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Abstract. In this paper, we will present a proof of Riemann-Roch Theorem

for compact Riemann surfaces. The proof roughly follows Forster in [3]. The

main reference for the part about Čech Cohomology is Mumford and Oda’s

notes [4].
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1. Introduction

The Riemann surface is an interesting object, for it allows study from both geo-
metric and algebraic perspectives. For geometry, we study its manifold structure,
and for algebra, its vector space of functions. The Riemann-Roch Theorem demon-
strated this dual aspect of the Riemann surfaces. For a compact Riemann surface
X, the theorem gives a relation between the “genus” (geometric information) of X,
and the vector space of meromorphic functions (algebraic information) on X, as in
the following equation.

(1.1) dim(L(D))− dim(L(K −D)) = 1− g + deg(D).

In this equation, g is the genus of X, which refers roughly to the number of
“holes” of a surface, and L(D) and L(K−D) both refer to certain subspaces of the
C-vector space of meromorphic functions on X. In this sense, the Riemann-Roch
Theorem is a bridge between algebra and geometry.

Also, D and K −D are both divisors, which are finite formal sums of points of
X. This means that L(D) and L(K −D) can be viewed as ‘local” information of
X, because D and K−D concern only finitely many points of X, which means that
L(D) and L(K − D) can be studied in an open set containing the finitely many
points. On the other hand, the genus is a kind of “global” information of X. From

Date: Jan 28, 2023.

1



2 RUOHAN HU

this perspective, the Riemann-Roch Theorem is a bridge in another sense: between
local and global information of a Riemann surface.

While (1.1) is the normal statement of Riemann-Roch Theorem (as in [7]), we
will cover only the following version of the theorem in this paper. This version of
the theorem is stated in [3].

Theorem 1.2. For a compact Riemann surface X, we have the following equation.

dim(Ȟ0(X,OD))− dim(Ȟ1(X,OD)) = 1− g + deg(D)

The meaning of OD and Ȟn will be revealed in this paper. We will first take
the formal perspective: we introduce the concept of sheaves and cohomology of
sheaves. Then, we take the concrete perspective: we introduce the concept of
Riemann surfaces, divisors and the sheaf associated to a divisor. Finally, we will
present a proof combining the two strands of thoughts.

2. Sheaves

Definition 2.1 (Presheaves). A presheaf of abelian groups over a topological space
X is a contravariant functor F : C(X) → Ab. The category C(X) refers to the
category of open sets of X and inclusion maps between them. Ab is the category
of abelian groups. For inclusion map iV U : V → U between two open sets, we refer
to F(iV U ) : F(U) → F(V ) as ρUV . These homomorphisms of the form ρUV are
called the restriction morphisms. Sometimes given s ∈ F(V ), we would refer to
ρUV (s) ∈ F(U) as s|U .

A morphism of presheaves between the two presheaves F ,G : C(X) → Ab is a
natural transformation f : F → G. In other words, a morphism of presheaves is a
set of group homomorphisms f(U) : F(U) → G(U) such that these homomorphisms
commute with the restriction morphisms.

Definition 2.2 (Sheaves). A sheaf of abelian groups over X is a presheaf F satis-
fying:

(1) (locality) given an open set V ⊆ X and an open cover {Ui} of V , then for
s, t ∈ F(V ), if s|Ui

= t|Ui
for each i, then s = t;

(2) (gluing) if there exists si ∈ F(Ui) for each i, such that si|Ui ∩ Uj = sj |Ui∩Uj ,
then there exists s ∈ V such that s|Ui

= si. s constructed by gluing is
unique by (a).

A morphism of sheaves is the same as a morphism of presheaves.
The category of sheaves over X is denoted as Sh(X).1

Example 2.3 (Skyscraper sheaf). For X a topological space and p ∈ X, define
Cp, the skyscraper sheaf with value C centered at p as follows.

Cp(U) =

{
C p ∈ U
0 p ̸∈ U

For ρUV , when p ∈ U ⊆ V , ρUV = idC. In the other case, the restriction
morphism is the zero morphism.

1To be sure, while we have defined only sheaves and presheaves of abelian groups, there are

also sheaves and presheaves of other types, such as sheaves of rings or sets. To define them, we

simply replace Ab in the definition with the category of rings or the category of sets. In this
paper, when we use the word “sheaf” or “presheaf,” we refer only to a sheaf or presheaf of abelian

groups.
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On a literal level, our definition of sheaves states the concept as a way of asso-
ciating algebraic data with the open sets, such that “local” data can be glued into
global data. In comparison, the idea of “point” is absent in the definition of sheaf.
The concept of stalk provides a way to organize algebraic data associated with a
single point.

Definition 2.4 (Stalks). The stalk of F at p ∈ X is the direct limit of all F(U)
(p ∈ U) and morphisms ρUV (p ∈ V ⊆ U).2 It is denoted as

Fp := lim−→
p∈U

F(U)

The stalk at p ∈ X encodes the ”local” properties at p, with ”local” meaning
that the property can be studied in an arbitrarily small neighborhood of p.

Example 2.5. The stalk of Cp at point x is as follows:

(Cp)x =

{
C x = p
0 x ̸= p

.

Also, a sheaf morphism f : F → G would induce a homomorphism on stalks
fp : Fp → Gp, in the following way.

Definition 2.6. Given a sheaf morphism f : F → G, there is an induced homo-
morphism on stalks fp : Fp → Gp, which is defined as follows. For each open
neighborhood U of p, we have the following diagram.

F(U)
f(U) //

cU

��

G(U)

dU

��
Fp

fp

// Gp

In the diagram, cU : F(U) → Fp and dU : G(U) → Gp for each U (p ∈ U) are the
morphisms composing the colimit cones, respectively. {dU ◦f(U) : F(U) → GU}p∈U
would also constitute a cone around Gp, so by the universal property of colimit, there
is the dotted morphism fp making the above diagram commute for each U .

Now, temporarily moving away from the stalks, we try to make sense of an exact
sequence in the category of sheaves. We know that an exact sequence of abelian
groups refers to a sequence of abelian groups and group morphisms

... −→ Ai−1
fi−→ Ai

fi+1−−−→ Ai+1 −→ 0

such that for each i, im(fi) = ker(fi+1). Therefore, to define an exact sequence of
sheaves, we first define kernel and image for a morphism of sheaves (or presheaves).

Definition 2.7. Given a presheaf morphism f : F → G, the presheaf kernel of ϕ
is defined as the presheaf ker(ϕ) given by U 7→ ker(f(U)), and the presheaf image
is defined as the presheaf im(f) defined as U 7→ im(f(U)).

It is easy to verify that ker(f) and im(f) are presheaves. Using this definition,
we can define the exact sequences of presheaves.

2There is a more concrete definition of stalk, as the set of equivalent classes over ordered pairs
of open set U and elements x ∈ F (U), but since we adopt the formal viewpoint on the section of

sheaves, we should refrain from such concreteness.
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Definition 2.8 (Exact Sequence of Presheaves). A sequence of presheaves and
presheaf morphism

... −→ Fi−1
fi−→ Fi

fi+1−−−→ Fi+1 −→ ...

is an exact sequence of presheaves when im(fi) = ker(fi+1) for each i.
Equivalently, the sequence is an exact sequence of presheaves, when the following

sequence of abelian groups is exact for each U .

... −→ Fi−1(U)
fi(U)−−−→ Fi(U)

fi+1(U)−−−−−→ Fi+1(U) −→ ...

Now, since we have defined exact sequences of presheaves, this definition would
also apply to sequences of sheaves. The problem with applying this definition to
sequences of sheaves is that, according to [1], when f : F → G is a morphism
between two sheaves, while ker(f) is a sheaf, im(f) is not necessarily a sheaf. This
would mean that we would not be able to make sense of the exact sequence within
the category of sheaves.

The best way to solve this problem is to “make” im(f) into a sheaf. For this
purpose, we introduce the sheafification of a presheaf.

Proposition 2.9. When F is a presheaf, there is an associated sheaf F+ and an
associated morphism h : F → F+ such that for every sheaf G, there is a bijection
Hom(F+,G) ∼= Hom(F ,G) given by composition with a unique morphism h : F →
F+. F+ is called the sheafification of F .

(The construction of sheafification is not related to our discussion, so we omit
it. One can refer to [1, II, Proposition 1.2] for an explicit construction.)

Thus, we can define the sheaf image of a sheaf morphism (compared to the
presheaf image), and exact sequence of sheaves (compared to exact sequence of
presheaves).

Definition 2.10 (Exact Sequence of Sheaves). Given a sheaf morphism f : F → G,
we define the sheaf image as the sheafification of the presheaf image. The sheaf
image is denoted as Im(f).

The following sequence is an exact sequence of sheaves

... −→ Fi−1
fi−→ Fi

fi+1−−−→ Fi+1 −→ ...

when for every i, ker(fi+1) = Im(fi).

We can see that the concept of an exact sequence of sheaves is weaker than an
exact sequence of presheaves. This difference has to be noted in our discussions
of Čech Cohomology. This is because while exact sequence of presheaves has bet-
ter properties, most exact sequences of sheaves that we care about are not exact
sequences of presheaves.

Since we want to avoid the construction of sheafification, we look a simpler
criterion for exactness. Preferably, we wish for a criterion that can be computed
with the information we have at hand. For example, when we work with manifolds,
generally we carry out our computation on the charts, which form a basis on the
manifold. Thus, we conjecture that if a sequence of sheaves is exact on the basis,
then the sequence is an exact sequence of sheaves. This turns out to be true, but
we would need two more lemmas to prove this.
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Lemma 2.11. For a sequence of sheaves,

... −→ Fi−1
fi−→ Fi

fi+1−−−→ Fi+1 −→ ...

the sequence is an exact sequence of sheaves, iff for each point p ∈ X, the following
sequence of stalks at p is an exact sequence of abelian groups.

... −→ (Fi−1)p
fi−→ (Fi)p

fi+1−−−→ (Fi+1)p −→ ...

Proof. See [1, II, Exercise 1.2]. □

Lemma 2.12. The direct limit preserves short exact sequences. In other words, Let
D be a directed set viewed as a category. (A directed set is a set with a preorder such
that every pair of elements have an upper bound.) Let there be functors F ,G,H :
D → Ab, and natural transformations f : F → G and g : G → H. If the following
sequence is an SES for each U ∈ Obj(D),

0 −→ F(U)
f(U)−−−→ G(U)

g(U)−−−→ H(U) −→ 0

then,

0 −→ lim−→F f ′

−→ lim−→G g′−→ lim−→H −→ 0

is also an SES, with the morphisms f ′ and g′ naturally induced from f and g, as
in Definition 2.6.

Proof. [6, Proposition 5.33] □

Proposition 2.13 (Criterion for SES of Sheaves to be Used in Section 5). Let
F ,G,H be sheaves over a topological space X, and f : F → G and g : G → H be
sheaf morphisms. Let B be a basis of X. If for every open set U ∈ B,

0 −→ F(U)
f(U)−−−→ G(U)

g(U)−−−→ H(U) −→ 0

is an SES, then for every p ∈ X

0 −→ Fp
fp−→ Gp

gp−→ Hp −→ 0

is also an SES. Consequently, by Lemma 2.11,

0 −→ F f−→ G g−→ H −→ 0

would be an SES of sheaves.

Proof. Fix p ∈ X. Then, because the local basis around p, {U open|p ∈ U ∈ B} is
a directed set (ordered by reversed inclusion), by Lemma 2.12, we have an SES

0 −→ lim−→
p∈U∈B

F(U)
f ′

−→ lim−→
p∈U∈B

G(U)
g′−→ lim−→

p∈U∈B

H(U) −→ 0.

with induced morphisms f ′ and g′. We try to prove that this short exact sequence
of abelian groups is identical with our desired sequence of abelian groups,

0 −→ Fp
fp−→ Gp

gp−→ Hp −→ 0

so that this sequence of abelian groups is an SES.
We first prove that lim−→p∈U∈B

F(U) = Fp. Let L = lim−→p∈U∈B
F(U). We shall

prove that L satisfies universal property of Fp. Let {dU : F(U) → L}p∈U∈B be the
universal cone around L.
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For every cone {cU : F(U) → A}p∈U around an abelian group A, by the universal
property of L, there is a unique map u : L → A such that we have the following
identity for each p ∈ U ∈ B:

cU = u ◦ dU
Now, define another cone around L: for each open set U such that p ∈ U , select

open subset B(U) ⊆ U such that p ∈ B(U) ⊆ B. Then we have a set of map

{d′U : F(U) → L : d′U = d′B(U) ◦ ρU,B(U)}p∈U .

We can verify easily that (1) the morphisms {d′U} constitute a cone, i.e. these
morphisms commute with the restriction morphisms; (2) dU = d′U when U ∈ U;
and (3) the cone {d′U} does not depend on the selection of B(U). Then, for every
U such that p ∈ U ,

cU = cB(U) ◦ ρU,B(U) = u ◦ dB(U) ◦ ρU,B(U) = u ◦ d′U
Thus, {d′U}p∈U is a universal cone around Fp, so L = Fp, i.e. lim−→p∈U∈B

F(U) =

Fp. The same applies to G and H.
Finally, we prove that f ′ = fp and g′ = gp. By the construction of f ′, we know

that f ′ is the unique morphism making the following diagram commutes for every
U ∈ U.

F(U)
f(U) //

cU

��

G(U)

dU

��
lim−→U∈U

F(U)
f ′

// lim−→U∈U
G(U)

By the construction of fp, if we put fp in the place of the dotted arrow, then
the diagram would commute as well. Then, because f ′ is unique, we have f ′ = fp.
Similarly we have g′ = gp. Thus, we have the following SES:

0 −→ Fp
fp−→ Gp

gp−→ Hp −→ 0.

□

As a side note, the approach on the above proposition, i.e. understanding the
entire sheaf through the partial data on a basis, is called the “sheaf on a basis,”
which is described more thoroughly in the Section 2.5 of [?, vaki]

3. Čech Cohomology

Definition 3.1 (Čech complex). Given a sheaf F over X and a fixed open cover
U = {Ui}i∈I (I being a totally ordered set of indices) of X, define the Čech complex
as a cochain complex of abelian group: for each n ≥ 0,

Cn(U,F) =
∏

i0<...<in

F(Ui0 ∩ ... ∩ Uin)

For each n ≥ 0, the boundary map dn : Cn(U,F) → Cn+1(U,F) is defined as

dn(s)i0,...,in+1 =

n+1∑
j=0

(−1)jsi0,...,ij−1,ij+1,...,in+1 |∩n+1
k=0Uik

.

It is easy to verify that for each n, Im(dn) ⊆ ker(dn+1).
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Define the n-th Čech cohomology group with respect to U as:

Ȟn(U,F) = ker(dn)/Im(dn−1).

Specially, Ȟ0(U,F) = ker(d0).

Now, we define the “standard” Čech cohomology, which does not require fixing
an open cover, as the colimit of all Ȟn(U,F) for all open covers of X. In order for
the colimit to make sense, we need to make the open covers of X a category, and
make Ȟn(·,F) a functor.

Let the open covers of X be partially ordered by refinement (i.e. U ≤ V when U
is a refinement of V, i.e. each element of U is an open subset of an element of V).
Consider the poset of open covers as a category. By [4], for each pair of open covers
U ≤ V, there is a canonical map Ȟn(V,F) → Ȟn(U,F). Thus, Ȟn(·,F) becomes
a contravariant functor, so it make sense to take the colimit of all Ȟn(U,F). We
can define the Čech cohomology groups as follows.

Definition 3.2. For a sheaf F over a topological space X, we define the n-th Čech
cohomology groups Ȟn(X,F) as follows:

Ȟn(X,F) := lim−→
U

Ȟn(U,F).

Now, to better understand the concept, we compute some examples of Čech
cohomology groups. We first have a general fact about Ȟ0.

Lemma 3.3. For any sheaf O over a topological space X, O(X) ∼= Ȟ0(X,O).

Proof. Given an open cover U = {Ui}i∈I , define f : O(X) → C0(U,O) as f(s) =
(s|Ui)i∈I . Then, f(s) ∈ ker(d0). Thus, f can be seen as a group homomorphism f :
O(X) → Ȟ0(X,O). Given (si)i∈I ∈ ker(d0), then by gluing there is f(t) = (si)i∈I ,
so f is surjective. Also, assume that f(s) = 0 for s ∈ O(X), then s|Ui

= 0, so by
the definition of sheaf, we have s = 0, so f injective. Thus we have an isomorphism
O(X) ∼= H0(U,O) for every open cover U. Then, by the definition of colimits,
H0(X,F) = O(X). □

In Example 2.3, we defined the skyscraper sheaf Cp. Here we shall compute its

Čech cohomology groups in the following lemma, which is going to be extremely
useful in the proof of Riemann-Roch Theorem.

Lemma 3.4. Ȟ0(X,Cp) = C; Ȟ1(X,Cp) = 0.

Proof. First, we already know Ȟ0(X,Cp) = Cp(X) = C by the above lemma.

Then we deal with Ȟ1(X,Cp). Let U be an open cover of X. Then, there is B a
refinement of U such that only one open set in B contains p. (B can be constructed
by removing p from every element of U and then adding a neighborhood of p.) Then,
let s ∈ ker(d1) ⊆ C1(B,Cp). Then, s = 0, because every Cp(Bi ∩ Bj) = 0 for

i < j. Thus, C1(B,Cp) = 0 = Ȟ1(B,Cp). Now because every U has a refinement

B such that C1(B,Cp) = Ȟ1(B,Cp) = 0, using the definition of colimits, we have

thatȞ1(X,Cp) = 0. □

Shifting away from examples, we now consider some key properties of the Čech
complex and cohomology groups.

Lemma 3.5. Cn(U, ·) defines a functor Sh(X) → Ab, and the functor maps short
exact sequences of presheaves to short exact sequences of abelian groups.
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Proof. For a sheaf morphism f : F → G, we can construct Cn(U, f) : Cn(U,F) →
Cn(U,G) canonically from the natural morphisms f(U) : F(U) → G(U). Cn(U, f)
is constructed as the dotted arrow that makes the following diagram commute for
each n+ 1-tuple of indices i0, ..., in. This arrow exists by the universal property of
product.

Cn(U,F)
Cn(U,f) //

π

��

Cn(U,G)

π

��
F(

⋂n
k=0 Uik)

f(
⋂n

k=0 Uik
)
// G(

⋂n
k=0 Uik)

For preservation of SES, assume 0 −→ F f−→ G g−→ H −→ 0 to be an SES of
presheaves. Since the sequence is exact on each open set, we have an SES for each
(n+ 1)-tuple of indices i0, ..., in:

0 −→ F(Ui0 ∩ ... ∩ Uin)
f−→ G(Ui0 ∩ ... ∩ Uin)

g−→ H(Ui0 ∩ ... ∩ Uin) −→ 0.

Thus, we have the following SES:

0 −→
∏

i0,...,in∈I
F(Ui0 ∩ ... ∩ Uin)

f−→
∏

i0,...,in∈I
G(Ui0 ∩ ... ∩ Uin)

g−→

g−→
∏

i0,...,in∈I
H(Ui0 ∩ ... ∩ Uin) −→ 0

.

□

Now, given that for each n, we have the SES 0 −→ Cn(U,F)
f−→ Cn(U,G)

g−→
Cn(U,H) −→ 0, our instinct leads us to question whether these SESs commute with
the boundary map d. The answer is yes, because d : Cn(U, ·) → Cn+1(U, ·) as
defined above is a natural transformation.

Lemma 3.6. d : Cn(U, ·) → Cn+1(U, ·) is a natural transformation, so the SES

0 −→ Cn(U,F)
f−→ Cn(U,G)

g−→ Cn(U,H) −→ 0 commutes with d.

Proof. Given a sheaf morphism f : F → G, it can be checked easily that the
following diagram commutes:

Cn(U,F)
Cn(U,f) //

dF

��

Cn(U,G)

dG

��
Cn+1(U,F)

Cn+1(U,f)
// Cn+1(U,G)

Thus, d is a natural transformation. Then, for an SES 0 −→ F f−→ G g−→ H −→ 0, we
have the following commutative diagram.

0 // Cn(U,F)

d

��

Cn(U,f) // Cn(U,G)

d

��

Cn(U,g) // Cn(U,H)

d

��

// 0

0 // Cn+1(U,F)
Cn+1(U,f) // Cn+1(U,G)

Cn+1(U,g) // Cn+1(U,H) // 0
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□

Having the commutative diagram above, we can apply the zig-zag lemma, so
that we have the following long exact sequence (LES).

(3.7)

0 −→ Ȟ0(U,F) −→ Ȟ0(U,G) −→ Ȟ0(U,H)
δ−→

−→ Ȟ1(U,F) −→ Ȟ1(U,G) −→ Ȟ1(U,H)
δ−→

−→ Ȟ2(U,F) −→ Ȟ2(U,G) −→ Ȟ2(U,H)
δ−→ ...

Now by [4, Ch. VII, Sec. 1], we can pass the LES (3.7) to the colimit, so we
have the following theorem.

Theorem 3.8. For sheaves F ,G,H over X, and an SES of presheaves 0 → F →
G → H → 0, we have the following LES of abelian groups.

0 −→ Ȟ0(X,F) −→ Ȟ0(X,G) −→ Ȟ0(X,H)
δ−→

−→ Ȟ1(X,F) −→ Ȟ1(X,G) −→ Ȟ1(X,H)
δ−→

−→ Ȟ2(X,F) −→ Ȟ2(X,G) −→ Ȟ2(X,H)
δ−→ ...

The above LES is key in the proof of Riemann-Roch Theorem. Using this
LES, we are able to compute the dimension of cohomology groups Ȟ0(X,OD)
and Ȟ1(X,OD) (as C-vector spaces).

However, Theorem 3.8 holds only for SES of presheaves, and we wish to have the
above LES also for SES of sheaves. To this purpose, we can add more limitations
to the premises of the theorem. According to [4, Ch. VII, Sec. 1], we have the
following altered version of Theorem 3.8.

Theorem 3.9. When X is a paracompact Hausdorff space, F ,G,H are sheaves
over X, and when 0 → F → G → H → 0 is an SES of sheaves, we have the LES
of abelian groups stated in Theorem 3.8.

As a side note, [3] states another altered version of Theorem 3.8, which can also
satisfy our purpose, even though this theorem provides only part of the original
LES.

Theorem 3.10. When X is any topological space, F ,G,H are sheaves over X,
and when 0 → F → G → H → 0 is an SES of sheaves, we have the following LES
of abelian groups.

0 −→ Ȟ0(X,F) −→ Ȟ0(X,G) −→ Ȟ0(X,H)
δ−→

−→ Ȟ1(X,F) −→ Ȟ1(X,G) −→ Ȟ1(X,H)

Proof. [3, Theorem 15.12]. □

4. Riemann Surface and Divisors

Having established the basic results of Čech Cohomology on sheaves in general,
now we apply these result to the specific sheaves in concern, namely the sheaves of
holomorphic or meromorphic functions on a Riemann surface. We first define these
geometric concepts. We follow the definitions of [5] and [3].
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Definition 4.1. Let U be an open subset of C. A holomorphic function f : U → C
is a complex differentiable function. A holomorphic function is locally equal to its
Taylor series, i.e. for each z0 ∈ U , there is an open disc D ⊆ U centered at z0 such
that for every z ∈ D,

f(z) =

∞∑
i=0

ai(z − z0)
i.

A holomorphic function f : U → C has a zero of order n at z0, when there exists
a holomorphic function g : U → C such that f(z) = g(z)(z − z0)

n on an open
neighborhood of z and g(z0) ̸= 0. Notice that we do not consider f to have a zero
of any finite order, when f is constantly 0 at a neighborhood of z0.

Suppose z0 ∈ C and D is an open neighborhood of z0. Suppose there is a
holomorphic function f defined on D − z0. We say that z0 is a pole of order n of
f when f is locally equal to a Laurent series with finitely many terms of negative
power, and the lowest power being −n. In other words, for z ∈ D − z0,

f(z) =

∞∑
i=−n

ai(z − z0)
i,

where a−n ̸= 0.
We call the function f : U → C∪ {∞} a meromorphic function, if f is holomor-

phic on U − f−1(∞), and f−1(∞) is a set of isolated points, and each z ∈ f−1 is
a pole. (V ⊆ U is a set of isolated points when for every point x ∈ V , there is an
open neighborhood of x disjoint from V − {x}.)

For a meromorphic function f , we define the following notation.

ordp(f) =


n f has a zero of order n at x
−n f has a pole of order n at x
+∞ f is constantly 0 at a neighborhood of x
0 otherwise

Definition 4.2. A complex n-manifold is a topological space X admitting a
cover by coordinate charts ϕ : U → V ⊆ Cn such that ϕ is an homeomorphism,
and U, V are open subsets of X and Cn respectively.

A complex structure of X is an equivalent class of atlases on X. An atlas on
X is a set of coordinate charts that cover M such that each transition map is
biholomorphic (i.e. is holomorphic and bijective, and has a holomorphic inverse).
Two atlases are equal if their union is also an atlas.

A Riemann surface is a pair (X,A), where X is a connected complex 1-manifold,
and A is a complex structure.

Definition 4.3. For X a Riemann surface and an open subset V ⊆ X, a function
f : U → C is holomorphic at a point x, when there is a chart (U, ϕ) (x ∈ U) such
that f ◦ ϕ−1 : ϕ(U) → C is holomorphic on ϕ(x). f is meromorphic when f ◦ ϕ−1

is holomorphic except at some isolated points.

The operator ordp(f) contains key information about meromorphic functions by
reflecting the order of poles and zeros of f , so it is natural to extend this operator
to meromorphic functions over Riemann surface by coordinate chart. We still need
to check that ordp(f) is independent of the choices of coordinate charts around a
point p.
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Proposition 4.4. For two coordinate charts (U, ϕ) and (V, ψ) around p, we have

ordϕ(p)(f ◦ ϕ−1) = ordψ(p)(f ◦ ψ−1).

Proof. Let t : ϕ(U∩V ) → ψ(U∩V ) be the transition map. Let z0 = ϕ(p), a0 = ψ(p).
Because t(z0) = a0, t is defined as follows in a neighborhood around z0.

t(z) = a0 +

∞∑
i=1

ai(z − z0)
i

Let n = ordψ(p)(f ◦ ψ−1). Then, in a neighborhood around z0, we have

(f ◦ ψ−1)(z) =

∞∑
i=n

bi(z − a0)
i.

Thus, we have:

(f ◦ ϕ−1)(z) = (f ◦ ψ−1 ◦ t)(z)

=

∞∑
i=n

bi

a0 + ∞∑
j=1

aj(z − z0)
j

− a0

i

=

∞∑
i=n

bi

 ∞∑
j=1

aj(z − z0)
j

i

= bna
n
1 (z − z0)

n + ....

Thus, we conclude that ordϕ(p)(f ◦ ϕ−1) = n = ordψ(p)(f ◦ ψ−1). □

Thus, we have defined ordp(f) for meromorphic function on a Riemann surface.
ordp(f) also have the following two properties, according to [7].

Proposition 4.5. For meromorphic functions f and g on a compact Riemann
surface X, we have:

ordp(fg) = ordp(f) + ordp(g)

ordp(f + g) ≥ min(ordp(f), ordp(g)).

Proposition 4.6. For a non-zero meromorphic function f defined on a compact
Riemann surface X, the set of zeros and poles is finite.

Now, to provide a framework to deal with the key information of poles and zeros,
we introduce the concept of divisors.

Definition 4.7 (Divisors). For a compact Riemann surface X, define the group of
divisors Div(X) as the free abelian group generated by the points of X. An element
D ∈ Div(X) is called a divisor. We express D as a formal sum: D =

∑
p∈X D(p) ·p.

Let f be a meromorphic function on X such that f is not constantly zero on
any neighborhoods. Define the divisor (f) =

∑
p∈X ordp(f) · p, which is called the

divisor of f . (f) is well-defined by Proposition 4.6.
We say D ≥ 0 when D(p) ≥ 0 for each p ∈ X, D ≥ D′ when D−D′ ≥ 0. Define

deg(D) =
∑
p∈X D(p).

Now we define the sheaf associated to a divisor.
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Definition 4.8. For a Riemann surface X and a divisor D, and for U a open
subset of X, let M(U) be the set of meromorphic functions f on U . define the
sheaf associated to D as the sheaf OD over X such that for an open set U ⊆ X,

OD(U) = {f ∈ M(U)|∀p ∈ X, ordp(f) ≥ −D(p)}
When D = 0, OD becomes the sheaf of holomorphic functions on X. In this

case we use the notation O = OD.

Each OD(U) is an abelian group, and a C-vector space by Proposition 4.5. Ver-
ifying that OD is a sheaf is easy, so we omit it here. In addition, OD(U) is a
C-vector space, so Cn(X,OD) is also a C-vector space. Because d : Cn(X,OD) →
Cn+1(X,OD) by definition is also a C-linear transformation, Hn(X,OD) is also a
C-vector spaces, so we will be able to discuss the C-dimension of Hn(X,OD).

5. Riemann-Roch Theorem

Now we have covered all the important components of a proof of Riemann-Roch
Theorem. To remind ourselves, we once again state the theorem.

Theorem 5.1 (Riemann-Roch Theorem). For a compact Riemann surface X, we
have the following equation:

dim(Ȟ0(X,OD))− dim(Ȟ1(X,OD)) = 1− g + deg(D).

In this equation, g refers to the genus of X, which is defined as dim(Ȟ1(X,O)).

Remark 5.2. Intuitively, genus refers to the number of “holes” in a Riemann
surface. (For example, a torus is of genus 1, while a sphere is of genus 0.) The
formal definition of genus as dim(Ȟ1(X,O)) comes from [3, Definition 14.11].

The following SES is the center of our proof, and we will apply Theorem 3.9 to
this SES.

Lemma 5.3. For a divisor D and a point p ∈ X, we have an SES of sheaves:

0 −→ OD
i−→ OD+p

F−→ Cp −→ 0,

where i is the inclusion map, and F is defined as follows: for p ∈ U , we define
F (U)(f) = a−D(p)−1, where a−D(p)−1 is the (−D(p) − 1)-th term of the Laurent
expansion of f in a neighborhood of p. In other words,

f(z) =

∞∑
i=−D(p)−1

ai(z − p)i

Otherwise, if we have p ̸∈ U , then define F (U)(f) = 0.

Proof. Let (U, ϕ) be a coordinate chart. We need only to prove that

0 −→ OD(U)
i(U)−−−→ OD+p(U)

F (U)−−−→ Cp(U) −→ 0

is an SES of abelian groups. Then, because the above SES holds for every coordinate
chart U , we can apply Proposition 2.13 and we would have the SES of sheaves stated
in the lemma.

We first prove that i(U) is injective, then that F (U) is surjective, and finally
that Im(i(U)) = ker(F (U)).

First, i(U) being the inclusion map is obviously injective. Then we prove that
F (U) is surjective. When p ̸∈ U , Cp(U) = 0, so in this case F (U) is again obviously
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surjective. Now we consider when p ∈ U , and Cp(U) = C. By the construction
we know F (U) is C-linear, so we need only to construct a meromorphic function
f ∈ OD+p(U) such that F (U)(f) ̸= 0. Define f, g ∈ OD+p(U) as:

f(z) =
∏
z0∈U

(z − z0)
−(D+p)(z0)

g(z) =
∏

z0∈U,z0 ̸=p

(z − z0)
−(D+p)(z0).

Thus, we have f(z) = g(z)(z − p)−(D+p)(p). Then, in the Laurent expansion of
f at p, the −(D + p)(p)-th coefficient would be the 0-th coefficient of g, that is:

g(p) =
∏

z0∈U,z0 ̸=p

(p− z0)
−(D+p)(z0) ̸= 0.

Thus, we have F (U)(f) ̸= 0. F (U) is surjective.
We finally prove Im(i(U)) = ker(F (U)). When p ̸∈ U , ker(F (U)) = OD+p(U),

so we shall prove that i(U) in this case is surjective. Let f ∈ OD+p(U). Then, for
every z0 ∈ U , ordf (z0) ≥ −(D + p)(z0) = −D(z0), so f ∈ Im(i(U)). Thus, i(U) is
surjective in this case.

When p ∈ U , we first prove that Im(i(U)) ⊆ ker(F (U)). Let f ∈ Im(i(U)).
Then, we have ordf (p) ≥ −D(p), so the −(D + p)(p)-th coefficient in the Laurent
expansion of f at p is 0, so f ∈ ker(F (U)). We then prove that ker(F (U)) ⊆
Im(i(U)). Let f ∈ ker(F (U)). Then, the −(D+ p)(p)-th coefficient in the Laurent
expansion of f at p is 0. Since f ∈ OD+p(U), the lower coefficients would also be 0,
so ordf (p) ≥ −D(p), so f ∈ Im(i(U)). Thus, we conclude Im(i(U)) = ker(F (U)).

□

Then, applying Theorem 3.9, we have the following LES.

(5.4)
0 −→ Ȟ0(X,OD) −→ Ȟ0(X,OD+p) −→ Ȟ0(X,Cp)

δ−→
−→ Ȟ1(X,OD) −→ Ȟ1(X,OD+p) −→ Ȟ1(X,Cp)

Using Lemma 3.4, we now have an LES as follows.

(5.5)
0 −→ Ȟ0(X,OD) −→ Ȟ0(X,OD+p) −→ C δ−→
−→ Ȟ1(X,OD) −→ Ȟ1(X,OD+p) −→ 0

Calculating the dimensions of each group in this long exact sequence, we get the
following equation.

(5.6)
dim(Ȟ0(X,OD)) + 1 + dim(Ȟ1(X,OD+p))

= dim(Ȟ0(X,OD+p)) + dim(Ȟ1(X,OD))

Finally, we need one last lemma to state before formally proving the theorem.

Lemma 5.7. A holomorphic function on a compact Riemann surface X is constant,
so by Lemma 3.3, dim(Ȟ0(X,O)) = 1.

Proof. [3, Corollary 2.8]. □

Proof of Theorem 5.1. We shall prove the theorem by induction. Because every
divisor D is a finite sum of +p or −p for p ∈ X, we can do induction on the number
of terms of the finite sum, i.e. we first prove the theorem for D = 0, and then prove
the theorem for D + p and D − p when the theorem holds for D.
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First the theorem for D = 0. Because D = 0, deg(D) = 0, and OD = O. Then,
by Lemma 5.7

dim(Ȟ0(X,OD))− dim(Ȟ1(X,OD)) = 1− dim(Ȟ1(X,O))

= 1− g + deg(D)

Then, assume that the theorem holds for D, then we prove the theorem holds
for D + p. By (5.6),

dim(Ȟ0(X,OD+p))− dim(Ȟ1(X,OD+p))

= 1 + dim(Ȟ0(X,OD))− dim(Ȟ1(X,OD))

= 2− g + deg(D)

= 1− g + deg(D + p)

For D − p, we again apply (5.6),

dim(Ȟ0(X,OD−p))− dim(Ȟ1(X,OD−p))

= dim(Ȟ0(X,OD))− dim(Ȟ1(X,OD))− 1

= g + deg(D)

= 1− g + deg(D − p)

Thus finishes the proof.
□
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