
GROUPS OF EXOTIC SPHERES

HONGHAO JING

Abstract. The exotic sphere is defined as a topological sphere with a smooth

structure that is different from the standard one. In a fixed dimension, all

exotic spheres with the standard sphere form a group under connected sum. In
this paper, we will discuss these groups and prove their finiteness in dimensions

⩾ 5. Along the way, some explicit computation of order of these groups can

be obtained.
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1. Introduction

It is a long-standing problem in topology to determine the number of smooth
structures on a topological sphere. It was proven by Kervaire and Milnor in 1963
that the number of non-isomorphic smooth structures on a topological sphere is
finite in dimensions ⩾ 5. In this paper, we will follow Kervaire and Milnor’s work
[1] to present the proof.

Shown later by Kirby and Siebenmann, more generally, every closed topological
manifold in dimensions ⩾ 5 has at most finitely many smooth structures, but the
proof depends on the result for spheres in the same dimension.
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It is worth mentioning the story in lower dimensions: every topological manifold
has a unique smooth structure in dimensions ⩽ 3, and the case of dimension 3 was
proven earlier in 1952 by Moise. However, this is not true in dimension 4, where
there are homeomorphic manifolds with non-isomorphic smooth structures, and
topological manifolds without a smooth structure. Moreover, whether there is a
unique smooth structure on a topological 4-sphere and whether there are infinitely
many remain unknown.

Now let us get to the point by starting with an important definition. Throughout
this paper, all manifolds (with or without boundary) are assumed compact, oriented

and smooth. Denote by M the manifold M with the orientation reversed.

Definition 1.1. Manifolds M1 and M2 are said to be h-cobordant if the disjoint
union M1 ⊔M2 is the boundary of some manifold W and both M1 and M2 are
deformation retracts of W . W is called a h-cobordism between M1 and M2.

Since smooth manifolds have CW -structures by the Morse theory, we only need
the inclusions M1 → W, M2 → W to be homotopy equivalences in place of defor-
mation retracts. Then it is easy to see that h-cobordance is an equivalence relation
on manifolds in a fixed dimension.

One of the reasons why this definition is important comes from the h-cobordism
theorem by Smale in 1962. In this paper, we denote diffeomorphisms by ∼= and
homotopy equivalences by ≃.

Theorem 1.2 (Smale). Let n ⩾ 5 and M1,M2 be simply-connected n-manifolds.
If M1 and M2 are h-cobordant by W , then W ∼=M1 × [0, 1] and hence M1

∼=M2.

The proof using Morse functions is presented nicely in Milnor’s lecture notes [7].
The theorem was proven to fail for n = 4 by Donaldson in 1983.

It will be shown in the next section that h-cobordism classes of homotopy n-
spheres form a group under connected sum (which is called the h-cobordism
group of homotopy spheres). By the topological Poincaré conjecture, a ho-
motopy sphere is a topological sphere for all n; by the h-cobordism theorem, h-
cobordant spheres are the same thing as diffeomorphic spheres for n ⩾ 5. There-
fore, the h-cobordism group of homotopy spheres is none other than the group of
exotic spheres (including the standard sphere) under connected sum.

In this paper, we will only consider the h-cobordism group of homotopy spheres
without resorting to the topological Poincaré conjecture and the h-cobordism the-
orem. Thus the main result can be stated as follows.

Theorem 1.3. The h-cobordism classes of homotopy n-spheres form a finite abelian
group under connected sum.

This group will be denoted by Θn. To prove its finiteness, we prove that bPn+1

and Θn/bPn+1 are both finite, where bPn+1 is a subgroup of Θn, consisting of
homotopy spheres that bound parallelizable manifolds (Definition 4.1). Moreover,
we shall show that bP2k+1 is trivial and that bP2k is cyclic, without going into
details of computation of the order |bP2k|.

2. Preliminaries

2.1. Connected Sum. Let M1,M2 be closed n-manifolds, i1 : Dn → M1 and
i2 : Dn →M2 be (smooth) embeddings from n-disks to them, such that i1 preserves
orientation and i2 reverses orientation.
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Definition 2.1. The connected sum M1♯M2 is the quotient space of

(M1 − i1(0)) ⊔ (M2 − i2(0))

identifying i1(tu) with i2((1− t)u) for each t ∈ (0, 1) and u ∈ Sn−1 = ∂Dn.

Proposition 2.2. (1) M1♯M2 is a well-defined closed manifold.
(2) The connected sum operation is associative and commutative (up to orien-

tation diffeomorphism) with an identity element Sn, the standard sphere.

Proof. (1) Clearly, M1♯M2 is a closed smooth manifold and has an orientation
compatible with that of M1 and M2 since the attaching is orientation-preserving.

The non-trivial part is thatM1♯M2 is independent of the embeddings i1, i2. This
follows from the “disc theorem” of Palais [9] that any two orientation preserving
embeddings i1, i

′
1 : Dn →M1 are isotopic.

(2) These follow from the definition. □

For manifolds with boundary, we also need a definition of connected sum.
Let Hn+1 denotes the closed upper half-disk of Dn+1, containing points with the

last coordinate ⩾ 0. Dn denotes the subset of Dn+1 with the last coordinate = 0.
Let W1,W2 be (n+ 1)-manifolds with boundary,

iq : (Hn+1, Dn) → (Wq, ∂Wq), q = 1, 2

be embeddings such that one preserves orientation and the other reverses it.

Definition 2.3. The connected sum along boundary W1♮W2 is the quotient
space of

(W1 − i1(0)) ⊔ (W2 − i2(0))

identifying i1(tu) with i2((1− t)u) for each t ∈ (0, 1) and u ∈ Hn+1 ∩ Sn.

Similarly, one can prove the well-definedness. It is easy to see the following facts
about the resulting manifold W1♮W2.

• (boundary) ∂(W1♮W2) = ∂W1♯∂W2.
• (homotopy type) W1♮W2 ≃W1 ∨W2.

2.2. Stable Parallelizability. LetM be an n-manifold with tangent bundle TM .
If it is immersed in some larger manifold, we will denote the normal bundle by NM .
Denote the trivial r-bundle on M by ϵr.

Definition 2.4. M is said to be stably parallelizable if TM is stably trivial,
i.e., TM ⊕ ϵr is trivial for some r ⩾ 0.

The following lemma is useful for judging whether a bundle on an n-manifold
(with or without boundary) is trivial.

Lemma 2.5. Let ξ be an r-bundle on an n-manifold M , where r > n. If ξ is stably
trivial, then ξ is trivial.

Proof. By induction, assume that ξ ⊕ ϵ1 is trivial. An isomorphism ξ ⊕ ϵ1 ∼= ϵr+1

gives rise to a bundle map from ξ to tangent bundle TSr as follows.
Identify all fibers of ϵr+1 with a fixed Euclidean space Rr+1. Each fiber of ξ

corresponds to a r-subspace of Rr+1. Then we define M → Sr by sending each
point to the normal vector of its fiber. This defines a bundle map ξ → TSr.

Since dimM < dimSr, the map M → Sr between bases is null-homotopic by
cellular approximation. Thus, ξ is trivial. □
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The following two corollaries about stable parallelizability follow immediately
from Lemma 2.5. They will be used in the future.

Corollary 2.6. M is stably parallelizable iff TM ⊕ ϵ1 is trivial.

Corollary 2.7. Let M be an n-submanifold of Sn+k where n < k. Then M is
stably parallelizable iff NM is trivial.

For the former, apply Lemma 2.5 to TM ⊕ ϵ1; for the latter, apply it to NM .
(Note that the tangent bundle of Sn+k minus a point is trivial.)

Proposition 2.8. A connected manifold M with boundary is parallelizable iff it is
stably parallelizable.

Proof. Claim: for any n-manifold M ,

Hn(M) ∼= [M,Sn],

where [·, ·] denotes the homotopic classes of maps.
In fact, the Eilenberg-MacLane space K(Z, n) can be constructed by gluing cells

of dimension ⩾ n + 2, with (n + 1)-skeleton K(Z, n)(n+1) = Sn. Then the claim
follows since for any n-manifold M , we have

Hn(M) ∼= [M,K(Z, n)] ∼= [M,K(Z, n)(n+1)] ∼= [M,Sn].

Now suppose TM ⊕ ϵ1 ∼= ϵn+1. Similar to the proof of Lemma 2.5, we have a
bundle map TM → TSn. Since M has boundary here, Hn(M) = 0. Thus, every
map M → Sn is null-homotopic by the claim, and hence TM is trivial. □

Finally, let us state a theorem that will be used when studying homotopy spheres.
The proof is an application of the obstruction theory. See [1, §3].

Theorem 2.9. Every homotopy sphere is stably parallelizable.

2.3. Framing and Cobordism. Recall that a framing of a vector bundle ξ is
a trivialization of ξ. Existence of a framing implies being trivial, but different
trivializations may not be homotopic.

Definition 2.10. Let M be a n-manifold.

• A stable framing ofM is a framing Φ of the stable tangent bundle TM⊕ϵ1
(if one exists). (M,Φ) is then called a framed manifold.

• If M is a submanifold of W , a normal framing of M is a framing Ψ of
the normal bundle NM (if one exists). (M,Ψ) is then called a normally
framed submanifold of W.

Next we relate the concept of framing to cobordism.

Definition 2.11. Let (M1,Φ1) and (M2,Φ2) be framed n-manifolds. A framed
cobordism between them is a parallelizable (n + 1)-manifold W together with a
framing Ψ of TW , such that ∂W =M1 ⊔M2 and Ψ|Mq

= Φq, q = 1, 2.

Remark 2.12. Note that TW |∂W can be identified with T (∂W )⊕ ϵ1 by assigning
an outward pointing vector field.

Definition 2.13. Let (M1,Φ1) and (M2,Φ2) be normally framed n-submanifolds of
W . A normally framed cobordism between them is a normally framed (n+1)-
submanifold (V,Ψ) of W × [0, 1], such that ∂V = M1 ⊔M2 where Mq ⊂ W × {q}
and Ψ|Mq

= Φq, q = 1, 2.
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Closely related to the normal framing is the Pontryagin(-Thom) construction,
which relates normally framed cobordism classes of n-submanifolds of W to homo-
topy classes of maps [W,Sk], where W is a closed (n+ k)-manifold.

• Let f :W → Sk be a smooth map and p ∈ Sk be a regular value. Consider
the normally framed submanifold (f−1(p),Φ) ofW , where Φ is the pullback
of standard trivialization of TSk|p.

• Let (M,Φ) be a normally framed manifold, where Φ : NM → M × Rk.
Regard NM as a tubular neighborhood of M in W . Consider the map

f : W → Sk defined by setting f |NM : NM
Φ→ M × Rk pr→ Rk ↪→ Sk and

f |W−NM collapses W − NM to the point Sk − Rk. (Regard Sk as the
one-point compactification of Rk.)

Theorem 2.14. Let W be a closed (n + k)-manifold. The above construction
gives a one-to-one correspondence between normally framed cobordism classes of
n-submanifolds of W and homotopy classes of maps [W,Sk].

One needs to check that the correspondences are well-defined (independent of
various choices), and are inverses of each other. See [8, §7].

2.4. Homotopy Groups of Orthogonal Groups. Consider the exact sequence
of homotopy groups associated to the fibration

SOk
ik→ SOk+1

jk→ Sk, where jk : ρ 7→ ρ · x0, x0 = (0, ..., 0, 1).

One defines the stable homotopy group πk(SO) := πk(SOk+2) = πk(SOk+3) = · · ·
and πk(O) similarly. They are equal when k > 0.

Theorem 2.15 (Bott’s Periodicity). πk(O) is mod 8 periodic with repect to k and
the actual homotopy groups are

k mod 8 0 1 2 3 4 5 6 7
πk(O) Z2 Z2 0 Z2 0 0 0 Z .

We will encounter unstable homotopy groups of orthogonal groups, so we state
the needed results here. Consider the diagram with the row and column exact.

πk(S
k)

πk−1(SOk−1) πk−1(SOk) πk−1(S
k−1)

πk−1(SOk+1)

(ik−1)∗ (jk−1)∗

∂k

(ik)∗

fk

.

Proposition 2.16. The map fk : Z = πk(S
k) → πk−1(S

k−1) = Z is ·2 if k is even
and ·0 if k is odd.

Proof. By clutching functions, elements of πk−1(SOk) are in one-to-one correspon-
dence with the isomorphic classes of k-bundles on Sk. We identify them.
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It can be computed that ∂k maps the standard generator of πk(S
k) to the tangent

bundle TSk, and that (jk−1)∗ maps a k-bundle to its obstruction class to finding
a section ([2, §1.B]). Therefore, (jk−1)∗(∂k(1)) = e(TSk)[Sk] = χ(Sk), the Euler
characteristic. The proposition then follows. □

Proposition 2.17. (1) (ik)∗ : πk−1(SOk) → πk−1(SOk+1) is surjective. Its
kernel is a cyclic group with generator TSk.

(2)

Coker(πk(SOk) → πk(SO)) =

{
Z2, k = 1, 3, 7;
0, k ̸= 1, 3, 7.

Proof. (1) This is clear by the long exact sequence. Further, Ker(ik)∗ = 0 iff
k = 1, 3, 7, using the fact that TSk is trivial iff k = 1, 3, 7.

(2) First let k be even. Since

πk(SOk)
(ik)∗→ πk(SOk+1)

(jk)∗→ πk(S
k)

∂k→ πk−1(SOk)

is exact and ∂k is injective (Proposition 2.16), we see that (ik)∗ is surjective. The
other cases are equally easy. □

Combining (1) above and π2(O) = π6(O) = 0, we have π2(SO3) = π6(SO7) = 0.

3. Construction of Θn

Now we turn to the precise definition of the h-cobordism group of homotopy
n-spheres. We will show in this section that the connected sum is well-defined over
h-cobordism classes of homotopy n-spheres and makes it a abelian group. This
abelian group will be denoted by Θn.

First, we need to note the following.

Lemma 3.1. The connected sum of two homotopy n-spheres is a homotopy n-
sphere.

Proof. By van Kampen’s theorem and the Mayer-Vietoris sequence, this connected
sum is a simply-connected homology sphere, and hence has homotopy groups of a
sphere in dim ⩽ n . Then, it has to be homotopic to a sphere if we take a generator
of its nth homotopy group and apply Whitehead’s theorem. □

Next, we show that the connected sum is well-defined over h-cobordism classes.

Denote the equivalence relation of h-cobordance by
h∼.

Lemma 3.2. LetM1,M
′
1,M2 be simply-connected closed n-manifolds. IfM1

h∼M ′
1,

then M1♯M2
h∼M ′

1♯M2.

The proof is to construct a h-cobordism M1♯M2
h∼ M ′

1♯M2 by somehow gluing

the h-cobordism W :M1
h∼M ′

1 with M2 × [0, 1], and is not so relevant. See [1, §2].
We now turn to the group structure of h-cobordism classes of homotopy n-

spheres. Since we have shown the associativity, commutativity and that Sn repre-
sents the identity by Proposition 2.2, we only need to show that inverse exists.

Before that, we introduce the following useful criterion for judging whether a
manifold represents the identity. Note that a manifold h-cobordant to Sn has to
be a homotopy sphere by definition.
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Lemma 3.3. Let M be a simply-connected n-manifold. M
h∼ Sn iff M bounds a

contractible manifold.

Proof. (1) IfW is the h-cobordism with ∂W =M ⊔Sn, then attaching a disk along
Sn yields a manifold W ′ with boundary M . Since Sn ≃ W , W ′ is contractible by
a Mayer-Vietoris computation.

(2) If M = ∂W ′ with W ′ contractible, removing the interior of an embedded
disk yields a simply-connected W with W = M ⊔ Sn. Considering homology long
exact sequences of pairs (Dn+1, Sn) ↪→ (W ′,W ), we have isomorphisms Hk(S

n) →
Hk(W ) and hence a homotopy equivalence Sn ↪→W . Now since

Hk(W,M) ∼= Hn+1−k(W,Sn) = 0

by the Poincaré duality, M ↪→ W is a homotopy equivalence as well since both
spaces are simply-connected. □

Theorem 3.4. The h-cobordism classes of homotopy n-spheres form an abelian
group Θn under connected sum.

Proof. By Lemma 3.2 and Proposition 2.2, all that is left is to show that every
element [M ] has an inverse. The inverse is [M ] by the claim below.

Claim: if M is a homotopy sphere, then M♯M bounds a contractible manifold.
In fact, let W be the cylinder (M −Dn)× [0, 1], where Dn ↪→M is an embedded

disk. Clearly W ≃ M − Dn is contractible. After suitably smoothing out the
corners, W becomes a manifold with boundary M♯M ([1, §2]). □

We will finally prove that Θn is a finite group. Here is a table of order of Θn for
small n (from [4]). The subgroup bPn+1 of Θn will be defined later.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|Θn| 1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256 2

|bPn+1| 1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128 1
|Θn/bPn+1| 1 1 1 1 1 1 1 2 4 6 1 1 3 2 2 2

When n ⩽ 3, every topological n-manifold admits a unique smooth structure,
therefore Θn is trivial by the Poincaré conjecture.

When n ⩾ 4, proving the finiteness of Θn will be the goal of this paper. When
n ⩾ 5, Θn is the “group of exotic spheres” by the h-cobordism theorem. When
n = 4, we will show that Θ4 is trivial, but still, we can say nothing about smooth
structure on a topological 4-sphere.

4. Finiteness of Θn/bPn+1

Definition 4.1. Define bPn+1 ⊂ Θn as a subset whose elements are classes that
can be represented by a homotopy sphereM that bounds a parallelizable manifold.

We will see that the condition of being the boundary of a parallelizable manifold
depends only on the h-cobordism class [M ], and that bPn+1 is actually a subgroup
of Θn. In order to prove the finiteness of Θn, we prove that bPn+1 and Θn/bPn+1

are both finite.
Denote nth stable homotopy group of spheres by πS

n (= πk+n(S
k), k ⩾ n + 2).

Let M be a stably parallelizable closed n-manifold (e.g., a homotopy sphere, by
Theorem 2.9). We associate a specific subset p(M) of πS

n to M as follows.
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By Whitney’s theorem, there exists an embedding (unique up to isotopy)

i :M ↪→ Sk+n

for k ⩾ n + 2. The normal bundle NM is trivial by Corollary 2.7. Each of its
framing Φ yields by the Pontryagin construction a map

fM,Φ : Sk+n → Sk,

whose homotopy class is a well-defined element in πk+n(S
k). We collect these

elements as a subset p(M) as the normal framing varies

p(M) := {[fM,Φ]} ⊂ πk+n(S
k) ∼= πS

n .

(Here we need to note that the Pontryagin construction is compatible with suspen-
sion so that p(M) is well-defined in πS

n .) It turns out that p(M) can be defined
over h-cobordism classes:

Lemma 4.2. If M1
h∼M2, then p(M1) = p(M2).

Proof. Let W be the h-cobordism with ∂W = M1 ⊔M2. Choose an embedding
W ↪→ Sk+n × [0, 1] such that Mq ↪→ Sk+n × {q} , q = 0, 1. Now a normal framing
Φ1 of M1 extends to a normal framing Ψ of W by pullback along W →M1, which
restricts to a normal framing Φ2 of M2. Then (M1,Φ1) is normally framed cobor-
dant to (M2,Φ2) and consequently f(M1,Φ1) ≃ f(M2,Φ2) by nature of the Pontryagin
construction.

This shows that p(M1) ⊂ p(M2). Similarly, p(M2) ⊂ p(M1). □

Next consider [M ] ∈ Θn. We investigate p(M) ⊂ πS
n further and see the following

group structure.

Proposition 4.3. Let M be a homotopy n-sphere.

(1) p(Sn) ⊂ πS
n is a subgroup. p(M) ⊂ πS

n is a coset of p(Sn).
(2) The map

Θn → πS
n/p(S

n)

[M ] 7→ [p(M)]

is a group homomorphism.
(3) M bounds a parallelizable manifold iff [p(M)] = 0.

Proof. Key claim:

p(M1) + p(M2) ⊂ p(M1♯M2).

In fact, consider the connected sum ofM1× [0, 1] andM2× [0, 1] along boundary
components M1 × {1} and M2 × {1} (Definition 2.3). The resulting manifold W
has boundary (M1♯M2) ⊔ (M1) ⊔ (M2).

Now letW ↪→ Sk+n×[0, 1] be an embedding such that (M1)⊔(M2) ↪→ Sk+n×{0}
and (M1♯M2) ↪→ Sk+n×{1}. Any normal framings Φ1,Φ2 ofM1,M2 can extend to
W and restrict to a normal framing Φ0 ofM1♯M2. Therefore, (M1,Φ1)⊔(M2,Φ2) is
normally framed cobordant to (M1♯M2,Φ0) and [fM1,Φ1 ] + [fM2,Φ2 ] = [fM1♯M2,Φ0 ],
which implies the claim.

(1) Apply the claim to the following identities:

Sn ♯ Sn ∼= Sn, M ♯ Sn ∼=M, M ♯M
h∼M.
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We obtain relations

p(Sn) + p(Sn) ⊂ p(Sn), p(M) + p(Sn) ⊂ p(M), p(M) + p(M) ⊂ p(Sn).

Since πS
n is finite ([6, §4.2.4]), the first relation implies that p(Sn) is a subgroup.

The second implies that p(M) is a union of p(Sn)-cosets, and hence the third implies
that p(M) is a single coset.

(2) This follows immediately from the claim.
(3) 0 ∈ p(M) iff fM,Φ ≃ 0 for some Φ, which is in turn equivalent to that (M,Φ)

is normally framed null-cobordant for some Φ.
If this holds, M bounds a W and Φ extends to a normal framing of W . Then

by Corollary 2.7 and Proposition 2.8, W is parallelizable.
Conversely, if ∂W = M with W parallelizable, choose an embedding W ↪→

Dk+n+1 with M ↪→ Sk+n. By Corollary 2.7 again, NW is trivial. □

By (3) above and Lemma 4.2, the condition of bounding a parallelizable manifold
depends only on the h-cobordism class [M ].

Moreover, elements of Ker(Θn → πS
n/p(S

n)) are precisely classes of homotopy
spheres that bound parallelizable manifolds, i.e., elements of bPn+1. Thus, we have
proved that bPn+1 ⊂ Θn is a subgroup.

Theorem 4.4. Θn/bPn+1 is a finite group.

Proof. We have an injection Θn/bPn+1 ↪→ πS
n/p(S

n), and the target is finite. □

Remark 4.5. One can see that p(Sn), the range of the Pontryagin construction
of Sn, is exactly the image of the J-homomorphism J : πn(SO) → πS

n by checking
definitions. Thus we actually have an injection

Θn/bPn+1 ↪→ CokerJ,

whose target is more well-studied.

In the next few sections, we will study the groups bPn+1 and prove that they are
always finite cyclic. Here are some results.

bPn+1 =

 0, if n ≡ 0 (mod 2),
0 or Z2, if n ≡ 1 (mod 4),
Zkn , if n ≡ 3 (mod 4),

where {kn} is a sequence growing faster than exponential (see Table 3).

5. Surgery and Framed Surgery

The key technique of studying the group bPn+1 is called “surgery”. This section
is an introduction to surgery and framed surgery. The main reference is Milnor’s
paper [3] on surgery. Let M be an n-manifold.

Definition 5.1. Let ϕ : Sp ×Dn−p →M be an embedding. Define χ(M,ϕ) to be
the quotient of

(M − ϕ(Sp × {0})) ⊔ (Dp+1 × Sn−p−1)

identifying ϕ(u, tv) and (tu, v) for each u ∈ Sp, v ∈ Sn−p−1, t ∈ (0, 1]. We say that
χ(M,ϕ) is obtained from M by the surgery χ(ϕ).
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Remark 5.2. Topologically, χ(M,ϕ) can be obtained in the following neater way:
Remove the interior of the tube ϕ(Sp × Dn−p) from M so it adds a boundary
component, the torus ϕ(Sp × Sn−p−1). Then gluing a new tube Dp+1 × Sn−p−1

along this torus yields a space homeomorphic to χ(M,ϕ). Thus, by smoothing out
the corners where it glues, we have the previous definition of surgery.

M and χ(M,ϕ) actually play symmetric roles, in the sense that M can be ob-
tained back from χ(M,ϕ) by surgery χ(φ) where φ : Dp+1 × Sn−p−1 → χ(M,ϕ)
is the natural embedding. The following theorem allows us to see a surgery as an
elementary cobordism.

Theorem 5.3. If M,M ′ are closed n-manifolds, M ′ can be obtained from M by a
sequence of surgeries iff M and M ′ are cobordant.

Proof. Suppose M ′ = χ(M,ϕ). Let W be the quotient of

(M × [0, 1]) ⊔ (Dp+1 ×Dn−p)

identifying ϕ(Sp × Dn−p) ⊂ M × {1} and Sp × Dn−p ⊂ ∂(Dp+1 × Dn−p). Then

∂W = M ⊔ χ(M,ϕ). In fact, one needs to smooth out corners of W (see [3, §2]).
The resulting manifold is called the trace of the surgery χ(ϕ).

The converse can be proven by a standard argument of Morse functions but we
do not need it here. □

To study the group bPn+1, we consider parallelizable manifolds bounded by a
homotopy sphere. By Lemma 3.3, we aim to make this parallelizable manifold
homotopically simpler by surgery (clearly surgery does not change the boundary).
If it can always be modified into a contractible one, then by Lemma 3.3, bPn+1 = 0
(which is true for even n).

The reason why surgery works is partly the following proposition, which shows
that surgery can kill homotopy groups below the middle dimension, like what at-
taching cells does (but in the manifold category).

Now letM be an n-manifold (with or without boundary) and ϕ : Sp×Dn−p →M
be an embedding. Denote χ(M,ϕ) by M ′ and the homotopy class of ϕ|Sp×{0} in
πp(M) by λ.

Proposition 5.4. Homotopy groups of M and M ′ below the middle dimension are
related by

πk(M
′) ∼= πk(M), if k < min(p, n− p− 1),

πp(M
′) ∼= πp(M)/Λ, if p ⩽ n/2− 1,

where Λ is some subgroup containing λ.

Proof. Let V be the attaching space M ∪ϕ (Dp+1 ×Dn−p) containing both M and
M ′ as subspaces (as in Remark 5.2). The subspace V0 = M ∪ϕ (Dp+1 × {0}) is
a deformation retract of V , and is also M with a (p + 1)-cell attached. Thus,
M ↪→ V induces isomorphisms on πk for k < p and a surjection on πp with kernel
Λ containing λ.

Similarly, M ′ ↪→ V induces isomorphisms on πk for k < n−p−1, hence the first
relation follows. Since p ⩽ n/2− 1 ⇔ p < n− p− 1, the second follows as well. □

However, not every class of πp(M) arises from an embedding ϕ : Sp×Dn−p →M
for generalM . First, this class needs to be representable by an embedding f : Sp →
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M . On top of that, the image f(Sp) needs to have a product neighborhood, or
equivalently, to have a trivial normal bundle by the tubular neighborhood theorem.
We will shortly see that the stable parallelizability guarantees conditions above.

Still, stable parallelizability ofM may be destroyed after surgery. For this reason,
we introduce the framed surgery first.

Recall that a manifold can be framed iff it is stably parallelizable. Let (M,Φ) be a
framed manifold. If χ(ϕ) is a surgery onM , its traceW satisfies that ∂W =M⊔M ′

where M ′ = χ(M,ϕ). Again we identify TW |M with TM ⊕ ϵ1.

Definition 5.5. A surgery χ(ϕ) is called a framed surgery if there is a framing
Ψ of TW such that Ψ|M = Φ.

If χ(ϕ) is framed, M ′ automatically acquires a stable framing Φ′ := Ψ|M ′ , i.e.,
the stable parallelizability is preserved by framed surgery.

Lemma 5.6. Let (M,Φ) be a stably parallelizable n-manifold and λ ∈ πp(M) where
p < n/2. Then there exists an embedding ϕ : Sp ×Dn−p →M representing λ, such
that χ(ϕ) is a framed surgery.

Proof. Since 2p + 1 ⩽ n, Whitney’s theorem implies that λ can be represented by
an embedding f : Sp → M . The normal bundle N(f(Sp)) is stably trivial since
both TM and T (f(Sp)) are stably trivial. Then by Lemma 2.5, N(f(Sp)) is trivial.
Hence there exists an embedding ϕ : Sp ×Dn−p →M representing λ.

Let W be the trace of χ(ϕ). The obstructions to extending the framing Φ (of
TW |M ) to TW live in cohomology groups Hk+1(W,M ;πk(SOn+1)). Note that
there is a homotopy equivalence (W,M) ≃ (W0,M × [0, 1]), where W0 = (M ×
[0, 1]) ∪ (Dp+1 × {0}), i.e., (M × [0, 1]) with a (p+ 1)-cell attached. Hence,

Hk+1(W,M ;πk(SOn+1)) =

{
πp(SOn+1), k = p;
0, k ̸= p.

Therefore, the only obstruction to extending Φ is a well-defined class in γ(ϕ) ∈
πp(SOn+1), which may be non-vanishing. However, we can “twist” the tubular
embedding ϕ by a map α : Sp → SOn−p by setting

ϕα : Sp ×Dn−p →M,

(u, v) 7→ ϕ(u, α(u)v).

Claim: If s∗ : πp(SOn−p) → πp(SOn+1) is the map induced by inclusion, then

γ(ϕα) = γ(ϕ) + s∗(α).

Note that s∗ : πp(SOn−p) → πp(SOn+1) is surjective when 2p < n. Thus we
can choose an α so that γ(ϕα) = 0 by the claim. Then the framing Φ extends and
makes χ(ϕα) a framed surgery.

For a proof of the claim, see [3, §6]. □

With these preparations, we are now able to show that homotopy groups below
middle dimension can be all killed by framed surgery, provided that the manifold
is stably parallelizable.

Proposition 5.7. Let M be a stably parallelizable connected n-manifold. By a
sequence of framed surgeries on M , one can obtain a stably parallelizable manifold
which is ([n/2]− 1)-connected.
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Proof. By Lemma 5.6, choose an embedding ϕ : S1 × Dn−1 → M representing
some λ ̸= 0 ∈ π1(M), such that χ(ϕ) is a framed surgery. Then we obtain a stably
parallelizable manifold M ′ = χ(M,ϕ) with π1(M

′) generated by fewer elements
than π1(M) by Proposition 5.4.

Here we use the fact that π1(M) is finitely generated. This is because M is a
finite CW-complex, so its π1 is mapped onto by π1 of the 1-skeleton.

Now assume that M is 1-connected. Since H2(M) ∼= π2(M) then, π2(M) is
finitely generated. Similarly by a finite number of framed surgeries, we kill π2(M).
This process goes on and the proposition follows. □

Note that the ([n/2]− 1)-connected manifold will be contractible if we could kill
the middle homotopy group as well, and this is what we want as explained before
Proposition 5.4.

Lemma 5.8. Let M be a compact n-manifold bounded by a homotopy sphere. If
M is [n/2]-connected, then M is contractible.

Proof. By Hurewicz’s theorem, Hi(M,∂M) = 0 for i ⩽ [n/2]. By the Poincaré
duality, M has homology as a point, hence homotopy type as a point. □

For this reason, we now focus on the effect of surgery on the middle dimension,
which is more delicate than the case of dimensions below the middle.

First consider the case where dimM is odd. Let M be a (k − 1)-connected
(2k + 1)-manifold where k > 1, so that πk(M) ∼= Hk(M). Let ϕ : Sk ×Dk+1 →M
be an embedding. M ′ := χ(M,ϕ) is also (k−1)-connected and has a corresponding
embedding ϕ′ : Dk+1 × Sk →M .

Let λ ∈ Hk(M) and λ′ ∈ Hk(M
′) be the classes corresponding to [ϕ|Sk×{0}] ∈

πk(M) and [ϕ′|{0}×Sk ] ∈ πk(M
′). Consider maps

·λ : Hk+1(M) → Z, ·λ′ : Hk+1(M
′) → Z

defined by taking the intersection pairing with λ, λ′.

Lemma 5.9. With settings above, there is an isomorphism

Hk(M)/ ⟨λ⟩ ∼= Hk(M
′)/ ⟨λ′⟩ .

Proof. Removing the interior of ϕ(Sk×Dk+1) from M yields a space M0. We have

M0 =M − (ϕ(Sk ×Dk+1))◦ =M ′ − (ϕ′(Dk+1 × Sk))◦.

Consider a commutative diagram

Hk+1(M
′)

Z

Hk+1(M) Z Hk(M0) Hk(M) 0

Hk(M
′)

0

·λ′

ϵ

i′∗

·λ ϵ′

i∗

λ

λ′

.
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Its row and column are exact sequences of pair (M,M0) and (M ′,M0). To see this,
by excision,

Hj(M,M0) = Hj(S
k ×Dk+1, Sk × Sk) =

{
Z, j = k + 1;
0, j ⩽ k.

Since a generator of Hk+1(M,M0) clearly has intersection number ±1 with λ which
is represented by ϕ(Sk×{0}), the map Hk+1(M) → Z can be described as µ 7→ µ·λ.
Also, it is easy to see that the element ϵ′ := ϵ′(1) ∈ Hk(M0) can be represented
by the meridian ϕ({x0} × Sk) of the torus ϕ(Sk × Sk). Since λ′ ∈ Hk(M

′) is also
represented by ϕ({x0} × Sk), we have i′∗(ϵ

′) = λ′.
Analogous descriptions hold for the column. The lemma then follows since

Hk(M)/ ⟨λ⟩ ∼= Hk(M0)/(⟨ϵ⟩+ ⟨ϵ′⟩) ∼= Hk(M
′)/ ⟨λ′⟩ .

□

Applying this lemma, we can reduce Hk(M) to its torsion subgroup, provided
that M is stably parallelizable.

Corollary 5.10. LetM be a stably parallelizable (k−1)-connected (2k+1)-manifold
where k > 1. By a sequence of surgeries, one can obtain a stably parallelizable
(k − 1)-connected manifold M ′, such that Hk(M

′) = (Hk(M))tor.

Proof. Suppose Hk(M) ∼= Z⊕r ⊕T where T = (Hk(M))tor. Let λ be a generator of
a Z-summand. By the Poincaré duality, we have µ · λ = 1 for some µ ∈ Hk+1(M)
(similar to Definition 7.1).

Now choose an embedding ϕ by Lemma 5.6, so that χ(ϕ) is a framed surgery.
By the row’s exactness in the diagram in Lemma 5.9 and that µ · λ = 1, we have
ϵ′ = 0 and hence λ′ = 0. Therefore, Hk(M

′) ∼= Hk(M)/ ⟨λ⟩.
Repeating this process, we obtain the desired manifold, whose middle homology

Hk is reduced to torsion. □

For the case of even dimensions, we have a similar diagram. Let M be a (k− 1)-
connected 2k-manifold where k > 1. Let χ(ϕ) be a surgery with ϕ : Sk ×Dk →M ,
M ′ = χ(M,ϕ). Define λ, λ′ and M0 similarly.

Lemma 5.11. With settings above, there is a commutative diagram

Z

0 Hk(M0) Hk(M) Z Hk−1(M0) 0

Hk(M
′)

0

·λ

λ

,

with the row and the column exact.

The proof is analogous. The diagram changes since the non-zero Hj(M,M0) =
Hj(S

k ×Dk, Sk ×Sk−1) shifts by one dimension. For this reason, we cannot derive
an explicit isomorphism like that in Lemma 5.9.
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6. The Group bP2k+1

In this section, we are going to show that

bPn+1 = 0, for n even.

That is to say, every even dimensional homotopy sphere that bounds a parallelizable
manifold also bounds a contractible manifold, by Lemma 3.3.

Denote n + 1 by 2k + 1. By Proposition 5.7, we have been able to make a
parallelizable (n + 1)-manifold (k − 1)-connected without changing its boundary
by framed surgeries. Then by Lemma 5.8, all we need to do now is to kill its kth

homotopy group.

Assumption 6.1. Throughout this section,M is a stably parallelizable and (k−1)-
connected (2k + 1)-manifold. The boundary ∂M is a homotopy sphere.

Using Corollary 5.10, we have been able to reduce the middle homology group
Hk(M)(∼= πk(M)) to (Hk(M))tor. Now in order to kill this torsion group, we have
to specialize further to cases where k is even or odd.

6.1. For k Even. Let M satisfy Assumption 6.1.

Lemma 6.2. If k is even, then any surgery χ(ϕ) with some ϕ : Sk ×Dk+1 → M
necessarily changes rank(Hk(M)).

The proof will be delayed until after proving the main result below.

Theorem 6.3. If a homotopy sphere of dimension 2k (with k even) bounds a
parallelizable manifold M , then it bounds a contractible manifold M ′.

Proof. First assume that M is (k − 1)-connected and Hk(M) is a finite group by
Corollary 5.10. Take a λ ̸= 0 ∈ Hk(M) and an embedding ϕ : Sk ×Dk+1 → M as
in Lemma 5.6. By Lemma 5.9, we have

Hk(M)/ ⟨λ⟩ ∼= Hk(M
′)/ ⟨λ′⟩ .

Since rank(Hk(M
′)) ̸= 0 by Lemma 6.2, ⟨λ′⟩ is infinite, so (Hk(M

′))tor is mapped
injectively into Hk(M)/ ⟨λ⟩, i.e., the torsion subgroup of Hk shrinks after surgery.
Then apply Corollary 5.10 again to kill the free part of Hk(M

′).
Repeating the process, Hk can be killed completely by a finite number of framed

surgeries. Then the theorem follows by Lemma 5.8. □

Hence we have proved that bP2k+1 = 0 for k even.
Now we turn to the proof of Lemma 6.2.

Definition 6.4. Let W be a 2r-manifold. Its semi-characteristic χ∗(∂W ) is the
mod 2 residue class

χ∗(∂W ) ≡
r−1∑
i=0

rank(Hi(∂W )) (mod 2).

We prove Lemma 6.2 by considering the semi-characteristic of the surgery trace:

Proof. Let M ′ := χ(M,ϕ) and W be the trace with dimension 2k + 2.
First suppose M is closed. Then ∂W =M ⊔M ′. Consider the exact sequence

Hk+1(W )
h→ Hk+1(W,∂W ) → Hk(∂W ) → · · · → H0(W,∂W ) → 0.
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Since Hp(W,∂W ) ∼= H2k+2−p(W ), we see that

χ∗(∂W ) ≡ rank(Imh) + χ(W ) (mod 2) (⋆)

by a rank counting. (Here χ(W ) denotes the Euler characteristic.)
Noting that W has homotopy type of M with a (k+1)-cell attached, and M has

odd dimension 2k + 1, we have

χ(W ) = χ(M) + (−1)k+1 = −1.

(k is even.) Moreover, note that rank(Imh) is none other than the rank of the
intersection form (Definition 7.1) of W , since

h⊗Q : Hk+1(W ;Q) → Hk+1(W,∂W ;Q) ∼= Hk+1(W ;Q) ∼= Hom(Hk+1(W ;Q),Q),

and rank(Imh) = dim(Im(h⊗Q)). Therefore, this rank is even since the intersection
form is skew-symmetric (k + 1 is odd).

Then by (⋆), we have χ∗(∂W ) ≡ χ∗(M) + χ∗(M ′) ≡ 1. Finally, note that
Hi(M) = Hi(M

′) = 0 for 0 < i < k, we obtain by definition of χ∗ that

rank(Hk(M)) ̸≡ rank(Hk(M
′)).

For the case where M is bounded by a homotopy 2k-sphere, we can adjoin a
cone over ∂M to obtain a closed manifold M∗ without changing homology groups
in dimensions ⩽ 2k − 1. Then the result of M∗ implies that of M . □

6.2. For k Odd. Let k be odd, M satisfy Assumption 6.1 and χ(ϕ) be a framed
surgery. Keeping the notations in the proof of Theorem 6.3, we have

Hk(M)/ ⟨λ⟩ ∼= Hk(M
′)/ ⟨λ′⟩ .

Since we do not have Lemma 6.2 this time, Hk(M) does not necessarily shrink
if λ′ has finite order. More precisely, Hk(M) shrinks iff ord(λ′) < ord(λ).

ord(λ′) does not need to be smaller, but we can twist the tubular embedding
ϕ to ϕα by a map α : Sk → SOk+1 (see the proof of Lemma 5.6) and consider
λ′α := [ϕ′α|{0}×Sk ] ∈ πk(M

′
α), where M ′

α = χ(M,ϕα) with the embedding ϕ′α :

Dk+1 × Sk →M ′
α.

Now suppose λ, λ′ have finite order l, l′. We aim to represent ord(λ′α) in terms
of l, l′ and α ∈ πk(SOk+1).

Lemma 6.5.
ord(λ′α) = |l′ − j∗(α)l|,

where j∗ : πk(SOk+1) → πk(S
k) = Z is induced by the standard map j : ρ 7→ ρ · x0.

Proof. As in the proof of Lemma 5.9, Let M0 =M − (ϕ(Sk ×Dk+1))◦ and define

• ϵ := [ϕ(Sk × {x0})] ∈ Hk(M0), the parallel of ϕ(Sk × Sk).
• ϵα := [ϕα(S

k × {x0})] ∈ Hk(M0), the parallel of ϕα(S
k × Sk).

• ϵ′ := [ϕ({x0}×Sk)](= [ϕα({x0}×Sk)]) ∈ Hk(M0), the meridian of ϕ(Sk ×
Sk) = ϕα(S

k × Sk).

It is clear that
ϵα = ϵ+ j∗(α)ϵ

′.

Now consider the relation between ϵ and ϵ′ in Hk(M0) by investigating the
diagram in Lemma 5.9. lϵ must be a multiple of ϵ′ since i∗(lϵ) = lλ = 0. This
multiple m must be divisible by l′ since i′∗(mϵ

′) = mλ′ = 0. Further, m = ±l since
we can similarly consider l′ϵ′ as a multiple of ϵ. (Note that ϵ and ϵ′ are not torsion
and hence can only satisfy one linear relation.)
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Assume that lϵ+ l′ϵ′ = 0. Since ϵα = ϵ+ j∗(α)ϵ
′, we have

lϵα + (l′ − j∗(α)l)ϵ
′ = 0.

Then by a similar argument as the preceding paragraph, we then have ord(λ′α) =
|l′ − j∗(α)l| since ord(λ) = l.

One checks that when l′− j∗(α)l = 0, λ′α will be an infinte-order element, rather
than the zero element, but we denote its order by 0 still. □

However, j∗(α) may not be able to take value of every integer, because there is
one more restriction on α: χ(ϕα) needs to be framed. By the claim in Lemma 5.6,
χ(ϕα) is framed iff the obstruction class γ(ϕα) = γ(ϕ)+s∗(α) vanishes, where γ(ϕ)
vanishes already since χ(ϕ) is framed.

In summary, we want to choose α ∈ πk(SOk+1) such that

• s∗(α) = 0, where s∗ : πk(SOk+1) → πk(SO2k+1) = πk(SO),
• 0 < |l′ − j∗(α)l| < l, i.e., ord(λ′α) < ord(λ),

Lemma 6.6. If there exists a framed surgery χ(ϕ) such that l ∤ l′, then there is an
α such that M ′

α still satisfies Assumption 6.1 but Hk(M
′
α) is smaller than Hk(M).

Proof. First we examine the kernel of s∗ : πk(SOk+1) → πk(SOk+2). Since

πk+1(S
k+1)

∂→ πk(SOk+1)
s∗→ πk(SOk+2)

is exact, Kers∗ = Im∂. Then consider the composition

Z = πk+1(S
k+1)

∂→ πk(SOk+1)
j∗→ πk(S

k) = Z,
which is ·2 provided that k is odd (by Proposition 2.16). Therefore, the range of
j∗(α) is j∗(Kers∗) = j∗(∂(Z)) = 2Z. Thus one can always choose j∗(α) such that

−l < l′ − j∗(α)l ⩽ l,

and 0 < |l′−j∗(α)l| < l unless l|l′. The lemma then follows by the argument before
it. □

All that is left is the case where l|l′ for any framed surgery χ(ϕ), and the method
for this (interpreting l|l′ as a linking number) gets even more technical. So we refer
to [1, §6] so as not to make this paper too lengthy.

Finally, one can prove the following and hence that bP2k+1 = 0 for k odd.

Theorem 6.7. If a homotopy sphere of dimension 2k (with k odd) bounds a par-
allelizable manifold M , then it bounds a contractible manifold M ′.

7. The Group bP2k

In this section, we are going to show that

bPn+1 is finite cyclic, for n odd.

Denote n+1 by 2k. The cases k = 1, 2 are trivial since Θ1,Θ3 are trivial. Thus we
may always assume that k > 2 in this section.

Similar to the previous section, we will consider the conditions under which
a parallelizable 2k-manifold M bounded by a homotopy sphere can be surgically
turned into a contractible one.

By Proposition 5.7, we have been able to make M (k − 1)-connected by framed
surgeries. A suitable condition for killing the kth homotopy group is given in Lemma
7.2 below, which is the basis of this section.
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Before stating it, let us recall the intersection form first for its importance to the
topology of an even-dimensional manifold.

Definition 7.1. The intersection form of M is the bilinear form

· : Hk(M)free ⊗Hk(M)free → Z,
i.e., the middle-dimensional intersection pairing restricted to the free part ofHk(M).

The intersection form is symmetric when k is even and skew-symmetric when k
is odd. If M is closed or bounded by a homotopy sphere, by the Poincaré duality,
the intersection form is unimodular, i.e., its matrix under a Z-basis of Hk(M)free

has determinat ±1. See [2, §3].
If in addition M is (k − 1)-connected, then Hk(M) ∼= Hk(M,∂M) ∼= Hk(M) ∼=

Hom(Hk(M),Z) is free abelian.

Lemma 7.2. Let M be a (k− 1)-connected 2k-manifold with k ⩾ 3. If Hk(M) has
a basis {λ1, ..., λr, µ1, ..., µr} where

λi · λj = 0, λi · µj = δij ,

and every embedded k-sphere representing a class in the subgroup ⟨λ1, ..., λr⟩ has a
trivial normal bundle in M , then Hk(M) can be killed by surgeries.

Remark 7.3. Such a basis {λ1, ..., λr, µ1, ..., µr} with the above condition on in-
tersection numbers is called weakly symplectic. If µi · µj = 0 in addition, the
basis is called symplectic. Note that we then have µi · λj = δij or −δij , when the
pairing is symmetric or skew-symmetric.

Proof. Any homology class in Hk(M) can be represented by an embedded sphere
according to [3, §6]. Let ϕ0 : Sk →M be an embedding representing λr. It extends
to a tubular embedding ϕ : Sk ×Dk →M by the condition on normal bundle. Let
M ′ := χ(M,ϕ) and

M0 :=M − (ϕ(Sk ×Dk))◦ =M ′ − (ϕ′(Dk+1 × Sk−1))◦.

We investigate the diagram in Lemma 5.11. First, Hk−1(M0) = 0 since ·λr is
onto Z. Then M0 and M ′ are both (k− 1)-connected by homology exact sequences
of pairs. Next, since in the diagram in Lemma 5.11

0 → Hk(M0) → Hk(M)
·λr→ Z → 0

is exact, Hk(M0) is the subgroup ⟨λ1, ..., λr, µ1, ..., µr−1⟩ of Hk(M). Then, since

Z λr→ Hk(M0) → Hk(M
′) → 0

is exact, Hk(M
′) is the quotient Hk(M0)/ ⟨λr⟩ =

〈
λ1, ..., λr−1, µ1, ..., µr−1

〉
. The

rank of Hk(M
′) shrinks, but we still need to check that its basis satisfies the con-

dition in the lemma.
Since λi, µj come from classes in Hk(M0), they are weakly symplectic. If an

embedding ψ : Sk → M ′ represents some class in
〈
λ1, ..., λr−1

〉
. ψ(Sk) can always

be deformed to be disjoint with ϕ′({0} × Sk−1) so represent a class in ⟨λ1, ..., λr⟩
in Hk(M0). Thus it has a trivial normal bundle. □

There are two conditions needed to apply this lemma:

• Hk(M) admits a weakly symplectic basis.
• Embeddings representing

∑
niλi have trivial normal bundles.
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For k even, there is one obstruction to finding a (weakly) symplectic basis. If
one obtains the desired basis, the normal bundles are automatically trivial.

For k odd, the symplectic basis always exists due to the skew-symmetry. Trivi-
ality of normal bundles requires one more condition.

7.1. For k Even. Let k be even. Since the intersection form on Hk(M) is sym-
metric, an important invariant arises: the signature σ(M). We are going to prove
that σ(M) is the only obstruction to surgically making M contractible.

We sometimes denote k by 2m in this subsection.

Proposition 7.4. The signature of a 4m-manifold, which is closed or bounded by
a homotopy sphere, is invariant under surgery.

Proof. For closed manifolds, it follows from Hirzebruch’s signature theorem that
the signature is a cobordism invariant (since it is a Pontryagin number). Then
Theorem 5.3 implies the proposition.

For manifolds bounded by a homotopy sphere, one adjoins a cone over the bound-
ary to obtain a closed manifold, without changing the intersection form and hence
the signature. □

To apply Lemma 7.2, we need one more lemma which relates the self-intersection
with normal bundle, in the 4m-dimensional case.

Lemma 7.5. Let M be a stably parallelizable 2k-manifold with k even. Let f :
Sk → M be an embedding which represents a class λ ∈ Hk(M). Then the normal
bundle of f(Sk) is trivial iff its self-intersection number λ · λ is 0.

Proof. Since N(f(Sk)) is stably trivial, N(f(Sk)) ⊕ ϵ1 is trivial by Lemma 2.5.
Denote f(Sk) by Sk. We have NSk ∈ πk−1(SOk) lies in Keri∗, where

πk(S
k) πk−1(SOk) πk−1(SOk+1)

πk−1(S
k−1)

∂ i∗

j∗
2

.

By Proposition 2.16, j∗ ◦ ∂ = 2. Thus j∗ is injective when restricted to Im∂, and
hence NSk is trivial iff j∗(NS

k) = 0. Further, as mentioned in Proposition 2.16,
j∗(NS

k) = e(NSk)[Sk], where e(NSk) is the Euler class. So in summary,

Nf(Sk) is trivial iff e(Nf(Sk))[f(Sk)] = 0.

However, one sees that e(Nf(Sk))[f(Sk)] is equal to the self-intersection number
[f(Sk)] · [f(Sk)], using the fact that e(Nf(Sk)) is the Poincaré dual of [f(Sk)]
restricted to f(Sk). The lemma then follows. □

From the proof, we see additionally that for any class λ ∈ Hk(M), the self-
intersection number λ · λ is always even. This leads to the following.

Lemma 7.6. Let M be a stably parallelizable 2k-manifold with k even. If the
signature σ(M) = 0, then there exists a symplectic basis of Hk(M)free with respect
to the intersection form.

Proof. Algebraic fact: on Z⊕r, every unimodular even (i.e., every self-pairing is
even) symmetric bilinear form with signature 0 admits a symplectic basis.

The proof is essentially a Schmidt orthogonalization. See [3, §6]. □
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With all ingredients for Lemma 7.2 prepared, we are now ready to prove that
the signature is the only obstruction to killing the kth homotopy group.

Proposition 7.7. Let M be a parallelizable 2k-manifold bounded by a homotopy
sphere, where k ⩾ 4 and is even. M can be modified into a contractible manifold
by a sequence of framed surgeries iff σ(M) = 0.

Proof. By Proposition 7.4, we only need to suppose that σ(M) = 0 and prove that
M can be made k-connected by a sequence of surgeries.

Assume that M is (k − 1)-connected so that Hk(M) is free abelian. Take a
symplectic basis. Lemma 7.5 allows us to apply Lemma 7.2 to makeM k-connected
and consequently contractible by surgeries.

By the claim in Lemma 5.6, we can require these surgeries to be framed since
s∗ : πk(SOk) → πk(SO) is surjective when k is even. □

All the discussion above focuses on the zero element of bP4m, which bounds a
contractible manifold. Now we turn to the whole group bP4m.

Note that the connected sum of framed manifolds can also be framed as in the
proof of the claim in Proposition 4.3 (combine Corollary 2.7). Thus the range of
signatures of parallelizable 4m-manifolds bounded by a homotopy sphere, denoted
by σ(P4m), is a subgroup of Z, by connected sum along boundary.

Assume thatm ⩾ 2. A topological construction in [1, §7] shows that σ(P4m) ̸= 0:

Lemma 7.8. There exists a parallelizable 4m-manifold M0 whose boundary is the
standard S4m−1, such that σ(M0) is non-zero.

Let σm > 0 denote the generator of the range group σ(P4m) ⊂ Z. Define a map

q : Z → bP4m,

t 7→ [∂M ],

where M is a parallelizable 4m-manifold bounded by a homotpy sphere, which has
signature tσm. [·] denotes the h-cobordism class.

Lemma 7.9. Let q be the map defined above.

(1) q is well-defined.
(2) q is a group homomorphism.
(3) q is surjective with non-trivial kernel.

Proof. (1) If M1,M2 are parallelizable 4m-manifolds with the same signature tσm,
whose boundaries are homotopy spheres, then the connected sum along boundary
M1♮M2 has boundary V := ∂M1♯∂M2, a homotopy sphere.

Since the intersection form, and hence the signature are additive with respect to
connected sum, we have σ(M1♮M2) = 0. Thus by Proposition 7.7, M1♮M2 can be
modified into a contractible manifold with boundary V . Thus V is h-cobordant to
the standard S4m−1 and then [∂M1] = [∂M2].

(2) This follows from σ(M1) + σ(M2) = σ(M1♮M2).
(3) The surjectivity is trivial. The kernel is non-trivial by Lemma 7.8. □

Thus by the preceding lemma, we have proved the following.

Theorem 7.10. bP4m is a finite cyclic group.
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7.2. For k Odd. Let k be odd. Since the intersection form on Hk(M) is now
skew-symmetric, the symplectic basis always exists:

Proposition 7.11. Let M be a 2k-manifold with k odd. Then there always exists
a symplectic basis of Hk(M)free with respect to the intersection form.

Proof. This is similar to Lemma 7.6 but easier: on Z⊕r, every unimodular skew-
symmetric bilinear form admits a symplectic basis. □

Corollary 7.12. The groups bP2, bP6, bP14 are zero.

Proof. We only consider bP6 and bP14. For a parallelizable manifold M bounded
by a homotopy sphere with dimension 2k = 6 or 14, first assume that M is (k− 1)-
connected.

To apply Lemma 7.2, the symplectic basis exists already. Since π2(SO3) =
π6(SO7) = 0 by Proposition 2.17, any 3-bundle over S3 or 7-bundle over S7 is
trivial. Hence the triviality of normal bundles is also satisfied. Thus M can be
modified into a contractible one by Lemma 7.2. □

For general k odd, the normal bundles are not necessarily trivial. The Kervaire
invariant comes up in determining the triviality.

Let M be a parallelizable (4m + 2)-manifold bounded by a homotopy sphere.
The Kervaire invariant c(M) is an element in Z2 satisfying

• c is additive with respect to connected sum.
• M can be made contractible by framed surgeries iff c(M) = 0.

I am not able to give details due to space reasons. See [2, §4]. Finally, one can
use the above properties to prove the following.

Theorem 7.13. bP4m+2 is either 0 or Z2.

8. Examples and Further Results

Since a homotopy sphere is a topological sphere and h-cobordant spheres are the
same as diffeomorphic spheres for n ⩾ 5, the group Θn(n ⩾ 5) is just the group
of smooth structures on a topological sphere under connected sum. Therefore we
have proved the following.

Theorem 8.1. For n ̸= 4, the number of smooth structures on the topological
n-spheres is |Θn|, which is finite.

Here we list some examples of Θn. Recall that we have an injection

Θn/bPn+1 ↪→ CokerJ.

The study of the J-homomorphism gives us the order of CokerJ in low dimensions
as follows: (from [4])

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|πS

n/ImJ | 1 2 1 1 1 2 1 2 4 6 1 1 3 4 2 2

The triviality of CokerJ in some dimensions can be deduced from the triviality
of the stable homotopy groups of spheres πS

n , e.g., n = 4, 5, 12.

• Θ1,Θ2,Θ3 = 0.
As we have mentioned at the end of Section 3, these are trivial group 0.

• Θ4,Θ12 = 0.
Θ4/bP5 = 0 since CokerJ = 0; bP5 = 0 since 5 is odd. Θ12 is similar.
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• Θ5 = 0.
Θ5/bP6 = 0 since CokerJ = 0; bP6 = 0 by Corollary 7.12.

[2] contains some further material on explicit computation of Θn, which its author
Levine believes would have appeared in the sequel of [1]. The remaider of this
section is some further results from it and more recent papers ([10]).

Proposition 8.2. The group bP4m (m ⩾ 2) has order

22m−2(22m−1 − 1)B,

where B is the numerator of 4B2m/m, and B2m is a Bernoulli number.

• Θ7 = 28, Θ11 = 992.
Θ7/bP8 = 0 since CokerJ = 0; bP8 = 28 by the proposition above. Θ11

is similar.

Proposition 8.3. The group bP4m−2 has order

|bP4m−2| =

 0, m = 1, 2, 4, 8, 16;
0 or 2, m = 32;
2, otherwise.

The next result says that CokerJ ↪→ Θn/bPn+1 is not far from an isomorphism.

Proposition 8.4. The index of the injection is

[CokerJ : Θn/bPn+1] =

 2, n = 2, 6, 14, 30, 62;
1 or 2, n = 126;
1, otherwise.

• Θ6 = 1, Θ8 = 2, Θ9 = 8, Θ10 = 6.
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