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Abstract. Brown Representability is a fundamental theorem connecting the

generalized cohomology theory and homotopy theory. Furthermore, Adams’

variant theorems lift a countability assumption in Brown’s work and create
a one-to-one correspondence between generalized cohomology theories and

Ω−Spectra. Nowadays, given the categorical significance of Brown’s proof,

analogous representability theorems have been proved in more general con-
texts, like triangulated categories. In this paper, we develop and prove Adams’

variant of Brown representability theorem and Neeman’s representability theo-

rem in a similar fashion to hint at a general theme of showing representability.
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1. Introduction

In 1945, Eilenberg and Steenrod axiomatized (co)homology theory including
the dimension axiom. On the homotopy side, Eilenberg-MacLane spaces can be
constructed such that the only nontrivial homotopy group is concentrated at a
specific index. As we know, given a fixed coefficient group, there is a bijection
between the homotopy classes of maps into Eilenberg-MacLane spaces and ordinary
cohomology functors (for details, see REU paper [11]).

It was later realized that more powerful cohomology theories can be formed
such as K-theory and complex cobordism without the dimension axiom. Thus,
general (co)homology theories were introduced. Naturally, we want a homotopical
description of general (co)homology theories. While it is well known that spectra
represent general (co)homology theories (see Chapter 22 in Concise [6] for details),
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Brown’s representability theorems in his papers [2] and [3] give the converse direc-
tion. However, one has to assume a countability condition on the cohomology. This
assumption is unsatisfying since Brown’s original representability theorems cannot
imply the construction of Eilenberg-MacLane spaces when the coefficient group is
R or C.

In this paper, we first prove Adams’ variant of representability Theorems, which
solves the problem mentioned above. The trade-off is to assume that the given
functor takes values in the category of groups, which is a stronger assumption but
usually does not matter in practice. Crucially, Adams lifted the countability as-
sumption to complete the bijection between spectra and general co(homology) the-
ories commonly referred in the literature. This bijection is helpful when defining
a cohomology theory abstractly. Moreover, the bijection can be extended in situa-
tions like equivariant homotopy theory, when some extra structure on cohomology
theories is assumed.

Secondly, Brown representability is far more categorical than topological. We can
generally define what it means for a contravariant functor H, from some category
C to the category of sets S, to be representable.

Definition 1.1. H is said to be representable if

ϕ : [−, X] := C(−, X) ≈ H(−)

is a natural isomorphism for some fixedX ∈ C. In this paper, we always use [−, X]C
or [−, X] (if the category is clear) to denote C(−, X) unless stated otherwise.

In more general contexts like triangulated categories, a representability theorem
can also be proved using the same strategy. We will highlight the common theme
of representability in different contexts.

1.1. Preliminaries. Let’s start with some necessary conditions on representable
functors in the topological context and hope they are sufficient. If so, we will
make them our axioms.

Notation 1.2. In this paper, all CW-complexes are assumed to be connected unless
I say otherwise. Let CW be the category of CW-complexes with base-point and

morphisms are homotopy classes of base-point preserving maps. Let C̃W be the
subcategory of finite CW-complexes.

Axiom 1.3 (The Wedge Axiom). Let X =
∨

α Xα be the wedge-sum of arbitrary
Xα ∈ CW with injections iα : Xα → X. Then, we have induced maps i∗α = H(iα) :
H(X)→ H(Xα). Let the following function satisfy that the projection on the αth
component is i∗α:

θ : H(X)→
∏
α

H(Xα).

The axiom says that θ is an isomorphism of sets in S.

Remark 1.4. We note that the wedge sum is the coproduct in CW . Thus, Axiom
1.3 says that H sends coproducts in CW to products in S.

Axiom 1.5 (The Mayer-Vietoris Axiom). LetX,Y ∈ CW and consider the following
diagram. We let x ∈ H(X), y ∈ H(Y ) such that ax = by. The axiom says that
there exists z ∈ H(X ∪ Y ) such that cz = x and dz = y.
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H(X ∩ Y ) H(X)
aoo

H(Y )

b

OO

H(X ∪ Y )

c

OO

doo

Remark 1.6. Axiom 1.5 says that after applying H, we can find a ”weak pullback”
such that elements on the upper left come from the lower right but the process is
not necessarily unique.

Remark 1.7. Note thatHq on the q−th level of a general cohomology theory satisfies
both the Wedge Axiom and the Mayer-Vietoris Axiom. The Wedge Sum Axiom
is built into the axioms of general cohomology theories and the Mayer-Vietoris
Axiom can be deduced from general Mayer-Vietoris exact sequences. Therefore, it
is reasonable to assume those two axioms.

Next, we give a construction of the framework of Brown representability.

Construction 1.8. For a fixed Y ∈ CW , and u ∈ H(Y ), we have the following
natural transformation Tu : [−, Y ]→ H(−) defined by

Tu(f) = H(f)u, where f ∈ [X,Y ].

Moreover, by Yoneda’s Lemma, we have an essential 1-1 correspondence:

H(Y ) ≈ Nat Trans([−, Y ], H(−)).

Therefore, Brown’s first Representability theorem essentially gives the choice of
a specific Y ∈ CW and u ∈ H(Y ) so that Tu is a natural isomorphism. We state
the first version of Brown Representability theorem.

Theorem 1.9 (Brown [3]). If H : CW op → S satisfies the Wedge Sum Axiom
and the Mayer-Vietoris Axiom, then H is representable with representative (Y, u).
Moreover, Y is unique up to weak homotopy equivalences.

We immediately see that Brown Representability theorem is a generalization of
Eilenberg-MacLane spaces. For n-sphere Sn, we note that

πn(Y ) = [Sn, Y ] ≈ H(Sn).

Since H(Sn) is the coefficient group when n = q and zero otherwise, the theorem
gives the construction of Eilenberg-Maclane spaces without the obstruction theory.

However, in practice, we often define a cohomology theory only on finite CW -
complexes and extend it to CW in the natural way. Thus, for a representability
theorem to be useful, it needs to be an ”extended” version. We first make the idea
of ”extension” precise.

Definition 1.10. Let H be a functor from C̃W, the subcategory of finite CW com-
plexes, to the category of sets. We define the extension of H into CW by

Ĥ(X) := lim←−
α

H(Xα),

where Xα runs over all finite subcomplexes of X. Observe that if X is a finite CW

complex, Ĥ(X) = H(X) trivially.

Then, we state Brown’s second theorem of representability.
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Theorem 1.11 (Brown [3]). If H : C̃W
op
→ S satisfies the Wedge Sum Axiom and

the Mayer-Vietoris Axiom, by assuming H(K) countable for all K ∈ C̃W
op
, we

can extend H to Ĥ defined on CW so that Ĥ is representable.

2. Adams’ Variant of Brown Representability

In this section, we prove Adams’ variant representability theorem, which differs
from Brown’s version in two key aspects: 1) Adams assumes the functor H to take
values in the category of groups and homomorphisms, denoted as Gp; and 2) H(K)

is not necessarily countable for K ∈ C̃W .
We state and prove the following two representability theorems of Adams in [1].

Theorem 2.1 (Adams [1]). Let H : C̃W
op
→ Gp satisfy the Wedge Axiom and the

Mayer-Vietoris Axiom. Then, there is a CW-complex Y with natural isomorphisms

T : [Sn, Y ] ≈ H(Sn)

for all n-spheres Sn ∈ S, where S denotes the set of all n-spheres.

Before stating the extended representability theorem, we define a notion of ”al-
most homotopy.”

Definition 2.2. We say that two maps X → Y are almost homotopic (called ”weak
homotopy” by Adams in [1]), denoted as f ∼a g, if fh ∼ gh for every map h from
any finite complex K to X.

It can be easily checked that almost homotopy is an equivalence relation. There-
fore, we can write [X,Y ]a to denote the set of almost homotopy classes of maps
from X to Y . We remark that when X is finite, [X,Y ]a = [X,Y ].

We state the following important theorem of Adams’ and prove it in the rest of
the section.

Theorem 2.3 (Adams [1]). (i) There exists a unique natural transformation

T̂ : [X,Y ]a → Ĥ(X)

such that the T = T̂ on finite CW-complexes K.

(ii) T̂ is a natural isomorphism of sets for all X ∈ CW .

Adams’ Variant of Brown Representability has significance both formally and
practically. From a formal standpoint, instead of adopting Brown’s strategy of
first deriving the representability within the subcategory of finite CW-complexes

and then extending the result to CW , Adams exploits the property of Ĥ defined

in Definition 1.10. Namely, Adams shows that Ĥ satisfies the Wedge and the
Mayers-Vietories axiom to some extent. Then, Brown’s proof of Theorem 1.9 can

be replicated in the case of Ĥ to obtain the desired result.
Practically, Adams’ Theorem affirmatively says that all generalized cohomol-

ogy theories are representable, regardless of the coefficient group. Also, through
S-duality by Spanier in [9], Adams’ theorem also gives the general homology rep-
resentabilty that is a stronger than Whitehead’s result in [10].
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2.1. General Inverse Limit. Towards proving Adams’ two theorems, we first need
a new tool. Instead of using the inverse limit, we try to develop a ”suitably nice”
category structure to form a general notion of inverse limit. Specifically, we impose
the following two conditions on a category C:

1) for any objects X,Y ∈ C, there is at most one morphism f : X → Y in C,
2) and for any objects X,Y ∈ C, we can pull them back to an object Z ∈ C;

i.e., there are morphisms Z → X and Z → Y .

In this subsection, we always assume C to satisfy the above two conditions.

Definition 2.4. We define the general inverse limit relative to C to be the set lim←−C
in which an element is a function e that assigns to each object X ∈ C an element
eX in X such that the following condition is satisfied:

for each morphism f : X → Y,we have feX = eY .

Remark 2.5. Notice that if C is an inverse system, the general inverse limit is
equivalent to the usual inverse limit. However, the major difference is that for our
category C, we do not require the existence of f : X → Y and g : Y → X to imply
that X is isomorphic to Y .

Construction 2.6. Suppose that objects of C are non-empty sets and the morphisms
are epimorphisms. Then, we define C to be a category with the same objects as
C but with extra morphisms f : X → Y whenever we can find a commutative
diagram like the following one.

Z

a

��

b

  
X

f // Y

Figure 1. A diagram becomes commutative after adding f : X →
Y such that fa = b, where a, b are morphisms in C.

Remark 2.7. In practice, the category we are interested in usually does not have
countably many equivalence classes. However, this construction may fill out the
category to be a larger category with countably many equivalence by formally
adjoining new morphisms. In C, morphisms are still epimorphisms.

When proving Adams’ variant of Brown representability, we rely on a specific
general inverse limit system to construct the representative for a given functor.
However, we have to make sure that the general inverse limit is nonempty so that
the functor is representable.

Proposition 2.8. Suppose that the objects of C (as in Construction 2.6) fall into
countably many equivalence classes. Then, lim←−C is non-empty.

We omit the proof since it is rather technical. For readers who wants to see the
details, please check section two in Adams’ original paper [1].



6 SHUHANG XUE

2.2. Properties of Ĥ. We assume that H, as in 2.1, satisfies the Wedge and Mayer-

Vietoris Axioms. We wish to prove that the extension of H, namely Ĥ, also satisfies
the Wedge axiom and the Mayer-Vietoris Axiom to some extent.

Proposition 2.9. Ĥ satisfies the Wedge Axiom.

Proof. Notice that inverse limits commute with coproduct. Then, because H sat-

isfies the Wedge Axiom, Ĥ also satisfies the Wedge Axiom. □

Lemma 2.10. Let X be a CW-complex and {Xα} be a directed set of subcomplexes
of X such that their union is X. Then, the canonical map

Ĥ(X)→ lim←−
α

Ĥ(Xα)

is an isomorphism.

We omit the proof since it is easy. For non-experienced readers, please read
Corollary 23.13 in Miller’s ”Lectures on Algebraic Topology” [7].

We develop the following lemma in order to prove the Mayer-Vietoris Axiom on

Ĥ in a specific case.

Lemma 2.11. Assume that K is a finite complex, and L,M are subcomplexes. Then,
the following sequence is exact and natural on K,L,M :

H(L)×H(M) H(L ∪M)
(i∗1 ,i

∗
2)oo H(S(L ∩M))oo H(S(L ∨M))

g∗
oo ,

where the homomorphism g∗ is induced by a map g : S(L ∩M)→ S(L ∨M).

We omit the proof here and refer it to p.191 in Adam’s paper [1].
The following proposition is essential for the entire proof of Theorem 2.1 and

2.3. It is the reason that the extended functor Ĥ has a compatible u ∈ Ĥ(Y ) with
Y satisfying some desirable qualities. It is also the place in the proof that uses the
assumption that H takes values in the category of groups.

Proposition 2.12. Let U, V be CW-complexes. If U ∩ V is a finite sub-complex of
U ∪ V , then the following diagram

H(U ∩ V ) = Ĥ(U ∩ V ) H(U)oo

Ĥ(V )

OO

Ĥ(U ∪ V )

OO

oo

satisfies the Mayer Vietoris Axiom in the sense of Axiom 1.5.

As an immediate corollary, we restate the above proposition in terms of the

exactness of cofibrations of Ĥ.

Corollary 2.13. For any cofibering of CW-complexes

K
f //L

i //Mf = L ∪f CK,

such that K is a finite, the following sequence is exact after applying Ĥ:

H(K) = Ĥ(K) Ĥ(L)
f∗
oo Ĥ(Mf )

i∗oo .
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Proof of Proposition 2.12. Let Uα, Vβ run through all finite subcomplexes of U, V

containing U ∩ V . The assumption says that there exist u ∈ Ĥ(U) and v ∈ Ĥ(V )

such that they restrict to the same element in Ĥ(U ∩V ); in the language of Uα, Vβ ,
it is equivalent that uα, vα restrict to the same element in H(U ∩V ) for every α and
β in a compatible fashion (respecting inclusion maps between Vα, Vα′ and Uβ , Uβ′).

For a given pair of α and β, we denote Hα,β as the set of elements in H(Uα∪Vβ)
such that they restrict to uα and vβ under the induced inclusions. Then, let C be
the category with Hα,β as objects and f : Hα′,β′ → Hα,β induced by the inclusion
(α ∪ β) ⊂ (α′ ∪ β′) as morphisms. One can quickly check that C satisfies the two
conditions in Section 2.1. Then, it suffices to prove that lim←−C (as defined in 2.4)
is nonempty. But we have already established Proposition 2.8, so that we only
need to show that the morphisms in C are epimorphisms and objects in C fall into
countably many equivalence classes.

In Lemma 2.11, we take L = Uα,M = Vβ , K = L ∪M to get an exact sequence

H(Uα)× H(Vβ) Hα,β

(i∗1 ,i
∗
2)oo H(S(U ∩ V ))oo H(S(Uα ∨ Vβ))

g∗
oo ,

where U ∩V = Uα∩Vβ by construction. From the middle homomorphism, we note
that there is a homomorphism from H(S(U ∩ V )) to Hα,β , where we start to use
the assumption that H takes values in the category of groups. Furthermore, the
homomorphism is surjective through the definition of Hα,β and the exactness of the
sequence. From the naturality of the exact sequence, the homomorphism commutes
with the map i∗ : Hα′,β′ → Hα,β as shown in the following diagram. From Figure
2, we note that i∗ is an epimorphism.

H(S(U ∩ V ))
a // Hα,β

H(S(U ∩ V ))

≈

OO

b // Hα′,β′

i∗

OO

Figure 2. Commutativity of the homomorphism and morphisms
in C. Our assumption implies H(S(U ∩ V )) ≈ H(S(Uγ ∩ Vδ)).
Then, since a is surjective, i∗ is surjective.

Next, we consider C and state the following property, which can be proved with
the provided group structure and the right side of the exact sequence.

Lemma 2.14. There is a morphism Hα′,β′ → Hα,β in C if and only if the image
of g∗α′,β′ is contained in the image of g∗α,β, where g∗ is mentioned in Lemma 2.11.
Moreover, Hα′,β′ and Hα,β are equivalent if and only if g∗α′,β′ equals to g∗α,β.

Now, we can use the number of different images of g∗ to count the number of
equivalence classes in C. Instead of running over all Hα,β , we make an overestimate.
We consider the countable set of all finite simplicial CW-complexes {Kα} such that
every finite CW-complex is homotopic equivalent to one of those Kα. Then, for
eachKα, the maps g : S(U∩V )→ Kα fall into countable many homotopy classes by
the simplicial approximation theorem (we approximate S(U ∩ V ) by an equivalent
finite simplicial complex).
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Therefore we see that in total there are still only a countably many images of
homomorphisms

g∗ : H(K)→ H(S(U ∩ V )),

so that objects of C fall into a countable number of equivalence classes.
Hence, by Proposition 2.8, lim←−C is nonempty, which completes the proof. □

2.3. Representability in CW . First, we mention a lemma of Adams without the
proof (please refer to p.194 in [1]).

Lemma 2.15. The following two 1-1 correspondences are natural for maps of Y :

Ĥ(Y ) ≈Nat Trans([X,Y ]a, Ĥ(X))

≈Nat Trans([K,Y ], H(K)),

where X is any CW-complex and K is any finite CW-complex.

The above lemma has the form of Yoneda correspondence. However, to see an
honest proof, one has to study how inverse limit interacts with ”almost homo-
topy” (defined in 2.2). We refer readers to Adams’ paper for those information.

Notationally, we call elements of Nat Trans([X,Y ]a, Ĥ(X)) as Tu and elements of

Nat Trans([K,Y ], H(K)) as T̂u with u ∈ Ĥ(Y ).
We start by proving Theorem 2.1 through three steps.

Proof of Theorem 2.1. From the second correspondence in Lemma 2.15, it suffices
to construct a proper pair (Y, u) so that Tu is a natural isomorphism. Here, we
prove the following more general version of Theorem 2.1: let Y0 be any CW-complex

and let u0 ∈ Ĥ(Y0). Then, there exist (Y, u) and an embedding i : Y0 → Y such
that u restricts to u0 along the map induced by i, and Tu is a natural isomorphism
of sets restricted to Sn ∈ S. In this case, by taking Y0 to be a point, the result
obviously implies Theorem 2.1.

Step I. Surjectivity of Tu1
. To start, we choose Y0 to be an arbitrary CW-

complex (not necessarily finite) with an arbitrary element u0 ∈ Ĥ(Y0). We will

try to construct Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 ⊂ ... with corresponding ui ∈ Ĥ(Yi) so that
Y =

⋃
Yi together with some u will give the desired natural isomorphism.

We let S run through the set of all n-spheres S, and h run through Ĥ(S) = H(S)
for each S. Define Y1 as

Y1 := Y0 ∨
∨
S,h

S.

Then, the choice of u1 is given by Proposition 2.9 so that u1 ∈ Ĥ(Y1) restricts to
u0 and h through the obvious inclusions.

At this stage, we notice that the natural transformation

Tu1
: [S, Y1]→ H(S)

is already an epimorphism of sets for spheres S ∈ S.

Step II. Injectivity of Tun
. Given Yn a CW-complex with an element un ∈

Ĥ(Yn), we want to construct (Yn+1, un+1) with the embedding i : Yn → Yn+1

satisfying that un+1 restricts to un along i∗. Moreover, we want that if f, g : S → Yn

are two maps from a sphere S to Yn that represent the same element, namely
f∗(un) = g∗(un), then they are reduced in Yn+1, namely if ≈ ig in Yn+1.
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For each pair of homotopy classes of maps f, g : Sn → Yn such that f∗(un) =
g∗(un), we take a tuple (f, g). As Sn runs through S, we construct the index set
of all those tuples, which we call A. Now, for each α ∈ A, we have a pair of maps
fα, gα : Sα → Yn that represents some same element in H(Sα).

We let α run through A to define

Yn+1 = Yn ∪fα,gα

⋃
α∈A

(I × Sα/I × pt) ≈Mh,

where we attach the reduced cylinder to Yn along fα on the one end and gα on the
other end. Also, the second equality says that Yn+1 is homotopic equivalent to the
mapping cone of h :=

∨
α∈A(fα ∨ gα). Thus, we intentionally guarantee that ifα is

homotopic equivalent to igα in Yn+1.

It remains to find an appropriate un+1 ∈ Ĥ(Yn+1) such that un+1 restricts to

un. At first, it is tempting to directly use the exactness of Ĥ on the cofibration
sequence

R :=
∨
S∈S

(S ∨ S)
f //Yn+1

i //Mh .

However, recall from Corollary 2.13 that the exactness is only preserved when R is
a finite CW-complex. We use Zorn’s lemma to resolve this technical difficulty.

For the setup, we consider the pair (B, h) where B ⊂ A and h is taken from

Ĥ(Yn ∪fβ ,gβ
⋃
β∈B

(I × Sβ/I × pt)),

such that h restricts to un. Notice that there is a partial ordering; i.e., (B, h) ≤
(B′, h′) if B ⊂ B′ and h′ restricts to h.

To apply Zorn’s lemma for the existence of a maximal element, we need to check
two things. First, the set of {(B, h)} is nonempty because we may take B = ∅ and
h = un. Second, we need to show that every chain has an upper bound. Indeed, for

any chain {(Bα, hα)}α∈C , we take B =
⋃

Bα and there exists h ∈ Ĥ(B) such that
it restricts to hα for each α ∈ C by the isomorphism established in Lemma 2.10.

Then, by Zorn’s lemma, we know the existence of a maximal element (M,m)

with the associated mapping cone Mm. To successfully find un+1 ∈ Ĥ(Yn+1), it
suffices to prove that M = A. For any α ∈ M ̸= A, we have an ”extended”
cofibration sequence

Sα ∨ Sα
f //Mm

i //M ′
m ,

where M ′
m ≈Mm ∪fα,gα (I × Sα/I × pt).

Now, we may use Corollary 2.13 to find un+1 that restricts to un.
Because we assume (M,m) to be maximal, we deduce M = A and take un+1 =

m. Inductively, we construct (Yn, un) for all n ≥ 2, given the base case (Y1, u1).

Step III.Bijectivity of Tu. We set

Y :=
⋃

Yn

and let u ∈ Ĥ(Y ) be the element that restricts to un for each n (the existence is
given by Lemma 2.10). We already know that the corresponding natural transfor-
mation Tu is an epimorphism of sets (guaranteed at (Y1, u1)). Also, if f, g : S → Y
are two maps that represents the same element in H(S) meaning f∗(u) = g∗(u),



10 SHUHANG XUE

since S is finite, then f and g must map into some Yn for some n so that f∗(un) =
g∗(un). By construction, f is homotopy equivalent to g in Yn+1. Thus, we con-
clude that f is homotopy equivalent to g in Y , which implies that Tu is a natural
isomorphism in the context of sets. □

We proceed to prove Theorem 2.3.

Proof of Theorem 2.3. Step IV.Extension. (i) We would first like to extend the
natural isomorphism on S to a natural isomorphism on CW . Note that as in the
proof of Proposition 2.12, it suffices to consider finite CW-complexes K of different
homotopy types. Since [S,−] determines those K, one can show that

Tu : [K,Y ] ≈ H(K)

is a natural isomorphism of sets, where K is any finite CW-complex.
From Lemma 2.15, with a pair (Y, u) so that Tu is a natural isomorphism of sets,

there is a unique natural transformation of sets

T̂u : [X,Y ]a → Ĥ(X),

which extends Tu meaning T̂u = Tu when X ∈ C̃W is finite.

(ii) We claim that the natural transformation T̂u is a natural isomorphism of

sets. To prove the claim, we first prove T̂u is monomorphic.

We let f, g : X → Y be two maps such that T̂u(f) = T̂u(g) (they represent

some same element of Ĥ(X)). Then, we choose any finite CW-complex K and map
h : K → X. By Lemma 2.15, we have

h∗T̂u(f) = h∗T̂u(g),

which can also be written as Tu(hf) = Tu(hg). Now, we are ready to use the result
proved in Theorem 2.1, namely that T is a natural isomorphism. It immediately
follows that hf ≈ hg for an arbitrary h : K → X. By the definition of almost
homotopy, we conclude that f ≈a g as desired.

To prove that T̂ is epimorphic, we invoke the stronger statement used in the
proof of Theorem 2.1, which gives the freedom of choosing an arbitrary initial CW-

complex Y0. Let X be any CW-complex and x ∈ Ĥ(X). Then, we let Y0 = X ∨ Y

and u0 ∈ Ĥ(Y0) be the element that restricts to u in Ĥ(Y ) and x in Ĥ(X) (the

choice is given by the Wedge Axiom on Ĥ). Using the result we proved, we have
(Y ′, u′) and i : Y0 → Y ′ such that T ′

u′ is a natural isomorphism of sets, and u′

restricts to u0 along i∗. Specifically, we have the commutativity of the following
diagram

[Sn, Y ]

i∗

��

Tu

%%
[Sn, Y ′]

Tu′ // H(Sn).

Here, since Tu and Tu′ are isomorphism of sets, then i∗ is an isomorphism of ho-
motopy groups. We let Sn runs through S to note that there is a weak homotopy
equivalence between Y and Y ′. By Whitehead’s Theorem, Y and Y ′ are homotopy
equivalent so that we have an inverse map i−1 : Y ′ → Y .

We compose the injection X → Y ′ and i−1 : Y ′ → Y to obtain a map f from

X to Y so that f∗(u) = x by construction. Therefore, we conclude that T̂ is
epimorphic, which completes the proof of (ii). □
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2.4. Spectrum-Cohomology Correspondence. We assume readers’ familiarity with
the definition of general homology theories and cohomology theories (see Concise
[6] for details). As a quick remainder, to define a general homology theory H∗ or a
general cohomology theory H∗ in the category of topological spaces, it suffices to
define them on the category of CW-complexes, namely CW . Besides, the differences
between reduced and unreduced (co)homology theories is not significant in our
discussion, since they are equivalent up to adjoining base-point.

We state the definition of an Ω− specturm.

Definition 2.16. An Ω-spectrum is a sequence of based space Tn and weak homotopy
equivalences σ : Tn → ΩTn+1.

Theorem 2.17. Let H∗ be a general cohomology theory defined on the category of
topological spaces (without any assumption on the cardinality of the coefficient
groups). Then, H∗ is the general cohomology theory corresponding the an Ω-
spectrum T .

Remark 2.18. Note that we have already done most of the work in Theorem 2.3
on the level of each cohomology functor Hn in the category of connected CW-
complexes.

Proof. We take usage of the suspension axiom in the definition of a general coho-
mology theory to tie together the representability of Hn on different dimensions.

Here, we assume the reduced version of cohomology. Notice that suspension in
CW is always connected and we have natural isomorphisms of suspension in the
axiom, it suffices to restrict our attention to connected CW-complexes.

A general cohomology theory on each dimension assumes the Wedge Axiom. Fur-
ther, Hn satisfies the Mayers-Vietories Axiom as a property deduced from other
axioms. Therefore, we invoke Theorem 2.3 so that there is a unique natural iso-
morphism

T : [−, Yn] ≈ Hn(−)
up to weak homotopy equivalence. It remains to show that the natural isomorphism
Hn(X) ≈ Hn+1(ΣX) corresponds to a weak homotopy equivalence σn : Yn →
ΩTn+1.

First, by the naturality of T , the natural isomorphism Hn(X) ≈ Hn+1(ΣX) cor-
responds to [X,Yn] ≈ [ΣX,Yn+1] = [X,ΩYn+1], where the second equality is by the
topological adjointness. Specifically, we denote the composed natural isomorphism
[X,Yn] ≈ [X,ΩYn+1] as Θ(X).

To prove the theorem, it suffices to show σn = Θ(1) : Yn → ΩYn+1 is a weak
homotopy equivalence. For an arbitrary map f : X → Yn, we have the following
commutative diagram by the natruality of Θ:

[Yn, Yn]
f∗

//

Θ

��

[X,Yn]

Θ

��
[Yn,ΩYn+1]

f∗
// [X,ΩYn+1]

We notice the following equality from the above diagram

Θ(f) = Θf∗(1) = f∗Θ(1) = f∗(σn).



12 SHUHANG XUE

We lastly identify f∗(σn) with σnf on the CW -level. Therefore, by taking X to be
n-spheres Sn ∈ S, since Θ is a natural isomorphism, σn induces an isomorphism on
πi(Yn) and πi(ΩYn+1) for all i. Hence, σn is a weak homotopy equivalence. □

General homology theories are also representable on the spectrum-level. S-
duality gives us the tool to convert the unfamiliar homology problem to the already
solved cohomology representability. However, this conversion only gives us func-
tors defined on finite CW-complexes. Therefore, one has to use the full power of
Theorem 2.3 to deduce the homology representability.

We define a prespectrum that generates general homology theories.

Definition 2.19. An prespectrum is a sequence of based space En and weak homo-
topy equivalences σ : ΣEn → En+1.

Theorem 2.20. Let H∗ be a general homology theory defined on the category of topo-
logical spaces (without any assumption on the cardinality of the coefficient groups).
Then, H∗ is the general cohomology theory corresponding a prespectrum E.

The above Theorem follows from Adams’ theorems and G. Whitehead’s proof of
a weaker theorem in [10].

3. Neeman’s Representability in Triangulated Categories

Indeed, Brown’s and Adams’ proof of representability is rather more categorical
than topological. The same proof technique can applied to triangulated categories.
In this new context, the wedge axiom is stated as sending small coproducts to
products; and the Mayer-Vietoris Axiom means that the functor is ”homological”.
By restricting our attention to compactly generated triangulated categories, we can
obtain the parallel result of representability by Neeman in [8]. The preparation and
the proof are presented in a similar four-steps structure to highlight the common
theme of proving representability. Readers are particularly encouraged to compare
two proofs line-to-line for more insight.

3.1. Compactly generated Triangulated Category. In the following definition, T is
referred to be a triangulated category. For readers who do not know triangulated
categories, please see the chapter on triangulated categories in the book Categories
and Sheaves [5].

Definition 3.1. A triangulated category T is said to contain small coproducts if for
any small set Λ, any collection {tλ ∈ Ob(T ) | λ ∈ Λ} has a coproduct∐

λ∈Λ

tλ.

Definition 3.2. An object c of T is called compact if for any coproduct in T , the
following equality holds:

HomT (c,
∐
λ∈Λ

tλ) =
∐
λ∈Λ

HomT (c, tλ).

Definition 3.3. A triangulated category is called compactly generated if T contains
small coproducts and there exists a small set T of compact objects such that

Hom(t, x) = 0 for all t ∈ T =⇒ x = 0.

Furthermore, we say that T is a generating set if T is also assumed to be closed
under suspension.
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We need T to detect the zero element and generates T ; as an analogy, T plays
the same role as a basis of a vector space and the set of n-spheres in CW .

3.2. Representability in T . We are ready to state the representability theorem in
the context of triangulated categories. Note that this version is analogous to (i) in
Brown’s Theorem 1.11, in which the functor is defined on the entire category rather
than a full, well-behaved subcategory.

As for the sufficient conditions, we change the Mayers-Vietoris Axiom to be ho-
mological and generalize the Wedge Axiom to sending small coproducts to products.

Theorem 3.4 (Neeman [8]). Let T be a compactly generated triangulated category
with the generating set T . Let H : T op → Ab be a homological functor (taking tri-
angles to long exact sequences). Also, we require the following natural isomorphism

H(
∐
λ∈Λ

tλ) ≈
∏
λ∈Λ

H(tλ)

for small coproducts in T . Then, H is representable in the sense of Definition 1.1.

Remark 3.5. Putting Construction 1.8 into the new context, for fixed R ∈ T and
α ∈ H(R), we have the following transformation Pα : [−, R]→ H(R) defined by

Pα(f) = H(f)α,

where f ∈ [X,R].
Moreover, by Yoneda’s Lemma, we have a one to one correspondence:

H(R) ≈ Nat Trans([−, R], H(−)).

Thus, it suffices to find appropriate R and α so that Pα is a natural isomorphism.

In the proof of Theorem 3.4, we aim to draw direct comparisons between rep-
resentability in CW-complexes and representability in triangulated categories. Re-
call that before proving Theorem 2.3, we first proved Theorem 2.1 on finite CW -
complexes (containing n-spheres) since CW-complexes in general are hard to con-
trol. Likewise here, we first prove the following theorem.

Theorem 3.6 (Neeman [8]). Let T and H satisfy the same assumptions as in the
statement of Theorem 3.4. Then, for all t ∈ T , there exists

P : [t, R] ≈ H(t),

which is an isomorphism of sets.

Proof of Theorem 3.6. The overall strategy is similar to the proof of Representabil-
ity theorem in the topological context. To construct a desirable R, we first construct
a sequence of tuples (Rn, αn), where αn ∈ H(Rn). Then, we take the homotopy
colimit of Rn to be our R and choose an appropriate α.

Step I. Surjectivity of Pα1
. We formally define the set of values of H on T as

U1 =
⋃
t∈T

H(t).

Notice that we can think of element of U1 as (α, t) such that α ∈ H(t), where t is
attached to keep track of where α comes from.
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Then, we can define

R1 =
∐

(α,t)∈U1

t.

Since we assume that H sends small coproducts to products, we have

H(R1) ≈
∏

(α,t)∈U1

H(t).

In other words, for an arbitrary element α ∈ H(t) (subsequently (α, t) ∈ U1), we
have an unique element α1 ∈ H(R1) satisfying the following property: if t → R1

maps t to t ∈ R1 that corresponds to (α, t) ∈ U1, then the induced map H(R1)→
H(t) restricts α1 ∈ H(R1) to α ∈ H(t).

Then, by Yoneda’s Lemma, the element α1 gives rise to a natural transformation

Pα1 : [−, R1]→ H(−).

And the discussion we had about α1 says precisely that

Pα1
(t) : [t, R1]→ H(t)

is epimorphic for all t ∈ T .

Step II. Injectivity of Pαn
. Given Rn ∈ T with an element αn ∈ H(Rn), we

want to construct (Rn+1, αn+1) with a map k from Rn to Rn+1 such that αn+1

restricts to αn along i∗ and the following condition is satisfied. For any two maps
f, g ∈ [t, Rn] that represent the same element in the sense that f∗(αn) = g∗(αn),
the extended maps kf = kg are the same.

To better utilize the properties of triangulated category, we rephrase the above
property in terms of kernels. Specifically, we define

Un+1 =
⋃
t∈T

ker{Pαn
(t) : [t, Rn]→ H(t)}.

We desire that if a map f : t→ Rn is in Un+1, then kf = 0.
Again, we can think of elements of Un as (f, t), where f ∈ ker{Pαn(t)}. Then,

we form a corresponding ”kernel set” in T :

Kn+1 =
∐

(f,t)∈Kn+1

t,

and let
∐

(f,t)∈Kn+1
f : Kn+1 → Rn be the coproduct of all maps f for (f, t) ∈ Kn+1.

Then, analogous to how we use the cofibration sequences and mapping cones to
define Yn+1, here we define Rn+1 using the first property of an exact triangle. Let
Rn+1 be given by the following triangle:

Kn+1

k:=
∐

(f,t)∈Kn+1
f
// Rn

g
||

Rn+1

(1)

cc

Figure 3. The exact triangle defining Rn+1
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As for constructing αn+1, we note the isomorphism guaranteed by assumption

H(Rn)→ H(Kn+1) = H

 ∐
(f,t)∈Kn+1

t

 ≈ ∏
(f,t)∈Kn+1

H(t).

Then, αn maps to zero as we chose f to be in the kernel of Pαn(t).
Because H is homological, we obtain an exact sequence following from the exact

triangle

H(Rn+1)
i //H(Rn)

j //H(Kn+1) ,

which should remind readers of the cofibration sequence in the topological case.
Directly from the exactness, since j(αn) = 0, there exists αn+1 ∈ H(Rn+1) such
that i(αn+1) = αn.

To see that such construction of (Rn+1, αn+1) kills off the redundancy of rep-
resentation on the Rn level, for an arbitrary t ∈ T , we take f ∈ ker{Pαn(t)}. By
construction, f factors through h in the triangle in Figure 3; i.e., kf = 0.

So far, we have already given the construction of (Rn, αn) defined inductively
for n ≥ 2 with (R1, α1) well-defined.

Step III.Bijectivity of Pα. We set

R = hocolim
−−−−−−−−→

Rn,

where R is the homotopy colimit of Rn. We proceed to find appropriate α ∈ H(R)
such that α restricts to αn for all n.

Indeed, we consider the triangle∐
n Rn

1-shift // ∐
n Rn

ww
R = hocolim

−−−−−−−−→
Rn

(1)

gg
.

We apply H to the above triangle to obtain an exact sequence,

H(R) // H(
∐

n Rn)
1-shift // H(

∐
n Rn)

∐
n H(Rn)

∼=

OO

1-shift // ∐
n H(Rn)

∼=

OO
,

where we use the isomorphism of products to simplify it. Formally,
∐

n αn is in the
kernel of the 1-shift so that there exists α ∈ H(R) mapping to it. Thus, α restricts
to αn by an induced map of the inclusion of Rn into R. Rephrasing the above
discussion through Yoneda correspondence, we have the commutative diagram

Finally, with the construction of (R,α), we wish to show that Pα(t) is an iso-
morphism for all t ∈ T . First, we note that on level R1, we already obtained
surjectivity. Formally, we substitute Rn in Figure 4 by R1 and take values of an
arbitrary t ∈ T . Since we know [t, R1] → H(t) is surjective from Step I., the map
[t, R]→ H(t) must also be surjective.

For injectivity, like in Step III of proving Adams’ theorems, we need an ”approx-
imation lemma” to relate Rα to Rαn

. Let f ∈ [t, R] such that Pα(t)(f) = 0. We
cite the ”approximation lemma” from [8] without the proof.
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[−, Rn]
l //

j

$$

H(−)

[−, R]

k

;;

Figure 4. The commutative diagram about [−, R] and [−, Rn],
where l corresponds to αn, k corresponds to α, and j corresponds
to the restriction of α to αn in Yoneda’s lemma.

Lemma 3.7. Suppose c is a compact object of T , and we have a sequence of objects
and morphisms in T :

X1 → X2 → X3 → ...

We assume that T admits small coproducts. Then, we have the equality

[c, hocolim
−−−−−−−−→

Xi] = colim−−−→[c,Xi].

Back to the proof of injectivity, from the lemma, we have

[c,R] = colim−−−→[c,Rn].

In other words, there exists fn : t→ Rn that approximates f in the sense that the
composite

t
fi //Rn

//R

is f . Again, we examine Figure 4 and note that j(fn) = f while k(f) = 0. Thus,
fi is forced to be in the kernel of Pαn

(t), which is (fn, t) ∈ Un+1.
From Step II., we recall that gfn = 0 in the sense of the triangle in Figure 3,

but the composition

Rn
g //Rn+1

g∗
//R, such that f = (g∗g)fn = g∗(gfn) = 0.

Hence, we complete the proof of Theorem 3.6. □

We are ready to prove Theorem 3.4 now.

Proof of Theorem 3.4. With the representability on the generating set T , to prove
Theorem 3.4, we extend the representability to T .

Step IV.Extension Let U be the minimal full subcategory of objects X ∈
T such that for all n ∈ Z, the map Tα(

∑n
X) : [

∑n
X,R] → H(

∑n
X) is an

isomorphism. Then, obviously, we note that from Theorem 3.6, U contains the
compact generating set T . Besides, U is closed with respect to T -coproducts of
its objects directly from the definition. Note that to finish the proof, it suffices to
show U = T .

Let Z be an arbitrary object of T . We try to show Z ∈ U . To start, note that

H := [−, Z]T

is a homological functor on U . Since from our assumption, U is compactly generated
with the generating set T , we may apply the representability restricted to T so that
we have a pair (R,α), R ∈ U , α ∈ [R,Z]T and a natural transformation

Tα : [−, R]U → [−, Z]T ,
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which is an isomorphism when the first component is t ∈ T . Moreover, this natural
transformation must be restricted to a natural isomorphism on a full, triangulated
further subcategory of U containing T and closed with respect to U-coproducts.

However, we already assumed that U is minimal with this condition. Thus, Tα

is a natural transformation on U . Now, we use Yoneda’s Lemma in T to note that
the above natural isomorphism must correspond to a morphism R → Z. We will
use this special morphism to complete the rest of the proof.

We complete R→ Z to a triangle in T in the following sense.

R // Z

��
Y

(1)

__

It follows directly from the property of exact triangles that for s ∈ U , [s, Y ] = 0.
Specifically, since T ⊂ U , [t, Y ] = 0. By the definition of T , we deduce that Y = 0,
which implies that R → Z is an isomorphism. Finally, since U is full and R is an
object of U , Z must be an object of U .

In conclusion, we showed that the natural transformation in Theorem 3.6 is a
natural isomorphism to complete the proof. □

Remark 3.8. The Spectrum-(co)homology correspondence Theorems 2.17 and 2.20
are implied by Theorem 3.4 since the stable homotopy category is known to be a
compactly generated triangulated category. Thus, the triangulated category repre-
sentability generalizes the classic topological representability theorem.
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