I learned a lot of very interesting math this summer and this paper couldn't have been possible without him.

References

[1] F. C. Marques. Notes on Minimal surfaces.
[2] Lars Anderson, Ralph Howard. Communications in Analysis and Geometry. 1998.
[3] Laurent Mazet, Harold Rosenberg. On minimal spheres of area 4π and rigidity. 2013.
[4] Laurent Mazet. Rigidity of Riemannian manifolds containing an equator. 2021.
[5] José Espinar, Harold Rosenberg. Area estimates and rigidity of capillary Hsurfaces in threemanifolds with boundary 2016.
[6] John M. Lee. Introduction to Smooth Manifolds. Springer Graduate Texts in Mathematics. 2013.
[7] Calegari, Marques, Neves. Counting Minimal Surfaces in negatively-curved closed 3-manifolds. 2021.
[8] John M. Lee. Introduction to Riemannian Manifolds. Springer Graduate Texts in Mathematics. 2018.
[9] doCarmo, Manfredo P. Riemannian Geometry. Springer. 1992.
[10] Thurston, William. Three-dimensional Geometry and Topology. Princeton University Press. 1997.
[11] Thurston, William. Three Dimensional Manifolds, Kleinian groups and hyperbolic geometry. Bulletin of the American Mathematical Society. 1982.
[12] Hatcher. Algebraic Topology. Cambridge University Press. 2002.
[13] Peter Petersen. Riemannian Geometry. Springer. 2006.
[14] Jacob Lurie. Lecture notes for topics in Geometric Topology. https://www.math.ias.edu/ ~lurie/937.html
[15] Richard S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geometry. 1982.

[^0]: Date: August 28, 2023.

