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Abstract. The theory of graph limits enables us to analyze discrete combi-

natorial objects, such as graphs, through the study of continuous objects such

as graphons. In this paper, we define a notion of quasirandom graph sequences
and present a surprising and elegant property of such sequences. These ideas

naturally lead us toward the development of the theory of graph limits. We

then use this rich theory to prove the aforementioned property of quasirandom
graph sequences.
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1. Introduction: On Randomness

Much of modern mathematics deals with the notion of randomness. Probabilists
study random walks; computer scientists develop random algorithms; logicians anal-
yse random graphs. But what makes a mathematical object – say a number, graph,
or function – random?

For a finite mathematical object – a real number, a finite graph, a function between
finite sets – this question can not admit any reasonable answer. But for infinite
sequences of finite objects, a notion of randomness that matches our intuition can
often be defined. For example, consider the collection of infinite binary sequences.
We would like to develop a notion of randomness under which sequences such as
0101010101... are not considered random, whereas sequences such as 0111010011...,
whose digits have no discernable pattern, are considered random.

It turns out that this is a surprisingly difficult task: many definitions of random
sequences that appear intuitive either admit sequences whose digits have a dis-
cernible pattern, or admit no sequences at all. It was not until the 1960s, when the
logician Per Martin-Löf had the idea to use the theory of computation to formalize
the notion of a “randomness test,” that a suitable definition of random sequences
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was found. We refer the reader to Chapter 9 of [2] for further discussion on this
topic, including a definition of Martin-Löf randomness.

Curiously, when we consider sequences of finite graphs, rather than sequences of bits,
the situation becomes somewhat simpler. In 1989, Fan Chung, Ronald Graham,
and Richard Wilson developed an intuitive and versatile theory of “quasirandom”
sequences of graphs [3]. By a sequence of graphs, we mean a sequence (Gn) such
that for each n ∈ N, Gn is a finite graph. Let us define v(Gn) to be the number
of vertices in Gn, and let us only consider those graph sequences (Gn) for which
v(Gn) → ∞. For simplicity of notation in the forthcoming definitions, let us further
assume that v(Gn) = n for all n.

The theory of quasirandom graph sequences relies upon the notion of a graph
homomorphism. A graph homomorphism is a map between the vertex sets of two
graphs which preserves edges (we will definte this notion formally later, at the
beginning of Section 2). We can now define a quasirandom graph sequence as
follows:

Definition 1.1 (Quasirandom graph sequence). A graph sequence G(n) is quasir-
andom with density p ∈ (0, 1) if for every finite graph H, the number of homomor-
phisms of H into Gn is asymptotically equal to pe(H)nv(H).

Intuitively, this definition stipulates that the edge density of the graphs in (Gn) is
asymptotically p – and furthermore, that the number of appearances of any sub-
graph H in Gn asymptotically depends only on the number of vertices and edges in
H, rather than on the specific structure of H. A sequence of graphs which is con-
structed in such a way as to either generate or avoid the presence of any particular
subgraph will not be quasirandom according to this definition.

This definition is rather intuitive and elegant, especially in comparison to the defi-
nition of random sequences. One of the most remarkable aspects of this definition
is the variety of equivalent ways in which it can be formulated. In fact, each of the
following is an equivalent definition of a quasirandom sequence of graphs: 1

Definition 1.2. A graph sequence G(n) is quasirandom with density p ∈ (0, 1) if
the number of edges contained within any set of n/2 nodes is asymptotically equal
to pn2/8.

Definition 1.3. A graph sequence G(n) is quasirandom with density p ∈ (0, 1) if
the number of edges in Gn is asymptotically equal to pn2/2, and the number of
4-cycles is asymptotically equal to p4n4/8.

Definition 1.4. A graph sequence G(n) is quasirandom with density p ∈ (0, 1) if
for any two disjoint sets A and B of vertices, the number of edges between A and
B is p|A||B|+ o(n2).

Definition 1.5. A graph sequence G(n) is quasirandom with density p ∈ (0, 1) if
degrees of all but finitely many vertices are asymptotically pn, and the codegrees
(number of common neighbors of two nodes) of all but finitely many pairs of vertices
are asymptotically p2n.

1These definitions are drawn from Chapter 1 of [1].
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Perhaps the most surprising of these equivalences is that between Definitions 1.1
and 1.3. If a sequence of graphs contains asymptotically “random” numbers of
edges and 4-cycles, it must also contain asymptotically “random” numbers of every
other finite graph!

1.1. Graph Limits.

In defining a quasirandom graph sequence (Gn) (Definition 1.1), we stipulated that
the number of homomorphisms of every finite graph H into Gn must be asymptoti-
cally equal to a certain scalar multiple of nv(H), which is in turn the number of total
homomorphisms from H into Gn. Furthermore, we required that the value of this
scalar multiple depend only on e(H). It is natural to ask what would happen if we
removed this second requirement. That is, what if we considered sequences (Gn)
such that the number of homomorphisms of H into Gn is asymptotically equal to
some scalar multiple of nv(H) for each H – but imposed no restriction on what this
scalar multiple can be?

It is precisely this idea that underlies the theory of graph limits. In the following
section, we will formalize the notion of a “convergent” sequence of graphs. Fur-
thermore, we will specify a class of objects called “graphons” to which sequences
of graphs converge. Whereas graphs are defined over a discrete set of vertices,
graphons are defined over a continuous domain.

Precisely because of their continuous nature, graphons turn out to be a very pow-
erful tool for studying and analyzing finite graphs. Theorems and properties about
graphs are often easier to state and prove in the space of graphons – and proofs in
the space of graphons can often be transferred back into the space of graphs. As
an example of this proof technique, we will use the theory of graphons to prove the
aforementioned property of quasirandom graphs – that is, the equivalence between
Definitions 1.1 and 1.3.

2. Graphs and Sequences

Let us begin by formally defining graphs and homomorphisms therebetween. A
graph G is given by a set V (G) of vertices together with a set E(G) ⊂ V (G)2 of
edges between vertices. We will write v(G) to denote |V (G)|, and e(G) to denote
|E(G)|. In a simple graph G, edges are undirected, and loops are forbidden. That
is, for all x, y ∈ V (G), (x, y) ∈ E(G) ⇔ (y, x) ∈ E(G), and for all x ∈ V (G),
(x, x) ̸∈ E(G).

In a weighted graph G, every vertex x ∈ V (G) is assigned a postive real weight
αx(G), and every edge (x, y) ∈ E(G) is assigned a real weight β(x,y)(G). Further-
more, loops are permitted, i.e., we may have (x, x) ∈ E(G) for some x ∈ V (G). In
this paper, graphs will be assumed to be simple unless otherwise specified. Given
a subset S ⊂ V (G), we will write G[S] to denote the subgraph of G induced by S.
That is, the edges of G[S] are all those edges (x, y) ∈ E(G) such that x, y ∈ S.
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A homomorphism is a map between graphs that preserves edges. That is, a
function f is a homomorphism between graphs G and H if for all x, y ∈ V (G),
(x, y) ∈ E(G) ⇒ (f(x), f(y)) ∈ E(H). We write G → H to denote the existence of
a homomorphism f : G → H. For instance, letting Kn denote the complete graph
on n vertices, Kn → G means that G contains a clique of size n.

We have seen that the definition of quasirandom graphs involves the number of
homomorphisms from a given graph H into Gn; this will also be a central notion
in the theory of graph limits. Let Hom(G,H) be the set of homomorphisms be-
tween G and H, and let hom(G,H) be the number of such homomorphisms, i.e.,
hom(G,H) = |Hom(G,H)|. It will often be useful to normalize hom(G,H) in order
to define a homomorphism density between two graphs. In particular, we define:

t(G,H) =
hom(G,H)

v(H)v(G)

Note that there are v(H)v(G) total homomorphisms from G to H; as such, t(G,H)
is the probability that a map f : G → H chosen uniformly at random is a homo-
morphism.

We are now ready to formalize the notion of a convergent sequence of finite graphs:

Definition 2.1. A sequence of graphs (Gn) with v(Gn) → ∞ is convergent if for
every finite graph F , the sequence of homomorphism densities t(F,Gn) converges.

A basic example of a convergent sequence of graphs is the sequence of complete
graphs (Kn). For any n and any finite graph F , every map f : F → Kn is a homo-
morphism. Therefore t(F,Gn) = 1 for all n and F , and so the sequence (t(F,Gn))
is convergent. It is also clear that any quasirandom graph sequence is convergent:
if a sequence of graphs G(n) satisfies Definition 1.1, then (t(F,Gn)) converges to
pe(F ) for all finite graphs F .

Another equivalent way to define convergent graph sequences is through the notion
of sampling. Given finite graphs F and G, let p(F,G) be the probability that a
randomly selected subset S ⊂ V (G) of size |S| = v(F ) induces the subgraph F . We
may then define a sequence of graphs (Gn) to be convergent if for every finite graph
F , the sequence (p(F,Gn)) converges. This definition is perhaps more natural than
Definition 2.1, and in some instances, more useful. However, the two definitions
are in fact equivalent; we refer the reader to Chapter 11 of [1] for the justification
of this equivalence.

3. Kernels and Graphons

Once we have defined the notion of a convergent sequence of graphs, a natural
question arises: what does a sequence of graphs converge to? For instance, given
the notion of Cauchy convergence on the rational numbers Q, the real numbers R
emerge as the numbers to which sequences of rational numbers converge. In other
words, real numbers are the limit objects of sequences of rational numbers. Can we
extend this same concept to sequences of graphs? That is, can we define some limit
object of a sequence of graphs that somehow captures all the important information
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contained within the sequence?

At first glance, it may seem as though the limit object of a sequence of finite
graphs should be a countably infinite graph. Given a convergent sequence of graphs
(Gn), one candidate for a limit object might be a countably infinite graph G that
captures the information about homomorphism densities contained in the sequence.
In particular, for every finite graph F , we might like to have:

t(F,G) = limn→∞t(F,Gn)

At this point, a problem emerges: when G is an infinite graph, t(F,G) is no longer
well defined. Perhaps we can avoid this issue by using the alternative characteri-
zation of t(F,G) that we previously described – that is, as the probability that a
randomly chosen map from F to G is a homomorphism. But here we encounter
an even more fundamental problem. A probability distribution must be countably
additive – so there is no uniform probability distribution on a countably infinite
set! Therefore, the notion of a “randomly chosen map” from F to G can not be
well defined.

Even if we could somehow circumvent this issue, countably infinite graphs would
not be sufficiently complex to capture all the information we would like to about
convergent sequences of graphs. We refer the reader to Chapter 11 of [1], and to
Corollary 11.15 in particular, for further discussion of this topic.

It turns out that the ideal limit object of a convergent sequence of graphs is a
weighted graph on the interval [0, 1]. This construction avoids the aforementioned
problem, as there does exist a uniform probability distribution on [0, 1]. It also
provides us with enough complexity to capture the important features of a conver-
gent graph sequence, in a sense that we will soon make more precise. These limit
objects are formally defined as functions, and are called graphons, a contraction of
the words “graph” and “function.”

Definition 3.1. A graphon W is a symmetric, Lebesgue measurable function

W : [0, 1]2 → [0, 1].

If we consider W (x, y) = W (y, x) to be the “weight” of the edge connecting x and
y, we can indeed consider a graphon as a weighted graph on [0, 1]. It will also be
useful to generalize graphons by defining kernels, whose images are bounded, but
not necessarily within the interval [0, 1]:

Definition 3.2. A kernel W is a symmetric, Lebesgue measurable, bounded func-
tion

W : [0, 1]2 → R.

We will write W to denote the space of kernels, and W0 to denote the space of
graphons. We will also write J to denote the kernel which is the constant function
1: that is, J(x, y) = 1 for all x, y ∈ [0, 1]. We can then write pJ to denote the
kernel which is the constant function p.
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We now wish to assign graphons as the limits of graph sequences in the way pre-
viously discussed. That is, given a sequence of graphs G(n), its limit should be a
graphon W such that

t(F,W ) = limn→∞t(F,Gn)

for every finite graph F . We will first need to extend the notion of homomorphism
densities to graphons – and then verify that a graphon satisfying the above equation
can indeed be found for every convergent graph sequence (Gn).

Definition 3.3. Let W be a kernel and F a finite graph, and for ease of notation,
let us write V = V (F ) and E = E(F ). We define the homomorphism density of F
in W by:

t(F,W ) =

∫
[0,1]V

∏
(i,j)∈E

W (xi, xj)
∏
i∈V

dxi

This definition is an infinite analogue of homomorphism densities into finite weighted
graphs. As a basic example, we have

t(K2,W ) =

∫
[0,1]2

W (x, y) dx dy

which we recognize as the average value of W on the domain [0, 1]2. For any finite
graph G, t(K2, G) gives the edge density of G. If we consider G as a function
g : V (G)2 → {0, 1}, where g(x, y) = 1 if and only if (x, y) ∈ E(G), then the edge
density of G corresponds to the average value of g on V (G)2. We thus see that
in this case, Definition 3.3 provides a natural infinite analogue of homomorphism
densities into finite graphs.

The use of graphons as limit objects for sequences of graphs is justified by the
following critical property:

Theorem 3.4. For every convergent sequence of graphs (Gn), there exists a graphon
W such that t(F,Gn) converges to t(F,W ) for every finite graph F .

The proof of this theorem relies on the notion of cut distance, which is a metric on
the space of graphs and kernels – that is, a way of defining the distance between any
two graphs or kernels. We will write d□(G,G′) to denote the cut distance between
two graphs, and d□(W,W ′) for the cut distance between two graphons. The cut
distance is rather difficult to define formally, and will not play a central role in this
paper; we therefore omit its formal definition, and refer the reader to Chapter 8
of [1]. For our purposes, the most important property of the cut distance is the
following:

Theorem 3.5. The space of graphons is compact with respect to the cut distance.
That is, (W,d□) is compact.

In particular, because the cut distance is bounded between 0 and 1, every sequence
of graphons contains a subsequence that converges to a limit graphon with respect
to the cut distance. The other useful feature of the cut distance is that if the
cut distance between two graphs (or graphons) is small, then so is the difference
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between their homomorphism densities for any graph F . This result is known as
the counting lemma:

Lemma 3.6 (Counting Lemma). If F,G, and G′ are simple graphs, then:

|t(F,G)− t(F,G′)| ≤ e(F )d□(G,G′).

Similarly, if F is a simple graph and W and W ′ are graphons, then:

|t(F,W )− t(F,W ′)| ≤ e(F )d□(W,W ′).

Using these two properties of the cut distance, we can outline the proof of Theorem
3.4.

Proof of Theorem 3.4 (sketch). Let (Gn) be a convergent sequence of graphs. For
each graph Gn in the sequence, we can define a corresponding graphon WGn

by
partitioning the interval [0, 1] into v(Gn) intervals of equal length. Let us call these
intervals J1, ..., Jv(Gn), and associate each interval with one of the vertices of G(n).
We then ”connect” two intervals in the graphon if and only if their correspond-
ing vertices in Gn are connected. That is, for all (x, y) with x ∈ Ji and y ∈ Jj ,
we set W (x, y) = 1 if the vertices of Gn associated to Ji and Jj are connected,
and W (x, y) = 0 otherwise. This definition ensures that for any simple graph F ,
t(F,WGn) = t(F,Gn).

We can then consider the sequence of graphons (WGn
). By Theorem 3.5, this

sequence has a subsequence (WGnk
) which converges to a limit graphon W . Then

by applying Lemma 3.6, for any simple graph F we have:

|t(F,Gnk
)− t(F,W )| = |t(F,WGnk

)− t(F,W )| ≤ e(F )d□(WGnk
,W ) → 0

Therefore, t(F,Gnk
) → t(F,W ). By Definition 2.1, the sequence t(F,Gn) is con-

vergent. Therefore, because t(F,Gn) contains a subsequence which converges to
t(F,W ), the sequence itself must also converge to t(F,W ). As this result holds for
every simple graph F , our proof of Theorem 3.4 is complete. □

Let us examine several simple examples of graphons which act as the limit object
as a sequence of graphs. The previously discussed sequence of complete graphs
(Kn) converges to the constant graphon J . Indeed, we see from Definition 3.3 that
for all simple graphs F , t(F, J) = 1. More generally, we see that for any simple
graph F and any real p, t(F, pJ) = pe(F ). Therefore, any graph sequence which is
quasirandom with density p (according to Definition 1.1) converges to the graphon
pJ . It is not immediately clear that a graph sequence satsifying the other given
definitions of quasirandomness – for example, a graph sequence satisfying Defini-
tion 1.3 – should also converge to pJ . We will prove this result later in this paper
– and in fact, this result will be the key to demonstrating the equivalence between
Definitions 1.1 and 1.3.

One graph sequence which converges to a somewhat more interesting graphon is
the sequence of complete bipartite graphs (Kn

n ). This sequence converges to a sort
of “bipartite graphon” W , given by:
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W (x, y) =


1 x ≤ 1/2 ≤ y

1 y ≤ 1/2 ≤ x

0 otherwise

To illustrate the limit graphons of more complex graph sequences, it is often helpful
to use diagrams known as “pixel pictures.” We refer the reader to Section 11.4 of
[1] for information on these diagrams, and for a discussion of the limits of more
complex graph sequences.

4. Kernel Operators

In the first section of this paper, we stated that theorems can often be proven
more easily in the space of graphons than in the space of graphs. One of the
primary reasons for this is that because graphons, unlike graphs, are functions on a
continuous domain, we can often analyse them using the tools of functional analysis.
One such tool is the theory of operators between Lebesgue measurable functions:

Definition 4.1. Given a kernel W ∈ W, we define the corresponding kernel oper-
ator TW : L1[0, 1] → L∞[0, 1] by:

(TW f)(x) =

1∫
0

W (x, y)f(y)dy.

An eigenfunction of TW is a function f ∈ L1[0, 1] such that for some corresponding
eigenvalue λ ∈ R, TW f = λf . That is, (TW f)(x) = λf(x) for all x ∈ [0, 1].

If we consider TW as a map from L2[0, 1] to L2[0, 1], it has a bounded Hilbert-
Schmidt norm, and is therefore a Hilbert-Schmidt operator. We refer the interested
reader to [4] for further information on the rich theory of Hilbert-Schmidt opera-
tors. For our purposes, it will suffice to know that TW has a discrete spectrum.
That is, it has a countable set of nonzero eigenvalues {λ1, λ2, ...} such that λn → 0.

Moreover, TW has a spectral decomposition. That is, the kernel W is the limit of
the following series of eigenvalues and eigenfunctions of TW :

W (x, y) ∼
∑
k

λkfk(x)fk(y)(4.2)

where fk is the eigenfunction corresponding to the eigenvalue λk such that ||fk||2 =
1. The ∼ symbol indicates that equality is conditional on the convergence of the
series. It will also be important to note that if we define the product of kernels U
and W by

(U ◦W )(x, y) =

1∫
0

U(x, z)W (z, y) dz

then we have that for any two kernels U and W ,

TU◦W = TUTW .(4.3)
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5. An Infinitary Proof

As an illustration of the power of this spectral decomposition – and of the theory of
graph limits more generally – we will now prove the previously discussed property
of quasirandom graph sequences. That is, we will prove the equivalence between
Definition 1.1 and Definition 1.3. Having introduced the notion of homomorphism
densities, we can now state these definitions more elegantly. In particular, we can
reformulate Definition 1.1 as:

Definition 1.1. A graph sequence (Gn) with v(Gn) → ∞ is quasirandom with
density p if for every finite graph F , t(F,Gn) → pe(F ).

We will also use the notation C4 to denote the 4-cycle graph. The equivalence
which we seek to prove can thus be stated as:

Theorem 5.1. If (Gn) is a sequence of graphs such that v(Gn) → ∞, t(K2, Gn) →
p, and t(C4, Gn) → p4, then (Gn) is quasirandom with density p.

Our proof of this theorem will follow a pattern that is common among proofs in
the theory of graph limits. We will first translate this theorem into the space of
kernels and prove it in this space, assisted by the tools of functional analysis. We
will then use the theory of graph limits to translate our proof back into the space
of graph sequences.

In order to translate this theorem into the space of kernels, we begin a proof by con-
tradiction. Suppose there exists a sequence of graphs (Gn) such that v(Gn) → ∞,
t(K2, Gn) → p, and t(C4, Gn) → p4, but (Gn) is not quasirandom with density p.
Then there exists some graph F such that t(F,Gn) ̸→ pe(F ). We can then select
a subsequence (Gnk

) such that t(F,Gnk
) → c ̸= pe(F ). Furthermore, by Theorem

3.5, we can select a convergent subsequence of (Gnk
).

Let W be the limit graphon of this subsequence. Then by definition, t(K2,W ) = p,
t(C4,W ) = p4, and t(F,W ) = c. Observe that W can not be the constant function
pJ , because t(F, pJ) = pe(F ) ̸= c. In order to prove Theorem 5.1, it will therefore
suffice to prove the following lemma about kernels:

Lemma 5.2. If W is a kernel such that t(K2,W ) = p and t(C4,W ) = p4 for some
real number p, then W = pJ .

To prove this lemma, we will need to introduce the concept of labeled graphs, and
the related notions of labeled graph homomorphisms and homomorphism densities.
A k-labeled graph is a graph G in which k of the vertices of V (G) are labeled by
1, ..., k. In this proof, we will make use of labeled path graphs. Let us therefore
write P •

n to denote the path on n vertices with one endnode labeled, and P ••
n to

denote the path on n vertices with both endnodes labeled.

For a k-labeled graph F , a simple graph G, and any vertices x1, ..., xk ∈ V (G),
let Homx1...xk

(F,G) be the set of homomorphisms from F to G which send the k
labeled nodes of F to the vertices x1, ..., xk in G. As before, let homx1...xk

(F,G) =
|Homx1...xk

(F,G)|, and let us define the homomorphism density by normalizing
this quantity:
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tx1...xk
(F,G) =

homx1...xk
(F,G)

v(H)v(G)

In the same way that we previously extended the notion of homomorphism densities
to kernels, we can do the same for homomorphism densities of labeled graphs. Let
W ∈ W be a kernel, and F be a k-labeled graph. For ease of notation, let us write
V = V (F ), E = E(F ), and let V0 = V \ [k] be the set of unlabeled vertices of F .
For any x1, ..., xk ∈ [0, 1], we define

tx1...xk
(F,W ) =

∫
x∈[0,1]V0

∏
(i,j)∈E

W (xi, xj)
∏
i∈V0

dxi.

For example, let K•
2 denote the graph with two connected vertices, one of which is

labeled. Then for any graphon W and any x ∈ [0, 1], tx(K
•
2 ,W ) gives the average

weight of edges between x and all other points in the interval [0, 1].2 This is a sort
of infinite analogue of the degree of a vertex x in a simple graph G. Indeed, for any
x ∈ V (G), tx(K

•
2 , G) is equal to the degree of x. We thus see that in this case, the

above definition gives a natural extension of labeled homomorphism densities into
the space of graphons.

It will often be useful to consider labeled homomorphism densities as functions. In
the case of graphs, we can consider tx1...xk

(F,G) as a function from V (G)k to [0, 1],
while in the case of kernels, we can consider tx1...xk

(F,W ) as a function from [0, 1]k

to [0, 1]. This will allow us to use the following lemma, upon which the proof of
Lemma 5.2 hinges:

Lemma 5.3. The set of Lebesgue measurable functions from [0, 1]2 to [0, 1] forms
an inner product space, with inner product given by

⟨f, g⟩ =
∫

[0,1]2

f(x, y)g(x, y) dxdy.

We omit the proof of this lemma, which involves checking that the above definition
satisfies symmetry, linearity, and positive definiteness.

Let F and G be any 2-labeled graphs, and suppose we take the inner product
⟨txy(F,W ), txy(G,W )⟩ according to the above definition. This inner product will
equal t(FG,W ), where FG denotes the graph resulting from “gluing” F and G
together at the two labeled vertices. More formally, FG is defined by taking the
disjoint union of F and G, and identifying vertices with the same label. We refer
the reader to Section 4.2 of [1] for further information (and visualization!) of gluing
products.

For instance, if we glue two copies of P ••
3 together at the labeled vertices, the

resulting graph is C4. And indeed, the following series of substitutions verifies that
⟨txy(P ••

3 ,W ), txy(P
••
3 ,W )⟩ = t(C4,W ):

2Here again, we are considering W as a weighted graph on the interval [0, 1].
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⟨txy(P ••
3 ,W ), txy(P

••
3 ,W )⟩ =

∫
[0,1]2

txy(P
••
3 ,W ) txy(P

••
3 ,W ) dx dy

=

∫
[0,1]2

∫
[0,1]

W (x, z)W (z, y) dz

∫
[0,1]

W (x,w)W (w, y) dw dx dy

=

∫
[0,1]4

W (x, z)W (z, y)W (y, w)W (w, x) dx dz dy dw

= t(C4,W )

In a similar way, gluing together two copies of P •
2 yields the graph P3. Therefore,

we will have:

⟨tx(P •
2 ),W ), tx(P

•
2 ),W )⟩ = t(P3,W )(5.4)

which may be verified through a similar series of substitutions. We are now ready
to prove Lemma 5.2, thereby proving the property of quasirandom graph sequences
discussed in the beginning of this paper.

Proof of Lemma 5.2. We are given that t(C4,W ) = p4. Using the above property,
and using Lemma 5.3 to apply the Cauchy-Schwarz inequality, we have:

p4 = t(C4,W ) = ⟨txy(P ••
3 ), txy(P

••
3 )⟩ ≥ ⟨txy(P ••

3 ), J⟩2.

Consdering the term on the right side of the inequality, we have:

⟨txy(P ••
3 ), J⟩ =

∫
[0,1]2

txy(P
••
3 ) dx dy =

∫
[0,1]3

W (x, z)W (z, y) dx dy dz = t(P3,W ).

So we conclude that

p4 ≥ t(P3,W )2

with equality holding if and only if txy(P
••
3 ) is a constant function. But by Equation

5.4 and another application of the Cauchy-Schwarz inequality, we have:

t(P3,W )2 = ⟨tx((P •
2 ),W ), tx((P

•
2 ),W )⟩2 ≥ ⟨tx((P •

2 ),W ), J⟩4.

Again considering the term on the right side of the inequality, we have:

⟨tx((P •
2 ),W ), J⟩ =

∫ 1

0

tx(P
•
2 ) dx =

∫
[0,1]2

W (x, y) dx dy = t(K2,W ).

So we may conclude that
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p4 ≥ t(K2,W )4

with equality holding if and only if txy(P
••
3 ) is a constant function. But we are

given that t(K2,W ) = p – so equality does hold, and txy(P
••
3 ) must be a constant

function!

By integrating txy(P
••
3 ) over the domain [0, 1]2, we see that it must be the constant

function with value p2. But observe that:

txy(P
••
3 ) =

1∫
0

W (x, z)W (z, y)dz = (W ◦W )(x, y).

So we have in fact shown that the kernel W ◦W is the constant function p2. Our
goal, however, was to show that W is the constant function p. To reach this con-
clusion, we will make use of the functional analysis tools introduced in the previous
section.

Consider the operator TW◦W , which is given by:

(TW◦W f)(x) =

∫ 1

0

(W ◦W )(x, y)f(y) dy = p2
∫ 1

0

f(y) dy.

We see that TW◦W maps any function f to a constant function. Therefore, only a
constant function can be an eigenfunction of TW◦W . More specifically, TW◦W has
a single nonzero eigenvalue p2, with corresponding normalized eigenfunction f = 1.

But by Equation 4.3, TW◦W = T 2
W . Therefore, W has a single nonzero eigenvalue

±p with the same eigenfunction. Then by the spectral decomposition of TW (cf.
Equation 4.2), W is either the constant function p or the constant function −p.
But we have:

t(K2,W ) = p ̸= −p = t(K2,−pJ)

which rules out the latter option. We conclude that W is the constant function p,
i.e., W = pJ , thus concluding the proof.
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