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Abstract. In this expository paper, we discuss complex orientation of coho-

mology theories. We motivate and justify its definition by constructing Chern
classes and Connor-Floyd-Chern classes. Afterwards, we introduce the rela-

tionship of complex orientation to formal group laws. We include a proof of the

structure of the Lazard ring, and briefly introduce the reader to the complex
cobordism spectrum MU.
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Introduction

Stable homotopy theory began around 1937 with Freudenthal’s suspension the-
orem, which states that if q is small relative to n, then πn+q(S

n) is independent of
n. It rose to prominence as a branch of algebraic topology with Frank Adams’ use
of stable phenomena to resolve the Hopf invariant one problem, and continued its
rise with the work of Thom, who reduced the problem of classifying manifolds up
to cobordism to a solvable problem in stable homotopy theory. Recent successes of
stable homotopy theory include the resolution of the Kervaire invariant one problem
in 2009 by Hopkins, Hill, and Ravanel.

An important subfield of stable homotopy theory that played a crucial role in the
resolution of the Kervaire invariant one problem is chromatic homotopy theory, an
approach to stable homotopy theory from the ”chromatic” viewpoint, which traces
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back to Quillen’s work on the relationship between complex-orientable cohomology
theories and formal groups. Indeed, for a novice who wants to begin learning
chromatic homotopy theory, one of the first notions encountered is that of complex
orientation of generalized cohomology theories.

This article has two goals. The first is to motivate complex orientation through
the most basic example of a complex-oriented cohomology theory: singular coho-
mology. Singular cohomology admits a theory of Chern classes, invariants which
help us understand complex vector bundles and, by naturality, are classes in the
singular cohomology of BU(n), the classifying space of the unitary group U(n). Re-
tracing the theory of Chern classes reveals the essence of the complex-orientation
condition and what it gives us, namely a generalization of Chern classes called
Connor-Floyd-Chern classes. The second goal is to introduce the reader to the
relation of complex orientation to formal group laws. While a full account of this
relationship is beyond the scope of this article, the hope is to acquaint the reader
with the very basic notions that are related to the very beginnings of the chromatic
story.

In section 1, we provide a cursory review of generalized cohomology theories and
spectra, and in section 2 we introduce the notion of complex orientation. In sections
3-5 we review the classical theory of Chern classes. In section 6, we construct the
Connor-Floyd-Chern classes for complex-oriented cohomology E, and show that
every complex bundle admits an E-orientation. In section 7 we discuss formal
group laws, how a formal group law is associated to a complex-oriented E, and prove
Lazard’s theorem. In section 8, we introduce the complex cobordism spectrum MU
as a central player in recovering a complex-oriented E from its associated formal
group law via Landweber’s exact functor theorem.

This article is intended for those who are at least familiar with Chapters 1-19 of
Peter May’s A Concise Course in Algebraic Topology [8] and vector bundles and
spectral sequences at the level of Chapter 3 and 4 of [9]. Some familiarity with gen-
eralized (co)homology theories and the Atiyah-Hirzebruch spectral sequence may
help, but is not strictly necessary for the conceptual punchline of this article. Lastly,
assume that all vector bundles we refer to are numerable or have a paracompact
base, so that they admit a metric.
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1. Generalized Cohomology Theories and Spectra

Complex-oriented cohomology theories are generalized cohomology theories with
additional structure. While the rest of the paper is devoted to motivating and
exploring implications of this additional structure, in this section we discuss gen-
eralized cohomology theories. Furthermore we include a brief discussion of spectra



RELATING COMPLEX ORIENTATION TO CHERN CLASSES AND FORMAL GROUP LAWS3

since, although much of this paper does not involve spectra, the most important
example of a complex-oriented cohomology is the complex cobordism spectrum
MU .

Recall that singular cohomology satisfies the Eilenberg-Steenrod axioms. Remov-
ing the dimension axiom yields the generalized cohomology theories. Our interest
in them was legitimized by, for example, the discovery of topological K-theory.

Definition 1.1 (Generalized cohomology theory). A generalized cohomology the-
ory h∗ is a sequence of contravariant functor hi : CWpairs→ Ab for i ≥ 0 along
with natural transformations δi : hi(A) → hi+1(X,A) satisfying the following ax-
ioms:

• (Exactness) For any (X,A) ∈ CWpairs, there is a long exact sequence

· · · → hn−1(A)→→ hn(X,A)→ hn(X)→ hn(A)→ hn+1(X,A)→ · · ·
• (Homotopy) If two morphisms f, g : (X,A)→ (Y,B) are homotopic, then

f∗ = g∗ : hn(Y,B)→ hn(X,A)

for every n ≥ 0.
• (Excision) For (X,A), (Y,B) ∈ CWpairs, the inclusion k : (A,A ∩ B) →
(A ∪B,B) induces an isomorphism

k∗ : hn(A ∪B,B)→ hn(A,A ∩B).

Often, algebraic topologists prefer working with reduced generalized cohomolo-
gies. This is because the suspension axiom holds in all degrees.

A based CW-complex is an object (X, ∗) ∈ CWpairs, where the base point ∗ is
in the 0th-skeleton of X. The full subcategory of based CW-complexes is denoted
CW∗, where morphisms and homotopies in CW∗ being base-point preserving.

Definition 1.2 (Reduced generalized cohomology theory). A reduced generalized

cohomology theory is a sequence of contravariant functors h̃i : CW∗ → Ab along
with natural transformations σi : h̃i → h̃i+1 ◦ Σ satisfying the following axioms:

• (Exactness) For A ⊂ X ∈ CW∗, the sequence

h̃i(X/A)→ h̃i(X)→ h̃i(A)

is exact.
• (Homotopy) If two morphisms f, g : X → Y in CW∗ are homotopic, then

f∗ = g∗ : h̃i(Y )→ h̃i(X)

for every i.
• (Suspension) For X ∈ CW∗, the homomorphism

σi(X) : h̃i(X)→ h̃i+1(ΣX)

is an isomorphism for every i.

To relate reduced and unreduced theories, consider the functor

π : CWpairs→ CW∗

where π : (X,A) 7→ (X/A, ∗). For any reduced cohomology theory h̃∗, the com-

position h̃∗ ◦ π is an unreduced cohomology theory. On the other hand, the map
(X,A)→ (X/A, ∗) factors as the composition

(X,A)→i (X ∪ CA,CA)→j (X/A, ∗)
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where i is inclusion into the bottom of the cone and j collapses the cone. Note j is
a homotopy equivalence. Then for any unreduced cohomology h∗, the excision and
homotopy axiom imply h∗(X,A) ∼= h∗(X/A, ∗). In other words:

Proposition 1.3. For any reduced cohomology theory h̃∗ on CW∗, h
∗ := h̃∗ ◦π is

a cohomology theory on CWpairs. Conversely, any cohomology theory h∗ can be
written as h̃∗ ◦ π for some reduced cohomology h̃∗ on CW∗.

A very special fact about singular cohomology is that it is representable by the
Eilenberg-Maclane spaces K(G,n). In other words, H̃n(X;G) ∼= [X,K(G,n)]. By

the suspension axiom, we have H̃n(X;G) ∼= H̃n+1(ΣX;G). Thus,

[X,K(G,n)] ∼= [ΣX,K(G,n+ 1)] ∼= [X,ΩK(G,n+ 1)],

which means that K(G,n) ∼= ΩK(G,n+ 1). This leads us to the following notion.

Definition 1.4 (Ω-spectrum). An Ω-spectrum is a sequence of spaces {En} in
CW∗ along with structure maps σ̃n : En → ΩEn+1 that are pointed homeomor-
phisms.

By Brown’s representability theorem, if h̃∗ is a reduced cohomology theory, there
exist an Ω-spectrum {En, σ̃n} such that h̃n(X) is naturally isomorphic to [X,En].
Any Ω-spectrum represents a reduced cohomology theory.

The category of Ω-spectra is a first step towards the stable homotopy category1.
However, Ω-spectra are not sufficient for the goals of homotopy theorists. They do
not admit a usable theory of cofibration sequences, nor suitable point-set level or
homotopical work [3]. A more suitable generalization is spectra. There are differ-
ent models for the category of spectra, but all pass to the same stable homotopy
category. In this section, we introduce coordinate-free Lewis-May spectra as our
model for spectra. We follow section 1 of [3].

A universe U is a real inner product space isomorphism to the sum R∞ of
countably many copies of R. For V ⊂ W , we write W − V for the orthogonal
complement of V in W .

Definition 1.5 (Spectrum). A spectrum assigns to every finite dimensional sub-
space V ⊂ U a based space EV , with structure maps

σ̃V,W : EV → ΩW−V EW

for all pairs V ⊂W , where ΩW−V EW is the function space F (SW−V , EW ), where
SW−V is the one-point compactification of W − V . The structure maps must be
homeomorphisms and transitive, i.e. for V ⊂W ⊂ Z, we must have σ̃W,Z ◦ σ̃V,W =
σ̃V,Z .

A morphism f : E → E′ of spectra is a collection of pointed maps fV : EV →
E′V such that the diagrams

EV ΩW−V EW

E′V ΩW−V E′W

fV

σ̃V,W

σ̃′
V,W

ΩW−V fW

1For a light introduction to the stable homotopy category and its properties, see [6]. After-
wards, we recommend [3] for a proper introduction to stable homotopy foundations. The first three

pages of [3] also provide intuition on how the category of spectra relates to the stable homotopy

category.
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commute. This gives us the category of spectra. Dropping the condition that
structure maps be homeomorphisms gives the category of prespectra. An important
fact is that the forgetful functor ℓ : Spectra → PreSpectra has a left adjoint L,
the spectrification functor. Here are some important examples of spectra:

Example 1.6 (Suspension Spectrum). Let X be a based space. The suspension
prespectrum

∏∞
X is the prespectrum such that

∏∞
X(V ) = ΣV X := X ∧ SV ,

with the obvious structure maps coming from X ∧ SW−V ∧ SV ∼= X ∧ SW . Let
Σ∞X denote the suspension spectrum L

∏∞
X. We can be quite explicit about

what the V-th space of the suspension spectrum is. Let QX =
⋃
ΩV ΣV X, where

the union is taken over
Note ΣX ∼= ΣX has an adjoint map X → ΩΣX. Then this yields ΩΣX →

Ω2Σ2X. Iterating, we obtain a sequence

X → ΩΣX → Ω2Σ2X → · · ·
We can obtain sequences of this form where the indices are no longer on integers but
finite dimensional vector spaces V ⊂ U . Let QX =

⋃
ΩV ΣV X where the union is

taken over such sequences of inclusions. Then Σ∞X(V ) = Q(ΣV X). This defines a
functor Σ∞ from based spaces to spectra that is left adjoint to the functor sending
a spectra E to E({0}).

Example 1.7 (Shift Desuspension Spectrum). Fix a subspace V ⊂ U . Then
define

∏∞
V X as the prespectrum sending W 7→ ΣWX if V ⊆ W , and to the point

otherwise. Then define Σ∞
V X := L

∏∞
V X. This functor is left adjoint to the functor

sending spectra E to its V-th space EV .

In order to define homotopy groups of spectra, we need to define the notion of a
homotopy and the sphere spectrums. Let X be a based space and E a prespectrum.
Then E∧X is the prespectrum such that E∧X(V ) = EV ∧X. If E is a spectrum,
then the induced structure maps of E ∧ X are not necessarily homeomorphisms.
Thus, if E is a spectrum, we abuse notation and define E ∧X to be L(ℓ(E) ∧X).
A homotopy in the category of spectra is a map E ∧ I+ → E′. Let [E,E′] denote
the set of homotopy classes of maps of spectra E → E′. This set has the structure
of an abelian group (see page 4 of [6]).

Take U = R∞, and let Σ∞
n = Σ∞

Rn . For n ≥ 0, the sphere spectrum Sn is Σ∞Sn.
For n > 0, the sphere spectrum S−n is Σ∞

n S0. We write S for the suspension
spectrum of S0. Given spectrum E, we define its n-th homotopy group to be

πn(E) := [Sn, E]

for all n ∈ Z.

In practice, one is often given a (pre)spectrum indexed only on nonnegative
integers. Indeed, in section 8, we will describe MU as a prespectrum indexed on
integers. The reader may find this confusing so we make a few clarifications:

• The above discussion with respect to coordinate-free Lewis May (pre)spectra
applies analogously to prespectra and spectra indexed on integers. Further-
more, by proposition 2.4 of [7], the functor from spectra indexed on U to
spectra indexed on nonnegative integers which ”forgets” the extraneous in-
dices has a left adjoint, and together these functors give an equivalence of
categories. Thus, we do not lose anything homotopically when we consider
spectra indexed on nonnegative integers.
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• The reader may find many expository sources that define a spectrum to be
this paper’s definition of a prespectrum indexed on integers. While useful
for different purposes, both the coordinate-free Lewis-May model and the
category of prespectra indexed on integers serve as valid models for the
category of spectra. Both descend to the same stable homotopy category.
There are even maneuvers that promote a prespectrum to a spectrum that
preserve homotopical information.

– Given a prespectrum D indexed on integers, applying the ”cylindrical
functor” K sends D to a Σ-cofibrant prespectrum KD (structure maps
are adjoint to based cofibrations). Applying the spectrification functor,
one obtains a spectrum LKD such that πn(E) = lim−→q

πn+qDq. If D

is an Ω-spectrum, then LKD is a spectrum representing the same
cohomology theory (page 10 of [7]). In general, a lack of cofibrancy
in a prespectrum can mean a total loss of control of what happens
homotopically after spectrification. The cylindrical functor ”thickens”
a prespectrum D, and the map KD → D is a space-wise homotopy
equivalence.

The essential point is that when discussing MU , its homotopy groups, and
the (co)homology it represents, it suffices for the purposes of this paper to
describe MU as a prespectrum indexed on integers.

This leads us to our next point, which is that prespectra represent (co)homology
theories. Let E be a prespectrum indexed on nonnegative integers, and X a space.
Then

(1.8) Ẽn(X) = [Σ−n
∞∏

X,E] and Ẽn(X) = πn(E ∧X) = [

∞∏
Sn, E ∧X].

The unreduced versions are given by En(X) = Ẽn(X+), and En(X) = Ẽn(X+).
A final comment to wrap up this section. A generalized cohomology theory is

called multiplicative if each graded abelian group Ẽ∗(X) has the structure of a
graded ring. Multiplicative cohomology theories are represented by ring spectra,
which are monoids in the stable homotopy category. The fact that E-cohomology
inherits a graded ring structure from E’s monoidal structure is due to the functor
π∗, which sends spectra to their homotopy groups, being lax monoidal (page 10
of [6]). The notion of a ring spectrum is not pertinent to the conceptual focus of
this paper, however, and the reader should just think of it as a spectrum equipped
with some multiplicative structure so that it represents multiplicative cohomology
theories.

2. What is complex orientation?

Definition 2.1. A multiplicative cohomology theory E is complex-orientable if

the map Ẽ2(CP∞)→ Ẽ2(CP1) induced by inclusion CP1 ↪→ CP∞ is surjective.

This additional structure on a multiplicative cohomology theory is called its
complex orientation. It is a very simple condition. What does it buy us? What
is the relevance of CP∞ and CP1? Why a surjection of Ẽ2-cohomologies? To
explain the motivation and implications of complex orientation, we look back on
the classical story of Chern classes, a special type of characteristic classes.
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3. Characteristic Classes

The theory of characteristic classes allows one to study the complicated geom-
etry of vector bundles2 with algebra. In spaces, we have important contravariant
functors

V ectn,C(−) : Spaces → Set

sendingX to the set of complex n-dimensional bundles overX. The functor V ectn,C
is both homotopy invariant (theorem 17.9 of [9]) and representable by BU(n), the
classifying space of the unitary group U(n). More precisely, we have the universal
principal U(n)-bundle ξn : EU(n) ↓ BU(n) which is universal in the following sense:

Proposition 3.1. For any CW -complex, there is a canonical bijection

[X,BU(n)] ∼= V ectn,C(X)

where f ∈ [X,BU(n)] is mapped to f∗(ξn), the pullback of the principal BU(n)-
bundle with respect to f : X → BU(n).

An explicit description of ξn : EU(n) ↓ BU(n) can be found at the end of section
19 of [9]. We are much more interested in its universality though.

Definition 3.2. A complex characteristic class c with values in Hk(−;Z) is a
natural transformation c : V ectn,C(−)→ Hk(−;Z).

In other words, over space X, c assigns to each complex n-plane bundle a coho-
mology class in Hn(X;Z). If we have a map f : X → Y , and ξ is a bundle over Y ,
then c(f∗ξ) = f∗(c(ξ)). As a consequence of the Yoneda lemma, since V ectn,C(−)
is representable by BU(n), we have

n.t.(V ectn,C(−), Hk(−;Z)) ∼= Hk(BU(n);Z).
But these natural transformations are exactly all the possible integral complex
characteristic classes. Thus,

H∗(BU(n);Z) ∼= { integral complex characteristic classes for n-plane bundles}.
Thus, if we hope to understand complex bundles through characteristic classes, we
should study the cohomology ring of BU(n). It turns out that the cohomology ring
is completely described as a polynomial algebra by the most fundamental type of
integral complex characteristic classes: Chern classes.

Theorem 3.3. Let ξ : E ↓ B be a complex n-plane bundle. The Chern classes are

a unique family of characteristic classes such that c
(n)
k (ξ) = H2k(B;Z), satisfying

the following axioms:

(1) c0(ξ) = 1
(2) c1(ξ) = −e(ξ)
(3) (Whitney Sum) ck(ξ⊕η) =

∑
i+j=k ci(ξ)∪cj(η), for complex p-plane bundle

ξ, and complex q-plane bundle η.

The reader may notice that we are letting ck denote the k-th chern class for
complex n-plane bundles for any n. This is standard notation in the literature,
and is so for the following reason: consider the trivial bundle kϵ over X. This
is the pullback of the bundle Ck over the point ∗, along the map X → ∗. By
naturality of Chern classes, ci(kϵ) = 0 for i > 0. Then by Whitney Sum, cn(ξ ⊕

2For a review of vector bundles, see [9] or page 13 of [10].
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kϵ) = cn(ξ). Furthermore, if ξn is the universal n-plane bundle, under the map
BU(n) → BU(n + 1) that classifies bundle ξn ⊕ ϵ, the cohomology class ck(ξn+1)
is sent to ck(ξn) for k ≤ n and 0 otherwise.

In the next two sections, we will construct the Chern classes, and show that
H∗(BU(n);Z) is a polynomial algebra generated by the Chern classes. The reader
should have also noted the presence of the Euler class e(ξ) of a complex bundle in
the axioms of Chern classes. Constructing the Euler class and seeing how it relates
to Chern classes will provide insight on complex orientation later on.

4. Thom Class

To construct the Euler class, we need to discuss the Thom class of a vector n-
plane bundle. In this section only we work with real n-plane bundles. From the
sources cited at the beginning of the next section, the existence of Euler and Thom
classes for real k-bundles implies their existence of complex 2k-plane bundles.

We will need to impose the additional structure of an orientation on our bundles.
An orientation of a real vector space V is an equivalence class of bases, where two
bases {v1, · · · , vdimV } and {v′1, · · · , v′dimV } are equivalent if and only if the matrix
{αij} defined by v′i =

∑
αijvj has positive determinant. This implies there are two

possible orientations.
An orientation of a real n-plane bundle ξ : E ↓π B is an assignment of orienta-

tions to each fiber F , along with the following local compatibility condition. For
every point p in the base space B(ξ), there exists an open neighborhood Up and
local trivialization hp : Up × Rn → π−1(Up) , such that for every fiber in π−1(Up),
the map (x, v) 7→ hp(x, v) from {x} × Rn to π−1(x) is orientation preserving.

Let F0 denote the fiber with the zero-point removed. An orientation assigns a
preferred generator µF ∈ Hn(F, F0;Z). The local compatibility condition implies
there is a cohomology class µp ∈ Hn(π−1(Up), π

−1(Up)0;Z) such that its restriction
over (F, F0) for each fiber F ⊆ π−1(Up) is equal to µF . We assert the following
theorem.

Theorem 4.1. Let ξ : E ↓ B be an oriented n-plane bundle. Then the cohomology
group Hi(E,E0;Z) is zero for i < n and Hn(E,E0;Z) contains a unique coho-
mology class whose restriction over each fiber (F, F0) equals the preferred generator
µF . Furthermore, the map Hk(E;Z) → Hk+n(E,E0;Z) given by x 7→ x ∪ µ is an
isomorphism for every integer k.

This theorem motivates us to define the notion of a Thom space and Thom class.
Let ξ : E ↓ B be a real n-plane bundle. There are several equivalent expressions
for its Thom space Th(ξ).

• Let Sph(ξ) be the space obtained by forming one-point compactification of
each of its fibers. Let B∞ denote the new ”points at infinity” of Sph(ξ).
Then Th(ξ) = Sph(ξ)/B∞.

• Choose a metric on ξ. Let D(ξ) denote the unit disk bundle, and S(ξ)
the unit sphere bundle. So S(ξ) = ∂D(ξ). Then Th(ξ) = D(ξ)/S(ξ). Note
(D(ξ),S(ξ) is homotopy equivalent to (E(ξ), E(ξ)\Z), where Z is the image
of the zero-section.

Example 4.2. Suppose ξ : B ↓ B is the bundle with fiber {∗}. Then Th(ξ) = B+.
Suppose ξ is the n-plane bundle over a point ∗. Then Th(ξ) = Dn/∂Dn = Sn.
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How does the Thom space construction behave with products of bundles? Since

∂(Da ×Db) = (∂Da ×Db) ∪ (Da × ∂Db),

we have Th(ξ × η) ∼= Th(ξ) ∧ Th(η). If η is the n-plane bundle nϵ over a point,
then Th(ξ × nϵ) ∼= Th(ξ) ∧ Sn.

The Thom space construction is natural, in that if f : X → X ′ is covered by a
map between bundles ξ → ξ′ , we get a canonical pointed map Th(ξ) → Th(ξ′).

Furthermore, we can show that H
∗
(Th(ξ)) has the structure of a module over

graded ring H∗(B). Consider the following diagram.

E(ξ) E(0× ξ) ξ

B B ×B B
π2∆

The left-hand square is the pullback along the diagonal, and the right-hand square
is the pullback along projection onto the second factor. The diagram induces a map

Th(ξ)→ Th(0× ξ) = Th(0) ∧ Th(ξ) = B+ ∧ Th(ξ),

which induces a map

H∗(B)⊗ H̃∗(Th(ξ))→ H̃∗(Th(0) ∧ Th(ξ))→ H̃∗(Th(ξ)).

Let R be a commutative ring, and ξ a real n-plane bundle over B. We say ξ is R-
oriented if there exists a Thom class µ ∈ H̃n(Th(ξ);R) ∼= Hn(D(ξ),S(ξ);R) such
that for every b ∈ B, upon inclusion of a fiber Fb ↪→ E(ξ), µ restricts to the preferred

generator of H̃n(Sn
b ;R) ∼= Hn(Dn

b , S
n−1
b ;R). Note the inclusion Fb ↪→ E(ξ) can

also be thought of as (Dn
b , S

n−1
b ) ↪→ (D(ξ),S(ξ)). This leads us to the following

fundamental theorem.

Theorem 4.3 (Thom Isomorphism). Let R be a commutative ring, and let ξ be

an R-oriented real n-plane bundle over B. Let µ ∈ H̃n(Th(ξ);R) be a Thom class.
Then

− ∪ µ : H∗(B)→ H̃∗+n(Th(ξ))

is an isomorphism.

Proof. Utilize the relative Serre spectral sequence. Suppose p : E → B is a fibration
(and fiber bundle), together with subbundle p0 : E0 → B. Then there is a spectral
sequence

Es,t
2 = Hs(B;Ht(p−1(−), p−1

0 (−)) =⇒ Hs+t(E,E0).

Now apply this to the fiber bundle pair (D(ξ),S(ξ)) over B. The cohomology of
the fibers are zero unless the dimension is n. Then the local coefficient system is
zero in dimension ̸= n. Furthermore, the local coefficient system is trivial. This is
because the edge homomorphism

Hn(D(ξ),S(ξ))→ E0,n
∞ ↪→ E0,2

∞ = H0(B;Hn(p−1(−), p−1
0 (−))

is induced by the inclusion of fiber. But E0,∗
2 is the π1(B)-invariant subgroup, and

since ξ has R-orientation this edge homomorphism is surjective. So all elements of
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Hn(Dn, Sn−1) are fixed by π1(B). Thus, Es,t
2 = Hs(B;Ht(Dn, Sn−1)). Since our

spectral sequence only has the n-th row, we have an isomorphism

Hs(B;Hn(Dn, Sn−1) ∼= Hs(B;R)⊗Hn(Dn, Sn−1) 7→ Hs+n(D(ξ),S(ξ);R) ∼= H̃s+n(Th(ξ)),

which tells us − ∪ µ : Hs(B) → H̃s+n(Th(ξ)) is indeed an isomorphism. The
multiplicative structure of the E2 page implies the isomorphism of H∗(B)-modules.

□

We are now ready to discuss the Euler class. Suppose ξ is an R-oriented
real n-plane bundle. Consider the composition B → D(ξ) → Th(ξ), where the
first map is the zero section and the second is the collapse map. The Euler class
e(ξ) ∈ H̃n(B) ∼= Hn(B) is the pullback of the R-orientation µ ∈ H̃n(Th(ξ)) under
this map. Naturality follows from the naturality of the Thom space construction.

In the next section, we will discuss Chern classes, in which the Euler class exis-
tence is implicit. However, before we move on, we discuss an equivalent formulation
of the Euler class which is computationally useful.

Suppose ξ : E ↓p B is an R-oriented real n-place bundle. Apply the cohomologi-
cal Serre spectral sequence to Sn−1 → E →p B. As noted in the proof of Theorem
4.3, the local coefficient system is trivial. Then we have

Es,t
2 = Hs(B;Ht(Sn−1)) =⇒ Hs+t(E).

There are only two nonzero rows: rows 0 and n − 1. Inspecting the n-th page,
where the only potentially nonzero differentials can occur, yields exact sequences

0→ Es−n,n−1
∞ → Hs−n(B)→ Hs(B)→ Es,0

∞ → 0

for all s ≥ 0. Since this spectral sequence converges, Ep,q
∞ = grpH

p+q(E). Since we
only have two rows, we have short exact sequences

0→ Es,0
∞ → Hs(E)→ Es−n+1,n−1

∞ → 0

for every s ≥ 0. Stitching these exact sequences together yields the cohomology
Gysin sequence

· · · → Hs−1(E)→ Hs−n(B)→ Hs(B)→ Hs(E)→ · · · .
The maps Hs(B) → Hs(E) are induced by p : E → B, which follows from a
standard edge homomorphism argument3. The maps p∗ : Hs−1(B) → Hs−n(B)
are called ”Umkher maps.” The multiplicative structure of the spectral sequence
implies that p∗ is a module homomorphism for graded algebra H∗(B):

p∗((p
∗(x))y) = xp∗(y).

We are most interested in the maps H∗−n(B) → H∗(B). The R-orientation of ξ

provides us with a distinguished class σ ∈ E0,n−1
2 = H0(B;Hn−1(Sn−1)), such that

E∗,n−1
2 is a free E∗,0

2 -module generated by σ. Let e = dn(σ) ∈ En,0
2
∼= Hn(B). The

map H∗−n(B)→ H∗(B) sends

x ∈ Hs−n(B) to dn(x ∪ σ) = ±ex
by the Leibnitz formula. This e turns out to coincide with e(ξ) as defined earlier,
up to a sign. In the interest of brevity, we assume this is true and point the curious
reader to lemma 35.3 on page 131 of [9] for further details.

3If the reader is confused about this, see page 87 of [9] and apply the same principles to edge
homomorphisms for cohomological spectral sequences.
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5. Constructing Chern Classes

There is subtlety to how the usual notion of orientation of a vector bundle relates
to the notion of R-orientation as discussed in the previous section. We defer to the
reader to page 120 of [9] and page 67 of [2] for helpful discussions. There are
also details involving the underlying real vector bundle of a complex vector bundle
having a canonical preferred orientation. We defer the reader to page 155 of [10]
for details. All of this is to say: for any complex n-plane bundle ξ : E ↓ B, there
is a well-defined Euler class e(ξ) ∈ H2n(B;Z). We are now ready to construct the
Chern classes. In the process, we will see how the Euler and Thom class relate to
Chern classes, and gain insight on the cohomology ring of BU(n).

Theorem 5.1. There exist classes ci ∈ H2i(BUn) for 1 ≤ i ≤ n such that:

(1) H∗(BU(n)) = Z[c1, · · · , cn]
(2) The map H∗(BU(n))→ H∗(BU(n− 1)), induced by BU(n− 1)→ BU(n),

maps ci to ci if i < n, and 0 otherwise.
(3) cn = (−1)ne(ξn).

Proof. Proceed by induction. We know that

H∗(BU(1)) ∼= H∗(CP∞) ∼= Z⟨e⟩,

where |e| = 2. Assuming our claim holds for n− 1, consider the spherical fibration
S2n−1 → BU(n − 1) → BU(n). By our inductive hypothesis, H∗(BU(n − 1))
vanishes in odd dimension and is a polynomial algebra. Combining this fact with
the cohomology Gysin sequence and properties of the Umkher maps yields short
exact sequences

0→ Hs−nBU(n)→ HsBU(n)→ HsBU(n− 1)→ 0

for every s. These short exact sequences yield the following facts:

(1) The Euler class e(ξn) is a nonzero divisor.
(2) H∗(BU(n)) → H∗(BU(n − 1)) is a surjection, and H∗(BU(n))/(e(ξn)) ∼=

H∗(BU(n− 1)).
(3) For s < 2n, Hs(BU(n)) ∼= Hs(BU(n− 1)).
(4) H∗(BU(n)) vanishes in odd dimension.

Define cn = (−1)ne(ξn). The above facts along with a filtration argument show
that H∗(BU(n)) ∼= H∗(BU(n− 1))[cn]. □

In section 4, we established a bijection between integral complex characteristic
classes for n-plane bundles and elements of H∗(BU(n);Z). Our calculation of
H∗(BU(n);Z) underlines the fundamental nature of Chern classes. Understanding
all integral complex characteristic classes requires only understanding of Chern
classes. Naturally, we should have techniques for computing Chern classes. Luckily,
calculations for vector bundles can be reduced to calculations for line bundles, which
are much easier to work with.

Let ξ be a complex n-plane bundle, and consider its associated projectiviza-
tion bundle P(ξ) := P (ξ)×GLn(C) CP

n−1. We claim that the map i∗ : H∗(P(ξ))→
H∗(CPn−1) induced by fiber inclusion is surjective. The cohomology ringH∗(CPn−1)
is generated by the Euler class e(λ′) ∈ H2(CPn−1) of the canonical line bundle λ′

over CPn−1. Let λ′ and λ denote the canonical line bundles over CPn−1 and P(ξ),
respectively. The inclusion of CPn−1 into P(ξ) corresponds to the inclusion of E(λ′)
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into E(λ). Naturality of the Euler class implies i∗ is surjective. By Leray-Hirsch,
we have

H∗(P(ξ)) = H∗(B(ξ))⊗H∗(CPn−1) = H∗(B(ξ)) < 1, e, e2, · · · , en−1 >,

where e = e(λ) ∈ H2(P(ξ)). The essential point is that H∗(B(ξ)) injects into
H∗(P(ξ)).

Consider again the associated projectivization P(ξ) of ξ. Consider the tautolo-
gous line bundle λ over E(P(ξ)). Then λ embeds canonically into π∗(E). Endowing
π∗(E) ↓ E(P(ξ)) with a metric yields π∗(E) = λ1 ⊕ λ⊥

1 ↓ E(P(ξ)). Then we ob-
tain the Whitney sum of a line bundle and a (n − 1)-plane bundle over E(P(ξ)).
Furthermore, H∗(B) → H∗(E(P(ξ))) is injective by Leray-Hirsch. Iterating this
process yields the splitting principle.

Lemma 5.2 (Splitting Principle). For a complex n-plane bundle ξ : E ↓ B, there
exists a space Fξ and a map f : Fξ → B such that f∗(ξ) = λ1 ⊕ · · · ⊕ λn over Fξ.
Furthermore, H∗(B)→ H∗(Fξ) is monic.

The splitting principle is not only useful, but also implies uniqueness of Chern
classes. If there were two families of characteristic classes satisfying the Chern class
axioms, then they would agree on the universal line bundle of BU(1) ∼= CP∞. Then
by naturality, they agree on all line bundles and thus, by the splitting principle,
they agree on any bundle.

6. Back to Complex Orientation: Connor Floyd Chern classes and
E-orientation

We saw that singular cohomology admitted a theory of Chern classes, which
provided a very nice description of the cohomology ring ofBU(n). Is there an analog
for generalized cohomology theories? At the bare minimum, ordinary cohomology
is multiplicative–a fact which our constructions implicitly relied on–so we should
restrict our attention to multiplicative cohomology theories. Recall that in order to
construct Chern classes for singular cohomology we needed the notion of a Thom
class. We can extend this notion in the following way:

Definition 6.1 (E-orientable). Let E be a multiplicative cohomology theory. A

complex n-plane bundle ξ is E-orientable if there exist µ ∈ Ẽn(Th(ξ)) which maps

to the canonical generator σn ∈ Ẽn(Sn) upon restriction to fiber.

In the case of ordinary cohomology, a Thom class is unique up to a sign if it
exists. For any given E, not every complex bundle admits an E-orientation. If it
does, then the orientation µ may not be unique.

Recall that by the splitting principle, Chern classes of a complex n-bundle are
determined by Chern classes on line bundles, and these are determined by the
Chern classes of the universal line bundle ξ1 : EU(1) ↓ BU(1). The Chern classes
on line bundles are determined by their Euler classes. Then by naturality, we need
only consider the Euler class of the universal line bundle, which is determined by
its Thom class. This suggests that we may have a theory of Chern classes for
E-cohomology if E is complex-orientable.

Definition 6.2 (Complex Orientation). A multiplicative cohomology theory E is

complex-orientable if the map Ẽ2(CP∞) → Ẽ2(CP1) induced by inclusion CP1 ↪→
CP∞ is surjective.
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We will now show that complex-orientable E admit an analog of Chern classes,
called Connor-Floyd-Chern classes. After constructing Connor-Floyd-Chern classes,
we show that for complex-orientable E, every complex bundle admits an E-orientation.

The calculations that follow will heavily employ the cohomological and homo-
logical Atiyah-Hirzebruch spectral sequence (AHSS). These are generalizations of
the Serre spectral sequences. The reader can find a detailed treatment of these two
spectral sequences and their pairing in section 4.2 of [4]. For clarity, there are two
computational themes that the reader should keep in mind.

• The E-(co)homology of the CW complexes we consider will look analogous
to their ordinary (co)homology.
• A common technique for computing the E-(co)homology of CW complexes
is to compute the E-(co)homology of the k-th skeleton and then take a
limiting argument. Homology commute with direct limits, and if the inverse
system of skeletal cohomologies satisfies the Mittag-Leffler condition, then
the cohomology is isomorphic to the colimit of the skeletal cohomologies.
See section 4.2 of [4] for further discussion.

We begin with some standard facts.

Proposition 6.3. Let E∗ be a complex-oriented cohomology theory, and E∗ its
corresponding homology theory. Let µ ∈ E2(CP∞) denote its complex orientation.
Let ιn denote the inclusion CPn ↪→ CP∞.

(1) E∗(CPn) ∼= π∗(E)[ι∗n(µ)]/(ι
∗
n(µ)

n+1);
(2) E∗(CP∞) ∼= π∗(E)[[µ]];
(3) E∗(CPn) ∼= π∗(E){α0, · · · , αn} where αk is the dual basis element of ι∗n(µ)

k

under the pairing E∗(CPn)⊗ E∗(CPn)→ π∗(E);
(4) E∗(CP∞) ∼= π∗(E){αk|k ≥ 0} where αk is the dual basis element of µk

under the pairing E∗(CP∞)⊗ E∗(CP∞)→ π∗(E);
(5) E∗(CP∞ × CP∞)

Proof. (1) Consider the AHSS for E∗(CPn) :

Es,t
2 = Hs(CPn)⊗ Et(∗) =⇒ Es+t(CPn).

Recall H∗(CPn) ∼= Z[x]/(xn+1). Then E2 looks like π∗(E)[x]/(xn+1). Note

that x ∈ E2,0
2 is an infinite cycle representing ι∗n(µ) ∈ E2(CPn). This

implies that the spectral sequence collapses on the second page. Thus,
E∗(CPn) ∼= π∗(E)[ι∗n(µ)]/(ι

∗
n(µ)

n+1).
(2) For m < n, let im,n : CPm ↪→ CPn denote the inclusion map. The inverse

system i∗m,n : E∗(CPn) → E∗(CPm) satisfies the Mittag-Leffler condition.
Thus

E∗(CP∞) ∼= lim←−
n

E∗(CPn) ∼= lim←−
n

π∗(E)[ι∗n(µ)]/(ι
∗
n(µ)

n+1) ∼= π∗(E)[[µ]].

(3) Consider the AHSS for E∗(CPn) :

E2
s,t = Hs(CPn)⊗ Et(∗) =⇒ Es+t(CPn).

Write H∗(CPn) ∼= Z⟨a0, · · · , an⟩, where ak is the dual basis element to
xk under the identification H∗(CPn) ∼= Hom(H∗(CPn),Z). Pairing the
AHSS for E∗(CPn) and E∗(CPn)), it follows that the ak are infinite cycles
and the spectral sequence for E∗(CPn) collapses on the second page. This
stable page can be identified with E∗(CPn). The pairing of the two AHSS
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induces a pairing of their stable pages. Therefore, the pairing E∗(CPn) ⊗
E∗(CPn) → π∗(E) is nonsingular. Thus, E∗(CPn) is dual to E∗(CPn) as
π∗(E)-modules. The identification of αk with (ι∗n(µ))

k is immediate.
(4) This is immediate by homology commuting with colimits.
(5) Let πi : CP∞×CP∞ → CP∞ denote projection onto the i-th factor. Define

µi ∈ E2(CP∞ ×CP∞) to be π∗
i (µ). Let jm,n : CPm ×CPn ↪→ CP∞ ×CP∞

denote the inclusion map. Since

H∗(CPm × CPn) ∼= H∗(CPm)⊗H∗(CPn) ∼= Z[x1, x2]/(x
m+1
1 , xn+1

2 )

we can argue as in the proof of item (1) to show

E∗(CPm × CPn) ∼= π∗(E)[j∗m,n(µ1), j
∗
m,n(µ2)]/(j

∗
m,n(µ1)

m+1, j∗m,n(µ2)
n+1).

Applying Mittag-Leffler finishes the claim.
□

Once we compute E∗(BU(n)), we use the pairings of AHSS to compute E∗(BU(n))
and arrive at the Connor-Floyd-Chern classes.

Proposition 6.4. Let E∗ be a complex-oriented cohomology theory, and E∗ its
corresponding homology theory.

(1) The maps BU(1)n → BU(n) induce maps

E∗(BU(1))⊗n → E∗(BU(n)).

Using this product, E∗(BU(n)) is the free π∗(E)-module with basis

{αk1
· · ·αkt

|1 ≤ k1 ≤ · · · ≤ kt and t ≤ n}.
(2) There are Connor-Floyd-Chern classes cfk ∈ E2k(BU(n)) for 1 ≤ k ≤

n such that

E∗(BU(n)) ∼= π∗(E)[[cf1, · · · , cfn]].

Proof. The main idea of item (1)’s proof is that the E-homology of BU(n) is anal-
ogous to the ordinary homology of BU(n), which falls out from its homological
AHSS.

The main idea of item (2)’s proof is that one can express the Chern classes gener-
ating H∗(BU(n)) as particular elements in Hom(H∗(BU(n),Z). Letting BU(n)(k)
denote the k-th skeleton, H∗(BU(n)(k)) and H∗(BU(n)(k)) are nice subgroups
whose generators are cleanly expressed in terms of the generators ofH∗(BU(n)) and
H∗(BU(n)). Pairing the homological and cohomological AHSS on BU(n)(k), the E-
(co)homology of BU(n)(k) falls out as being analogous to the ordinary (co)homology
of BU(n)(k). Mittag-Leffler and taking k → ∞ finishes the claim. Here are the
proof sketches.

(1) We use induction on n ≥ 1. In proposition 6.3, we computed E∗(BU(1)) ∼=
E∗(CP∞). Assume that n ≥ 2. Consider the AHSS

E2
k,t = Hk(BU(n))⊗ Et(∗) =⇒ Ek+t(BU(n)).

By proposition 2.4.1 on page 48 of [4], the map BU(1)n → BU(n) allows
us to express H∗(BU(n)) as a free abelian group with basis

{ak1
· · · akt

|t ≤ n}.
The map BU(1)×BU(n− 1)→ BU(n) induces a pairing from the tensor
product of the two AHSS for E∗(BU(1)) and E∗(BU(n− 1)) to the AHSS
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for E∗(BU(n)). Each product ak1
· · · akt

is an infinite cycle representing
αk1 · · ·αkt . The AHSS of E∗(BU(n)) then collapses on the second page.
Since the stable page is a free π∗(E)-module, we have that E∗(BU(n)) is a
free π∗(E)-module with basis αk1

· · ·αkt
.

(2) Fix a positive integer k. Let BU(n)(k) denote the k-th skeleton of BU(n).
Consider the pairing of the homological and cohomological AHSS

(6.5) Es,t
2 = Hs(BU(n)(k))⊗ Et(∗) =⇒ Es+t

and

(6.6) E2
s,t = Hs(BU(n)(k))⊗ Et(∗) =⇒ Es+t(BU(n)(k))

Note H∗(BU(n)(k)) has a basis consisting of the set of all ak1
· · · akt

of
degree at most k. Then spectral sequence 6.6 is a subspectral sequence of
the spectral sequence used in the previous item. Therefore, it collapses on
the second page. Thus,

E∗(BU(n)(k)) ∼= π∗(E)⟨αk1 · · ·αkt |t ≤ n and k1 + · · ·+ kt ≤ k/2⟩.

Note thatH∗(BU(n)) ∼= Z[c1, · · · , cn] and under the identificationH∗(BU(n)) ∼=
Hom(H∗BU(n),Z), the k-th chern class ck is the dual basis element to ak1 .
Furthermore, H∗(BU(n)(k)) is the subgroup of Z[c1, · · · , cn] with basis all
monomials in terms of the ck of degree at most k. Consider the pairing of
spectral sequences 6.5 and 6.6. The ck are all infinite cycles. Multiplica-
tivity of spectral sequence 6.5 implies that it collapses on the second page.
Then the pairing induced by the pairing of stable pages is nonsingular.
Therefore,

E∗(BU(n)(k)) ∼= Homπ∗(E)(E∗(BU(n)(k)), π∗(E)).

Let cfk = (ak1)
∗, which projects to ck ∈ E2k,0

∞ . Then E∗(BU(n)(k)) is the
free π∗(E)-module generated by all monomials in terms of cf1, · · · , cfn of
degree at most k. Since the inverse system of the E∗(BU(n)(k)) satisfies
the Mittag-Leffler condition,

E∗(BU(n)) ∼= lim←−E∗(BU(n)(k)) ∼= E∗[[cf1, · · · , cfn]].

□

The Connor-Floyd-Chern classes satisfy axioms analogous to the axioms (3.3) of
the ordinary Chern classes. Now that we have constructed them and understand the
E-cohomology of BU(n), we can show that all complex n-plane bundles admit an
E-orientation. By naturality, it suffices to show that the universal n-plane bundle
ξn : EU(n) ↓ BU(n) admits an E-orientation.

Recall the spherical fibration S2n−1 → BU(n− 1)→ BU(n). Note

BU(n) ∼= D(ξn) and BU(n− 1) ∼= S(ξn).

Then

Ẽ∗(Th(ξn)) ∼= E∗(D(ξ),S(ξ)) ∼= E∗(BU(n), BU(n− 1)).

Write θ : BU(n − 1) → BU(n). Then θ∗ : E∗(BU(n)) → E∗(BU(n − 1)) is
surjective with kernel E∗(BU(n), BU(n− 1)) generated by cfn as a π∗(E)-module.

Proposition 6.7. The class cfn ∈ E2n(BU(n), BU(n− 1)) is an E-orientation of
the universal n-plane bundle ξn : EU(n) ↓ BU(n).
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Proof. By the splitting principle (5.2), we have a map f : Fξn → BU(n) that pulls
back ξn to a direct sum of line bundles. Note that Fξn

∼= BTn ∼= BU(1)n. The

image of cfn in Ẽ∗(Th(f∗ξn)) is

t1 · · · tn ∈ π∗(E)[[t1, · · · , tn]] ∼= E∗(BU(1)n).

But note that the total space of f∗ξn is isomorphic to
⊕n

i=1 π
∗
i EU(1), where

πi : BU(1)n → BU(n)

is the i-th projection map. We have reduced our claim to n = 1, and we are done
since E is complex-orientable. □

The actual value of Connor-Floyd-Chern classes depend on both the cohomology
theory and choice of complex orientation. While we have developed a valuable
theory shared by all complex-oriented cohomologies, we have yet to develop a way
of studying and differentiating them. The next two sections will introduce the
beginning of this story.

7. Formal Group Laws and Lazard Ring

One way of differentiating between complex-oriented cohomologies is by studying
how their Connor-Floyd-Chern classes behave with respect to tensor products of
line bundles. Let E be a complex-oriented cohomology theory. Let ℓ1, ℓ2 be complex
line bundles over X, and let g1, g2 : X → CP∞ denote their respective classifying
maps. The classifying map of ℓ1⊗ ℓ2 factors through the map CP∞×CP∞ → CP∞

that classifies π∗
1(ξ1)⊗ π∗

2(ξ1), in the following way:

ℓ1 ⊗ ℓ2 π∗
1(ξ1)⊗ π∗

2(ξ1) ξ1

X CP∞ × CP∞ CP∞
g1×g2

This classifying map from CP∞ × CP∞ to CP∞ induces a map

π∗(E)[[z]] ∼= E∗(CP∞)→ E∗(CP∞ × CP∞) ∼= π∗(E)[[x, y]]

where z 7→ FE(x, y). By naturality of the Connor-Floyd-Chern classes, we have
the following.

Proposition 7.1. There is a power series FE(x, y) ∈ π∗(E)[[x, y]] such that

cf1(ℓ1 ⊗ ℓ2) = FE(cf1(ℓ1), cf1(ℓ2).

Because tensor products of line bundles are unital, associative, and commutative,
the power series FE(x, y) is an example of a formal group law.

Definition 7.2. A formal group law over a graded commutative ring R is a
homogeneous power series F (x, y) ∈ R[[x, y]] of degree two such that

F (x, 0) = x, F (0, y) = y

F (x, F (y, z)) = F (F (x, y), z)

and

F (x, y) = F (y, x).
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Example 7.3. The additive formal group law Ga(x, y) is x+y and the multiplica-
tive formal group law Gm(x, y) is x+ y + vxy for some |v| = −2.

Proposition 7.4. The functor F : GCR → Set sending a graded commutative
ring R to the set of formal group laws over R is co-representable. In other words,
there is a ring L and a formal group law G over L, such that any formal group law
F over R can be obtained from G over L by applying a unique ring homomorphism
L→ R.

Proof. Let S = Z[aij ], for all pairs of natural numbers (i, j) except for (0, 0). Each
aij is an indeterminate.

A formal group law F (x, y) = x+ y+
∑

i,j>0 aijx
iyj over R introduces relations

between the aij appearing in its summation. We must have a10 = a01 = 1. Com-
mutativity implies aij = aji. More tediously, there is associativity: F (x, F (y, z)) =
F (F (x, y), z). Expanding both sides yields∑

ij>0

aij(x+ y +
∑

m,k>0

amkx
myk)izj =

∑
i,j>0

aijx
i(y + z +

∑
m,j>0

amky
mzk)j .

Let L denote the ring S modulo these relations. We define the desired formal
group law G over L to be G(x, y) = x+ y +

∑
ij aijx

iyj .

Suppose F (x, y) = x + y +
∑

i,j>0 cijx
iyj is a formal group law over R. Let

ϕ : L → R be the ring homomorphism defined by sending aij → cij . Applying
ϕ : L→ R maps G to F . □

While the Lazard ring L appears to be large and complicated, we have the
following description.

Theorem 7.5 (Lazard’s Theorem). L ∼= Z[x1, x2, · · · ], where |xi| = −2i.

The rest of this section will be devoted to proving this. The first step is to show
theorem 7.10, which states that L⊗Q ∼= Q[x1, x2, · · · , ]. A preliminary notion we
need is morphisms and isomorphisms between formal group laws.

Definition 7.6. Let R be a graded commutative ring, and F,G formal group laws
over R. Define

HomR(F,G) = {ϕ ∈ (R[[X]])2 : ϕ(0) = 0, ϕF (X,Y ) = G(ϕX, ϕY )}.

Furthermore, we require every ϕ ∈ HomR(F,G) to be homogeneous of degree two.

Note that any ϕ ∈ HomR(F,G) is of the form a0x+a1x
2+ · · · where |ai| = −2i.

In R[[X]], any ϕ = a0x + a1x
2 + · · · is invertible if a0 is a unit in R. Then

ϕ ∈ HomR(F,G) is an isomorphism if and only if a0 is a unit in R. We say that ϕ
is a strict isomorphism if a0 = 1.

Example 7.7. Let invertible ϕ = x + a1x
2 + · · · be homogeneous of degree two.

Let F be a formal group law over R. Define

ϕF (X,Y ) := ϕF (ϕ−1X,ϕ−1Y ) and Fϕ(X,Y ) := ϕ−1F (ϕX, ϕY ).

Both ϕF (X,Y ) and Fϕ(X,Y ) are formal group laws over R by properties of ϕ, and
ϕ can be considered as a map in both HomR(F,

ϕ F ) and HomR(F
ϕ, F ).

To show theorem 7.10, we will consider a map from the Lazard ring toQ[m1,m2, · · · ]
which classifies a special formal group law. This formal group law is the following.



18 RAY SHANG

Proposition 7.8. Let R = Z[m1,m2, · · · ] where |mi| = −2i. Let

logX := X +m1X
2 +m2X

3 + · · · .

Then Glog
a (X,Y ) = log−1(logX + log Y ) is the universal formal group law for

group laws strictly isomorphic to the additive group law.

Proof. Suppose R′ is a graded commutative ring, and F a formal group law over
R strictly isomorphic to Ga = X + Y . Then there exist ϕ = X + a1X

2 + · · · such
that ϕF = ϕX +ϕY . Then F = ϕ−1(ϕX +ϕY ). Define a map from R to R′ where
mi 7→ ai. This defines a graded ring homomorphism that maps Glog

a to F . □

The inverse to the desired map L ⊗ Q → Q[m1,m2, · · · ] will fall out from the
Q-algebra structure.

Proposition 7.9. Over a Q-algebra, any formal group law is strictly isomorphic
to the additive group law. Denote logF : F → Ga as an isomorphism, and expF its
inverse. By construction, logF and expF are unique.

Proof. Suppose we have a strict isomorphism ϕ between formal group law F and
Ga. Then ϕF = ϕX + ϕY . Differentiating with respect to Y and setting Y = 0

yields ϕ′(X)F2(X, 0) = 1, where F2 = ∂
∂Y F (X,Y ). Then ϕ(X) =

∫X

0
1

F2(t,0)
dt, and

ϕ exists if R is a Q-algebra. □

Combining Propositions 7.9 and 7.8 yields

Theorem 7.10. L⊗Q ∼= Q[m1,m2, · · · ], where |mi| = −2i

Proof. We have a unique map L→ R ⊗Q classifying the universal additive group
law Glog

a . This maps factors through a map L ⊗ Q → R ⊗ Q. But since L ⊗ Q is
a Q-algebra, there is a map from R ⊗Q→ L⊗Q classifying its group law. These
maps are inverses. □

With theorem 7.10, we just need proposition 7.11 to prove Lazard’s theorem
(7.5). For any abelian A and positive integer n, consider the graded commutative
ring Z ⊕ A[2 − 2n], where Z is in degree 0 and A is in degree 2 − 2n. Define the
multiplication to be (n, a)(m, b) = (nm, nb+ am).

Consider the set of formal group laws F(Z⊕A). By proposition 7.4, F(Z⊕A) is in
bijection with a subset of Hom(L,Z⊕A), which consists of all graded commutative
ring homomorphisms that map the degree zero generator of L to the degree zero
generator of Z ⊕ A. Consider the map L → Z classifying the additive group law
over Z. Let I be the kernel of this map. There is a canonical projection Z⊕A→ Z,
with kernel A. Any map L→ Z⊕A[2− 2n] preserves the aforementioned kernels,
and induces a map I → A. By the multiplication we defined on Z ⊕ A[2 − 2n],
A2 = 0. Hence, this map factors through (I/I2)2−2n → A. This implies

F(Z⊕A[2− 2n]) = Hom(L,Z⊕A[2− 2n]) = Ab((I/I2)2−2n, A).

We claim the following is true.

Proposition 7.11. F(Z⊕A[2− 2n]) ∼= A

For clarity, we assume proposition 7.11 is true and first prove theorem 7.5 and
prove proposition 7.11 afterwards.
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Proof of Lazard’s theorem. By proposition 7.11, Ab((I/I2)2−2n, A) ∼= A, for all
abelian A. By the structure theorem of finitely generated abelian groups, this
implies (I/I2)2−2n ∼= Z. In degree 2 − 2i, pick generator xi−1 ∈ L which maps
to the generator of (I/I2)2−2n. Then we have a surjection Z[x1, x2, · · · ] → L.
Consider the following commutative diagram:

Z[x1, x2, · · · ] //

��

L

��
Q[x1, x2, · · · ] // L⊗Q

The left map is injective because Z[x1, x2, · · · ] is torsion free. The bottom row is
an isomorphism. Thus, Z[x1, x2, · · · ]→ L is injective. □

Thus, all that remains is to prove proposition 7.11. What does a formal group
law over Z⊕A[2− 2n] look like? It looks like F (X,Y ) = X + Y + P (X,Y ), where

P (X,Y ) :=
∑

i,j ̸=0,i+j=n

aiX
iY j .

This is due to the grading. The formal group law properties of F impose condi-
tions on P (X,Y ). Symmetry implies P (X,Y ) = P (Y,X). Associativity is more
complicated. Expanding F (X,F (Y,Z)) = F (F (X,Y ), Z) yields

X + Y + P (Y,Z) +
∑

i+j=n

aiX
i(Y + Z + P (Y,Z))j

= X + Y + P (X,Y ) + Z +
∑

i+j=n

ai(X + Y + P (X,Y ))iZj .

This implies

(7.12) P (Y, Z) + P (X,Y + Z) = P (X,Y ) + P (X + Y, Z).

This follows from the multiplication of Z ⊕ A[2 − 2n]. Now for a ∈ A, define
Φa = X + aXn. We leave it to the reader to check that Φ−1

a = Φ−a. Thus,
ΦaGa = Φa(Φ−aX +Φ−aY ) is a formal group law. Expanding, we obtain

ΦaGa(X,Y ) = X − aXn + Y − aY n + a(X − aXn + Y − aY n)n

= X + Y + a[(X + Y )n −Xn − Y n]

We assert the following without proof.

Lemma 7.13. Let ϵn := gcd{
(
n
i

)
|1 ≤ i ≤ n − 1}. Then ϵn = p if n is a power of

p, and ϵn = 1 otherwise.

Define Cn(X,Y ) = 1
ϵn
[(X + Y )n − Xn − Y n], which is in Z[X,Y ]. Since

ΦaGa(X,Y ) is a formal group law, X + Y + aCn is a formal group law as well.
We are now ready to begin our proof of proposition 7.11. We claim the map

A → F(Z ⊕ A[2 − 2n]), where a 7→ X + Y + aCn(X,Y ) is a bijection. If we
denote the set of P (X,Y ) as Pn, this is equivalent to showing A → Pn, where
a 7→ aCn(X,Y ), is bijective. Injectivity follows from the fact that Cn(X,Y ) is a
primitive polynomial. Surjectivity remains to be proven.

Letting nonnegative i+ j + k = n, expanding equation (7.12) yields
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∑
i=0

ajY
jZk +

∑
ai

(
j + k

j

)
XiY jZk =

∑
k=0

aiX
iY j +

∑
ai+j

(
i+ j

i

)
XiY jZk.

Comparing coefficients of XY m−1Zn−m for 1 ≤ m ≤ n− 1, we have

(7.14) a1

(
n− 1

m− 1

)
= mam

We also assert the following lemma without proof.

Lemma 7.15. Cpk(X,Y ) = uCk(X
p, Y p) mod p for some unit u.

We now begin our casework.

(1) [A = Z/p] Choose arbitrary P (X,Y ) ∈ Pn. Suppose p does not divide n.
Consider P − a1

en
n Cn =

∑
i a

′
iX

iY j . This has leading term a′1 = 0. Then
by the above relation, a′m = 0 for m not divisible by p. Consider the terms
a′m such that m is divisible by p. Then by symmetry, a′m = a′n−m = 0,
where p cannot divide n−m. Thus, P = a1

en
n Cn.

Suppose that p = n. Consider P − a1Cn. The leading term is a′1 = 0.
By equation (7.14), we have that all other terms must be zero.

Suppose that p divides n, but p < n. Let n = pk. By equation (7.14),
a1
(
n−1
p−1

)
= pap = 0. This means a1 = 0, so for all m divisible by p, am = 0.

Then the leftover terms to consider are those with index divisible by p.
Then P (X,Y ) = Q(Xp, Y p), where Q satisfies equation (7.12). We can
proceed by induction until k either equals p or is not divisible by p. In
which case, our previous work shows that Q = aCk(X,Y ). Then by lemma
7.15, P (X,Y ) = aCk(X

p, Y p) = auCpk(X,Y ), as desired.
(2) [A = Z/pn] Proceed by induction on the diagram

0 pA A A/pA 0

0 Pn(pA) Pn(A) Pn(A/pA) 0

∼=∼=

(3) [A = Q] We want to show that the map Q→ Z⊕Q[2− 2n] is a bijection.
Since Z⊕Q is a Q-algebra, by proposition 7.9, any formal group law F is
strictly isomorphic to the additive group law. Then F = θ(θ−1X + θ−1Y )
where θ = X + aXn. But we’ve seen this construction before! F will be
of the form X + Y + a[(X + Y )n − Xn − Y n], and thus is of the form
X + Y + aϵnCn.

(4) [A = Z] This follows from the A = Q case because Cn is a primitive
polynomial.

(5) [A is a finitely generated abelian group] This follows from our previous case-
work and the commutativity of the following diagram.

A⊕B

Pn(A)⊕ Pn(B) Pn(A⊕B)

∼=
∼=
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(6) [A is an arbitrary abelian group] Suppose we have P =
∑

aiX
iY j . Then

consider the abelian group finitely generated by all ai. This is a subset of
A. By our previous work, P = aCn for some a ∈ A.

8. Towards MU

Recall from proposition 7.1 that every complex-oriented E has an associated
formal group law FE . The assignment

{complex-oriented cohomology theories} → {formal group laws}

is a fruitful way of studying complex-oriented cohomologies. Understanding exactly
why this is a useful assignment is beyond the scope of this paper, but the rough
idea is that formal group laws are both reasonably tractable objects and remember
a great deal about the cohomology theory. In fact, under mild hypotheses, one
can reconstruct E from its formal group law. The ’universal complex-oriented
cohomology theory’ MU plays a central role in this reconstruction.

Definition 8.1. Define the complex cobordism prespectrum MU in the following
way. For the spaces, let

MU2n = MU(n) := Th(ξn) and MU2n+1 = ΣMU(n).

For the structure maps, consider the classifying map BU(n)→ BU(n+1) of ξn⊕ϵ.
This induces a map on Thom spaces

Th(ξn ⊕ ϵ)→ Th(ξn)

which we define to be the structure map of Σ2MU(n)→MU(n+1). Furthermore,
we let ΣMU2n = ΣMU(n)→MU2n+1 be the identity map.

It turns out that MU -cohomology is complex-oriented. Furthermore, it is the
universal one in the following sense.

Theorem 8.2. Let E be a complex-oriented cohomology theory. Let xMU ∈ M̃U
2
(CP∞)

denote the canonical complex orientation of MU . The map

[ϕ : MU → E] 7→ ϕ(xMU )

determines a bijection between ring spectrum maps MU → E and complex orien-
tations of E.

Proof. See lecture 6 of [5] for justifications. □

Given a formal group law FE , how does MU help recover E? The canonical
complex orientation of MU determines a formal group law f(x, y) ∈ π∗(MU)[[x, y]]
by proposition 7.1. By proposition 7.4, this formal group law is given by a map
of graded rings L → π∗(MU). In fact, Quillen proved the following celebrated
theorem.

Theorem 8.3 (Quillen). The map L → π∗(MU) is an isomorphism of graded
rings.4 5

4A proof can be found on page 75 of [1].
5A corollary is that the homotopy groups of MU are zero at odd degrees, by theorem 7.5.
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This observation of Quillen’s leads one to construct an inverse (not a true inverse)
to the assignment discussed at the beginning of this section. Namely, suppose we
have a ”suitable” commutative ring R and a formal group law F (x, y) ∈ R[[x, y]],
classified by a map ϕ : L→ R. We can attempt to define a new cohomology theory
E by E∗(X) = MU∗(X)⊗L R for finite complexes X. This construction does not
always satisfy the generalized cohomology theory axioms, but Landweber’s exact
functor theorem (LEFT) gives a purely algebraic criterion on ϕ to guarantee when
E∗ is a cohomology theory.

While, for example, complex K-theory was discovered geometrically, interesting
cohomology theories such as elliptic cohomology were first constructed using LEFT.
Although LEFT is very useful, it should be noted that it is far from a complete
description of the correspondence between complex-oriented cohomologies theory
and formal group laws. For example, the Brown-Peterson spectrum and Morava
K-theories are important and interesting ring spectra whose complex-oriented co-
homologies cannot be reconstructed from their associated formal group laws.

Bibliography

References

[1] Frank Adams. Stable Homotopy and Generalised Homology. 1974.
[2] Robert Bruner, Michael Catanzaro, and Peter May. Characteristic classes.

[3] A.D. Elemendorf, I. Kriz, M.A. Mandell, and J.P. May. Modern foundations for stable ho-

motopy theory.
[4] Stanley Kochman. Bordism, Stable Homotopy and Adams Spectral Sequences. Fields Insti-

tute, 1996.
[5] Jacob Lurie. Chromatic homotopy theory notes.

[6] Cary Malkiewich. The stable homotopy category.

[7] P. May, L.G. Lewis, and M. Steinberger. Equivariant stable homotopy theory. Lecture Notes
in Mathematics, 1213, 1986.

[8] Peter May. A concise course in algebraic topology, 1999.

[9] Haynes Miller. Lectures in algebraic topology, 2021.
[10] John W. Milnor and James D. Stasheff. Characteristic Classes. Princeton University Press,

1974.


	Introduction
	Acknowledgments
	1. Generalized Cohomology Theories and Spectra
	2. What is complex orientation?
	3. Characteristic Classes
	4. Thom Class
	5. Constructing Chern Classes
	6. Back to Complex Orientation: Connor Floyd Chern classes and E-orientation 
	7. Formal Group Laws and Lazard Ring
	8. Towards MU
	Bibliography
	References

