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Abstract. Consider n points in the plane. In 1946, Paul Erdös proposed two

questions relating to distances between pairs of points. What is the maximum

amount of pairs that are exactly one unit distance apart? What is the mini-
mum amount of distinct distances between pairs of points. We will discuss the

current best known bounds on these questions.
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1. Preliminaries

Consider n points in a plane. What is the maximum amount of pairs of points
that are one unit distance apart? What is the minimum amount of distinct dis-
tances between pairs of points? The former question is referred to as the unit
distance problem and the latter is referred to as the distinct distances problem.
These questions are considered twin problems proposed by Paul Erdös in 1946 [1].
Although simple questions, the search for answers has generated years research into
fields like discrete geometry, combinatorics, and number theory.

Notation 1.1. This paper will use ≲, ≳, and ∼ to denote inequalities up to
multiplicative absolute constants. For example, X ≲ Y implies that there exists
an absolute constant C such that X ≤ CY . Occasionally, the standard asymptotic
notation from computer science of O(·),Θ(·), and Ω(·) will also be used. That is to
say that X = O(Y ) is equivalent to X ≲ Y , X = Ω(Y ) is equivalent to X ≳ Y , and
X = Θ(Y ) is equivalent to X ∼ Y . This allows for statements such as X = 2O(Y )

to imply that there exists an absolute constant C such that X ≤ 2CY .

Within this paper, we will discuss known proofs on the current bounds of O(n4/3)
proven by Spencer, Szemerédi, and Trotter [2] on the unit distance question and
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Θ( n
logn ) proven by Guth and Katz [3] on the distinct distance problem. We will

begin with an introduction to incidence theory and the methods used to show the
bounds mentioned above, which include Szekely’s crossing inequality method [4]
and Guth and Katz’s polynomial method.

Before we get into the problems, it is important to note this history of the prob-
lems and how its previous bounds were improved. When Erdös first proposed the
questions, he proved a lower bound of n1+c/ log logn and an upper bound of O(n3/2)
on the unit distance problem and conjectured a lower bound of Θ( n√

logn
). His ap-

proach includes first understanding the combinatorial nature of the question and
then associating a graph to the geometric situation. Then, he considers a forbid-
den subgraph, which is a subgraph that does not follow the characterization of a
graph. A well known example of a forbidden subgraph argument is Kuratowski’s
Theorem, which characterizes planar graphs through the exclusion of the forbidden
subgraphs of K5 or K3,3. Then, Erdös applies known results to bound the edges
of the associated graph. Erdös’s approach created a tremendous impact on combi-
natorial geometry and has motivated many new problems and results. Today, the
bound on the unit distance problem has still not been improved and Erdös distinct
distance conjecture has still not been proven. We will not contribute anything to
the conversation, but we will provide a nice little walk on the journey to the best
bounds we know so far.

2. Introduction to Incidences

Definition 2.1. Let P denote a finite set of points and let V denote a finite set
of geometric objects (e.g. lines, circles, polygons, etc). An incidence is a pair
(p, v) ∈ P × V such that the point p is contained in the geometric object v. The
set of incidences for a finite set of points P and finite geometric objects V will be
denoted by I(P, V ).

Proofs for both distance problems rely on bounding incidences. We use inci-
dences for the distance problems because of the ability to impose combinatorial
and algebraic properties on them. Therefore, understanding incidences and their
nature becomes crucial to understanding the distance problems. Classical incidence
problems are concerned with incidences derived from a set of n points and m lines.

Figure 1. Six incidences between three points and three lines.

To motivate an incidence approach to the unit distance problem, consider a set
P of n points and denote the number of unit distances that occur as u(n). Now
draw a unit circle (a circle of radius one) around each point of P . For points p
and q in P that determine a unit distance, we count two incidences: the circle
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around p incident to q and vice versa. Therefore, we can rephrase the unit distance
question in the following way: Given a set of n points and n unit circles, what is
the maximum amount of incidences that can occur?

2.1. The Szemerédi-Trotter Theorem. The Szemerédi-Trotter Theorem gives
us a bound on incidences between points and lines. It is the most fundamental
bound to incidence geometry and was partly inspired by the distance problems.

Theorem 2.2. (Szemerédi-Trotter) For a finite set of points P and a finite set of
lines L both in R2, |I(P,L)| ≲ (|P | · |L|)2/3 + |P |+ |L|.

For the purposes of this paper, we will only consider incidences in R2, but we note
that Szemerédi-Trotter does not hold in finite fields. We come across a counterex-
ample by considering incidences in F2. The original proof presented by Szemerédi
and Trotter [2] is complicated and lengthy. The general idea behind the proof is to
create cells (or convex open sets) in the plane R2 and bound incidences within each
cell to amplify the overall bound. We will attempt a similar proof in spirit of the
original by partitioning the plane through polynomials. However, we simplify the
original proof through a method attributed to Guth-Katz by using a more trivial
bound and invoking a Polynomial Ham Sandwich. Then, we will prove this theorem
in a very elegant graph theory approach that we can attribute to Székely. Both
methods will mirror how we will approach the distinct and unit distance problems
respectively.

To first gain a general intuition about incidences and counting them, we will
provide an example to show that this bound is tight. Let L be the set of N ∼ M3

lines defined by the form {(x, y) ∈ R2 : y = ax+ b}, where a is in the set of integers
[M ] and b is in the set of integers [M2]. Now, let P be the set of N ∼ M3 points
such that P = {(x, y) ∈ R2 : x ∈ [M ], y ∈ [2M2]}. Notice that for each x ∈ [M ], we
have that ax+ b ≤ 2M2 for a ∈ [M ] and b ∈ [M2]. Therefore, if we let y = ax+ b
(i.e. (x, y) is on a line l ∈ L) we have (x, y) ∈ P. Therefore, each line l ∈ L intersects
P in at least M points. This gives a total of M4 ∼ N4/3 incidences. And thus, our
bound is tight.

Lemma 2.3. |I(P,L)| ≲ |P | · |L|1/2 + |L| and |I(P,L)| ≲ |L| · |P |1/2 + |P |

Proof. We will only prove I(P,L) ≲ |P | · |L|1/2 + |L| as the proof for the other
statement can be acheived symmetrically. First, we can note that

I(P,L) ≤ |P |2 + |L|.

We arrive at this by first counting incidences on lines with at most one point on
them and then counting all incidences on other lines with at least 2 points on them.
Since there are |L| lines, there are at most |L| incidences contributed by lines with
at most one point on them. Then, note that the maximum amount of times a point
p ∈ P can be incident to a line with at least two points on it is |P |. If not, then
each of the lines p is incident to contains at least one other point (and these points
are distinct because lines in Euclidean geometry intersect in at most one point),
implying that there are more than |P | points. Therefore the maximum incidences
contributed by lines with at least two points on them is |P |2.
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Now, let 1p∈l be an indicator function having value 1 if p is incident to line l and
0 otherwise. Then, we have that

|I(P,L)|2 =

∑
l∈L

∑
p∈P

1p∈l

2

Now, using the Cauchy-Schwartz inequality which states that(
k∑

i=1

ai · bi

)2

≤

(
k∑

i=1

a2i

)(
k∑

i=1

b2i

)
if we let ai = 1 and bi = 1p∈l, then we have that

|I(P,L)|2 ≤ |L| ·
∑
l∈L

∑
p∈P

1p∈l

2

= |L| ·
∑

p1,p2∈P

∑
l∈L

1p1∈l · 1p2∈l

= |L| ·

 ∑
p1=p2∈P

∑
l∈L

1p1∈l · 1p2∈l +
∑

p1 ̸=p2∈P

∑
l∈L

1p1∈l · 1p2∈l


Note here that |I(P,L)| =

∑
l∈L

∑
p∈P 1p∈l =

∑
p1=p2∈P

∑
l∈L 1p1∈l ·1p2∈l. And

the other summation where p1 ̸= p2 is equivalent to finding all pairs of distinct
points in P such that they are incident to the same line. Notice that this is equiv-
alent to counting incidences on lines with at least two points incident to them, and
by the proof of Lemma 2.4, we have that this is bounded above by |P |2. Therefore,
we have that

|I(P,L)|2 ≤ |L| · (I(P,L) + |P |2)
≤ 2|P |2|L|+ |L|2

Therefore, this proves our bound |I(P,L)| ≲ |P ||L|1/2 + |L|. □

We will use this bound again in our first proof of the Szemerédi-Trotter Theorem.
However, we mention this proof prematurely to familiarize the reader with bounding
incidences. Within this proof, we use a common combinatorial strategy of double
counting to bound incidences. By counting incidences in two ways and comparing
these two bounds, we are able to find a stronger bound. This strategy will continue
rather frequently throughout this paper.

2.2. The Polynomial Method and Cell Partitioning. A common method to
count incidences in a field or plane called the polynomial method imposes an
algebraic structure on geometric incidences. By considering n points in a plane, we
introduce polynomials to our problem by finding polynomials that vanish at those
points. We gravitate towards this method because the point-line configurations
that determine incidences might lead us to expect some sort of lattice structure.
The basis of the polynomial method involves bounding the attributes of the poly-
nomial (like the degree and roots), and thus bounding incidences represented by
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the polynomial. We are interested in nonzero polynomials, meaning polynomials
with at least one nonzero coefficient.

Formally, we can sum up the core polynomial method into the following claim:

Claim 2.4. Let P ⊂ Rn be a finite set. If |P | <
(
n+d
d

)
, then there exists a nonzero

polynomial g ∈ R[x1, ..., xn] of degree at most d such that g(p) = 0 for all p ∈ P .

Proof. Note that for a degree d polynomial in n variables, each monomial term must
have a degree term at most d. Therefore, if we let di denote the degree of xi term in
a monomial, then d1+d2+...+dn ≤ d. Therefore, by a stars and bars combinatorial
argument we have that there are exactly

(
n+d
d

)
coefficients in our polynomial. Let

f be an arbitrary polynomial in n variables with degree d. Consider the map that
goes from the coefficients of f to (f(p1), f(p2), ..., f(p|P |)) where p1, p2, ..., p|P | are
the elements of P . Thus, since the map is linear, the dimension of the domain
is
(
n+d
d

)
and the dimension of the range space is |P | <

(
n+d
d

)
. Therefore, by the

Rank-Nullity theorem, the dimension of the null space is greater than 1, implying
that there is a non-trivial null space. Thus, there exists a a polynomial g of degree
d in n variables that vanishes for all p ∈ P □

In relation to the distinct distances problem, the polynomial method becomes
useful because we create what we call cell partitions of the plane. These are open,
convex sets where we can apply more trivial, well-known incidence bounds to am-
plify the bound over the entire plane. We will do this through Guth and Katz’s
method of creating a Polynomial Ham Sandwich, originally proved by Stone-Turkey.
We will use hypersurfaces, which are geometric objects defined by polynomials, in
order to create the ’walls’ of our cells.

Definition 2.5. A hypersurface is a set H = {x ∈ Rn : h(x) = 0} where h(x) is
a polynomial in n variables x1, x2, ..., xn of arbitrary degree d.

Example 2.6. The set H = {x ∈ Rn : h(x) = 0} where h(x) is a degree 1
polynomial is called a hyperplane.

Example 2.7. The set H = {x ∈ Rn+1 : x2
1 + x2

2 + ... + x2
n+1 = 1} defines a

hypersurface called the unit n-sphere.

Property 2.8. A hyperplane divides Rn into two ‘halves’, which we will denote
with H+ and H− defined as:

H+ = {x ∈ Rn : h(x) > 0}
H− = {x ∈ Rn : h(x) < 0}

We apply this property of hypersurfaces dividing the plane to divide a finite
amount of sets. These next series of partitioning theorems are called ‘ham sandwich
theorems,’ cleverly named by their discoverers, Stone and Turkey.

Theorem 2.9. (Ham Sandwich Theorem) Let U1, U2, ..., Un ∈ Rn be open bounded
sets. Then, there exists a hyperplane such that for all i ∈ [n], the sets Ui ∩H+ and
Ui ∩H− have the same volume.

To prove the Ham Sandwich Theorem, we invoke the Borsuk-Ulam Theorem.

Theorem 2.10. (Borsuk-Ulam) Let Sn ⊂ Rn be the unit n-sphere. Let f : Sn −→
Rn be a continuous map such that for all x ∈ Sn, we have that f(−x) = −f(x).
Then, there exists some y such that f(y) = 0.
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A proof for the Borsuk-Ulam theorem may be found in [5], and uses some basic
tools from algebraic topology.

Proof of Ham Sandwich. Let vh = (h1, h2, ..., hn) be a vector such that h2
1 + h2

2 +
...+ h2

n = 1. Therefore, vh ∈ Sn. The components of vh define the coefficients of a
degree one polynomial h(x) = h0 + h1x1 + ...+ hnxn that defines a hyperplane

H = {x ∈ Rn : h(x) = 0}.
Let us define f : Sn −→ Rn by

f(vh) =

n∑
i=1

(|Ui ∩H+| − |Ui ∩H−|)ei.

Note here that the vector −vh defines a hyperplane that flips the two partitions
of the hyperplane defined by vh. Therefore, we have that

f(−vh) =

n∑
i=1

(|Ui ∩H−| − |Ui ∩H+|)ei

= −
n∑

i=1

(|Ui ∩H+| − |Ui ∩H−|)ei

= −f(vh).

Additionally, f is continuous because volume varies continuously. Thus, we can
apply the Borsuk-Ulam and note that there exists some v ∈ Sn such that f(v) = 0.
Therefore the hyperplane H0 defined by v satisfies

|Ui ∩H−
0 | = |Ui ∩H+

0 |
for all i ∈ {1, 2, ..., n}. Thus, we have proven the Ham Sandwich Theorem. □

Now, that we have proven the Ham-Sandwich theorem, we can derive the Poly-
nomial Ham Sandwich Theorem to create cell partitions to count incidences in the
plane.

Theorem 2.11. (Polynomial Ham Sandwich) Let U1, U2, ..., Ut ∈ Rn where t <(
n+d
d

)
be open bounded sets. Then, there exists a degree at most d hypersurface H

such that for each i ∈ [t] the sets Ui ∩H+ and Ui ∩H− have the same volume.

Proof. The proof for this is similar to the proof for the Ham Sandwich Theorem.
Note that by a stars and bars combinatorial argument used in Claim 2.4, for a
polynomial in n variables of degree at most d we have that there are at most

(
n+d
d

)
coefficients.

Thus, we can utilise a similar argument to the previous proof. We will let
vector vh ∈ Sa where a =

(
n+d
d

)
define a hypersurface from a polynomial with

its coefficients corresponding to vh. Then, we define a function f that finds the
difference between each set’s two sides with respect the the hypersurface. Because
t <

(
n+d
d

)
we can append extra zeros at the end of our output vector such that

f : Sa −→ Rb where b = a. Then, we can apply the Borsuk-Ulam Theorem again in
a similar fashion to find a hypersurface H such that |Ui ∩H+| = |Ui ∩H−| for all
i ∈ [t]. □

Now, using the Polynomial Ham Sandwich, we are able to prove the discrete
case, which we can apply to finite sets of objects (i.e. incidences in the plane).
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Definition 2.12. A hypersurface H = {x ∈ Rn : h(x) = 0} bisects a finite set A

if A ∩H+ and A ∩H− both have cardinality that does not exceed |A|
2 .

Theorem 2.13. (Discrete Polynomial Ham Sandwich) Let A1, A2, ..., At ⊂ Rn be

finite sets of points where t <
(
n+d
d

)
. Then there exists a degree d hypersurface H

that bisects each Ai for i ∈ [t].

Proof. Let us denote Ui,ϵ as the union of open epsilon balls around each point of
Ai. Then, since all Ui,ϵ are open, we can apply the Polynomial Ham Sandwich
to find a hyperplane Hϵ such that |Ui,ϵ ∩ H+

ϵ | = |Ui,ϵ ∩ H−
ϵ | for all i ∈ [t]. Now,

consider a sequence ϵ1, ϵ2, ..., ϵi, ... such that

ϵi =
1

3i
.

For all i, we use the Polynomial Ham Sandwich to find a hypersurface Hϵi such
that |Ui,ϵ ∩H+

ϵi | = |Ui,ϵ ∩H−
ϵi | for all i ∈ [t]. From each of these hypersurfaces, we

obtain a polynomial hϵi . Scaling does not affect the roots of hϵi , thus scaling hϵi

will still define the same hypersurface. Now, we rescale the coefficients of hϵi such
that the vector vϵi constructed from the coefficients of each hϵi has a magnitude
of 1. Therefore, all vϵi lie on the surface of the unit hypersphere. Thus, since this
space is compact, there exists a subsequence vϵki

that converges to a vector v on the
unit hypersphere. Let h be the polynomial with its coefficients as the components
of v, then let us define a hypersurface H such that

H = {x ∈ Rn : h(x) = 0}.
Now, we claim that H bisects each Ai. For the sake of contradiction, suppose not.
Then, there exists some m such that

|Am ∩H+| > |Am|
2

.

Since h is a polynomial, it is continuous. Therefore, there exists a sufficiently small
δ > 0 such that h > δ on the δ-ball around each point in Am ∩H+. Then, by the
convergence of vϵki

, there exists a sufficiently large enough kj such that vϵkj
defines

polynomial hϵkj
> 0 on the δ-ball around each point in Am ∩ H+. Note that for

all ki > kj this property holds as well. Thus, if ϵkj
> δ, by how we defined ϵi, we

can choose a ki large enough such that ϵki
< δ. Therefore, we have that more than

half of the ϵki
-balls in Ui,ki

have hϵki
> 0 which is a contradiction. □

Finally, with our Discrete Polynomial Ham Sandwich, we can create our cell
partitions of our finite set of points P . The idea for creating our cells is that we
will be able to repeatedly bisect subsets of our set and define a hypersurface in this
way.

Lemma 2.14. (Polynomial Cell Partition) Let A ⊂ R2 be a finite set and let t > 1.
Then, there exists a hypersurface H that decomposes R2 into O(t) cells and H has

degree d = O(
√
t) and each cell contains at most |A|

t points from |A|.

We note here that it might happen that |A|
t < 1 or all the cells are empty,

meaning most points lie on H. For example, if A contains only points on the x-
axis, then H must contain the x-axis, or else H intersects with the x-axis at most

O(
√
t) times and therefore each cell has more than |A|

t points. We account for this
case in bounding incidences by bounding incidences on H as well as within cells.
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Proof of Polynomial Cell Partition. We will inductively construct collections of sets
A0,A1, ... that are a collection of disjoint subsets of A. We begin with A0 = {A}.
Then, assume we have Aj that consists of at most 2j sets each of size at most
|A|
2j . Then, by the Discrete Polynomial Ham Sandwich, there exists a hypersurface

Hj that bisects the sets of Aj . For an arbitrary P ∈ Aj , let P+ = P ∩ H+
j and

P− = P ∩ H−
j . Now, let Aj+1 =

⋃
P∈Aj

{P+, P−} (empty sets ignored). Thus,

Aj+1 has at most 2j+1 sets with size at most |A|
2j+1 .

Thus, if we let k = ⌈log2(t)⌉, and we apply the process described above k times,
we obtain a collection of disjoint subsets of A, Ak, that each have size of at most
|A|
t and form A1, A2, ..., As where s ≤ 2k ≤ 2t. Therefore, if we define a polynomial

h := h1h2...hk such that hi are the polynomials that define hypersurfaces Hi, then
we have a hypersurface H defined by h such that it partitions R2 as we desire.

Now, we must show that h is a polynomial of degree O(
√
t). By the discrete

polynomial ham sandwich theorem, for bisecting at most 2j sets, the polynomial

hj suffices to have degree O(
√
2j). Therefore, deg(h) = O(

∑k
j=1 O(

√
2j)) = O(

√
t)

and, thus, the degree of H is O(
√
t). □

As a consequence of the lemma, we have created our cells that partition the R2

plane. We can then use the bound in Lemma 2.3 to find a bound on incidences
in each cell and on the hypersurface to achieve the desired bound from Szemerédi-
Trotter.

2.3. The Crossing Lemma. The geometric and combinatorial nature of inci-
dences also introduces a very elegant graph theory approach to the unit distance
question which we attribute to Székely. Instead of bounding incidences through
polynomial partitions, we instead bound them through crossings on a graph. Within
this section we will give some preliminary definitions and theorems used to prove
The Crossing Lemma, which we will then later use to construct a graph to prove
the Szemerédi-Trotter theorem.

For the purpose of this paper, we will only be considering undirected graphs,
meaning that if an edge is determined by two vertices, v1 and v2, then the order of
the vertices does not matter. Before we begin proving the crossing lemma, we will
introduce some preliminary graph theory definitions and theorems. The degree of
a vertex to be the number of edges that come out of it. A path within a graph is a
series of connected edges to travel from one vertex to another. And a cycle is any
path that starts and ends on the same vertex.

Definition 2.15. The crossing number of a graph, denoted by cr(G) is the
smallest integer k such that a planar drawing of G can have k edges crossings.

Example 2.16. The complete, bipartite graph of 6 nodes, K3,3, has a crossing
number of 1. Here is a planar drawing of the graph below in figure 2.

Definition 2.17. A graph is said to be planar if cr(G) = 0.

Because planar graphs have no crossings, there are areas within planar graphs
that are bounded by its edges. These areas, and the plane itself, are called faces. To
prove the crossing inequality for graphs, we rely on Euler’s Formula, a fundamental
equation in geometry that relates the vertices, faces, and edges of planar graphs.
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Figure 2. K3,3 with one crossing.

Theorem 2.18. (Euler’s Formula) Let G = (V,E) be a connected planar graph.
Then |V | − |E|+ |F | = 2.

Lemma 2.19. Let G = (V,E) be a connected planar graph that is connected and
contains no cycles. Then |V | − |E|+ |F | = 2.

Proof. Since our graph contains no cycles, it does not divide the plane into multiple
regions. Therefore, the number of faces is always 1. Thus, we must only prove that
|V | − |E| = 1

We will induct on the edges of the graph to show this lemma. First, our base
case is when |E| = 0. Then our graph is one vertex and one face (the region around
the vertex). Therefore, |V | − |E| = 1 − 0 = 1 holds. Now, assume that our claim
holds for n edges.

Consider a graph with n + 1 edges. Now, find a vertex of degree one. We
accomplish this by starting at any vertex in our graph and travelling along any
path until we reach a dead end. Because our graph has no cycles and finite amount
of vertices, no vertex will be travelled to more than once, and therefore this dead
end is guaranteed. Call this vertex p. Remove p and the edge attached to it. Now,
we have a graph with n vertices and by induction hypothesis, this graph has n+ 1
vertices. However, this implies our original graph has n+2 vertices and n+1 edges,
and our claim holds. □

Proof of Euler’s Formula. We will induct on edges again like above. Our base case
is when |E| = 0, and by the same argument from the above Lemma, our formula
holds. Assume that for a graph with n edges, |V |− |E|+ |F | = 2. Consider a graph
G with n+ 1 edges.

Case 1: G has no cycles. By Lemma 2.17, then Euler’s Formula holds.
Case 1: G has at least one cycle. Remove one edge from a cycle and call this

new graph G′. By induction hypothesis, |V ′| − |E′|+ |F ′| = 2. However, note that
this cycle partitioned the plane into two regions, so by removing an edge we merge
these two regions, and remove a face. Therefore, |V ′| = |V |, |E′| = |E| − 1, and
|F ′| = |F | − 1. Therefore, we have that

2 = |V ′| − |E′|+ |F ′|
= |V | − (|E| − 1) + (|F | − 1)

= |V | − |E|+ |F |.
□
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We will now proceed into a series of preliminary inequalities derived from Euler’s
formula that will be used to show the result of the Crossing Lemma. The idea will
be to achieve a more trivial bound on crossings, and then use this bound on a series
of subgraphs.

Lemma 2.20. Let G = (V,E) be a planar graph. Then, we have that |E| ≤ 3|V |−6.

Proof. Note that every edge either lies on the boundary between two faces or lies
on the boundary of the same face. Additionally, every face has at least three edges.

Thus, 2|E| ≥ 3|F |. Plugging this into Euler’s, we have that |V | − |E| + 2|E|
3 ≥ 2,

and therefore, |E| ≤ 3|V | − 6. □

Lemma 2.21. Let G = (V,E) be a graph. Then cr(G) > |E| − 3|V |.

Proof. Suppose G has minimal crossings. Let E′ be the maximum subset of edges
that such that no two edges of E′ intersect each other. Therefore, by Lemma 2.22,
we have that |E′| ≤ 3|V | − 6. Then, since every edge in E \ E′ crosses an edge
of E′ at least once we have that cr(G) ≥ |E \ E′| ≥ |E| − 3|V | + 6, and therefore
cr(G) > |E| − 3|V | □

Definition 2.22. For 0 < p ≤ 1, a random subgraph of G = (V,E) is generated
by selecting each vertex of G with probability p. An edge is selected if its two
endpoints are selected with probability p, otherwise it is deleted. We will denote
the subgraph induced by the selected vertices as Gp.

The Székely argument relies on the crossing lemma (or sometimes called the
crossing number inequality) of graphs. We introduce the idea of a random subgraph
because, if we have f(Gp) be a function on the set of random subgraphs, then f(Gp)
is a random variable, and therefore we can take take its expectation. Thus, if we
use functions on Gp that output the number of crossings, edges, and vertices, we
are able to apply the inequality from Lemma 2.22 on random subgraphs to find a
bound on crossings on the parent graph and arrive at the following.

Theorem 2.23. (The Crossing Lemma) Let G = (V,E) be a graph. If |E| ≥ 4|V |,
then

cr(G) ≥ |E|3

64|V |2
.

Proof. Let p = 4|V |
|E| . Since |E| ≥ 4|V |, then 0 < p ≤ 1. Thus, we can generate a

random subgraph Gp of G. We denote the edges of Gp to be E(Gp) and the vertices
to be V (Gp). By Lemma 2.23, we have that cr(Gp) > |E(Gp)| − 3|V (Gp)|. Then,
we can take the expectation of this inequality to get that

E[cr(Gp)] > E[|E(Gp)|]− 3E[|V (Gp)|].

It is easy to see that E[|V (Gp)|] = p|V |. Then, note that an edge of G belongs
to Gp if and only if both endpoints have been selected. So E[|E(Gp)|] = p2|E|.
Finally, we have that a crossing of G belongs to Gp if and only if both edges that
create the crossing have been selected. Therefore, E[cr(Gp)] = p4cr(G). Thus, we
have that

p4cr(G) > p2|E| − 3p|V |.
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Then, substituting p = 4|V |
|E| , we have that

cr(G) >
|E|
p2

− 3|V |
p3

=
|E|3

16|V |2
− 3|E|3

|V |2

=
|E|3

64|V |2
.

□

Now that we have shown an established bound on crossings within graphs, a
clever construction of a graph that captures incidences on points and lines will give
the Szemerédi-Trotter bound in Theorem 2.2 on incidences.

3. The Unit Distance Problem

Suppose we have n points in the plane R2. We define u(n) to be the maximum
number of pairs of points that are a unit distance from each other. In this section, we
will prove the Szemerédi-Trotter Theorem with Szekely’s method using the crossing
inequality, Ultimately, we will show that Szemerédi-Trotter implies the following:

Proposition 3.1. For a finite set of points P and a finite set of unit circles Γ, we
have I(P,Γ) ≲ (|P | · |Γ|)2/3 + |P |+ |Γ|.

Note here, that for n points and n unit circles, the unit distance bound immedi-
ately follows. This proposition is simply the Szemerédi-Trotter Theorem for points
and circles of the same radii. Thus, to prove it, we make slight changes to our proof
of Szemerédi-Trotter, but generally the same ideas hold.

Proof of Szemeredi-Trotter. Consider a graph G = (V,E) where the vertices cor-
respond the points P and an edge is defined by two consecutive points along a
line l ∈ L. Let us denote by |Pl| the points along line l. Then, we have that
|E| =

∑
l∈L(|Pl| − 1). Additionally, we can note here that I(P,L) =

∑
l∈L |Pl|.

Therefore, we have that |E| = I(P,L)− |L|.
If |E| < 4|V |, then since |V | = |P |, we have that I(P,L) − |L| < 4|P |, and

I(P,L) ≲ |P |+ |L| and the bound from Szemeredi-Trotter follows.
If |E| ≥ 4|V |, then we can invoke the Crossing Lemma such that

cr(G) ≥ |E|3

|V |2

=
(I(P,L)− |L|)3

|P |2
.

Now, consider the drawing of graph G such that each vertex corresponds to a point
p in P and each edge corresponds to a line segment l in L. Then, since every
crossing in G corresponds to an intersection of two lines in L and two lines can

intersect at most once, we have that cr(G) ≤
(|L|

2

)
≲ |L|2. Combining this with the
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above equation, we get that

|L|2 ≳
(I(P,L)− |L|)3

|P |2

(|P | · |L|)2/3 + |L| ≳ I(P,L)

(|P | · |L|)2/3 + |L|+ |P | ≳ I(P,L).

And thus, we have our desired bound for the Szemeredi-Trotter Theorem. □

Now, to prove Proposition 3.1, we use the same logic, however we create slight
changes to accomodate for the use of circles instead of lines in our incidences.
Instead, we create a graph where edges are arcs of our set of circles instead of line
segments. Then, we similarly will create bounds using the crossing inequality and
relating edges to incidences.

Proof of Proposition 3.1. We will mirror the proof above, but due to finding inci-
dences between points and circles instead of points and lines, we will define a new
graph G = (V,E) in a slightly different manner. Like before, we let the vertices of G
correspond to the points of P . We define edges to be the arc between 2 consecutive
points p1 and p2 in P along the same circle γ in Γ with no other points between.
Then, we delete circles with at most two points incident to them, and note that
these arcs contribute at most 2|Γ| incidences. Therefore, among the circles we keep,
we have that each circle contributes |Pγ | edges if Pγ denotes the points of P on a
circle γ.

Now, we have a graph G such that |V | = |P | and |E| ≥
(∑

γ∈Γ |Pγ |
)
−2|Γ|. And

since |I(P,Γ)| =
∑

γ∈Γ |Pγ |, then we have that |E| ≥ |I(P,Γ)| − 2|Γ|. However,
we may have multi-edges within graph G, meaning we have multiple edges coming
from the same two vertices, if two circles in Γ intersect along two points in P . Since
circles can only intersect in at most two points, there are at most two edges for
every pair of points. We will delete one of these multi-edges and this reduces the
number of edges by at most a factor of two. Thus, our revised version of G has

that |E| ≥ |I(P,Γ)|
2 − |Γ|.

If |E| < 4|V |, we have that |I(P,Γ)|
2 − |Γ| < 4|P | and our bound directly follows.

If we have that |E| ≥ 4|V |, then we can invoke The Crossing Lemma again, to get
that

cr(G) ≳
|E|3

|V |2

≥
( |I(P,Γ)|

2 − |Γ|)3

|P |2
.

However, note that a crossing occurs within our graph G if we have an intersection
between two circles. And thus, since circles intersect at most twice, we have that

cr(G) ≤ 2
(|Γ|

2

)
≲ |Γ|2. Therefore,

|Γ|2 ≳
( |I(P,Γ)|

2 − |Γ|)3

|P |2
,

and the bound from Proposition 3.1 immediately follows. □
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As a consequence of this property, when we consider |P | = |Γ| = n, then we
immediately have that |I(P,Γ)| ≲ n4/3, and thus we have shown the best known
bound on the unit distance problem.

4. The Distinct Distances Problem

Often paired with the unit distance problem is its more complicated and arguably
more famous twin question, the distinct distance problem. The problem is stated as
follows: for n points in the plane, what is the minimum amount of distinct distances
between pairs of points? That is, for a finite set P of n points in the plane, we
denote d(P ) = {|p − q| : p, q ∈ P} as the set of all distances between points in P .
We wish to find a lower bound on |d(P )|.

First, we prove Szemerédi-Trotter through polynomial cell partitions of the plane.
This method is attributed to Guth and Katz. We include another proof of Sze-
merédi-Trotter because this method will clarify how Guth and Katz were able to
bound the distinct distances in the plane. Before we begin proving Szemerédi-
Trotter, we will prove some preliminary results about hypersurfaces and lines.

Lemma 4.1. Given any line l ⊂ R2 and hypersurface H ⊂ R2 with degree d. Either
l ⊂ H or |l ∩H| ≤ d.

Proof. Let h be the polynomial describing H and let g be the restriction of h to
line g. Either g is uniformly 0, or not. If it is, then this implies that l ⊂ H. If not,
then we have that deg(g) ≤ d since the restriction to a line does not make a higher
degree polynomial. Then, since l contains at most deg(g) ≤ d roots of g and the
roots of g are the intersection of l and H, we have that l intersects h in at most d
points. Therefore, |l ∩H| ≤ d. □

Lemma 4.2. For a hypersurface H ⊂ R2 of degree d, there are at most d lines
contained in H.

Proof. Suppose that there are d + 1 distinct lines in H. Since d + 1 is finite, then
we can choose a line l in R2 that is not parallel to d+1 lines. Then, we have that l
intersects d+1 lines and l intersects H at least d+1 times, which is a contradiction
to Lemma 3.2. □

Notation 4.3. We use notation A << B to imply that A ≤ cB for an arbitrarily
small c. Intuitively, we can think of << meaning ‘much less than.’

The idea for the cell-partitioning proof of Szemeredi-Trotter is that we will be
able to use the bound in Lemma 2.3 within each cell to amplify the overall bound.
Then, we will count incidences on the hypersurface and combine these two results
to achieve the bound in Szemerédi-Trotter.

Proof of Szemeredi-Trotter. We have two cases, either |P |1/2 << |L| << |P |2
holds, or it does not. Suppose that |P |1/2 << |L| << |P |2 is not true. By Lemma
2.3 we have that

|I(P,L)| ≲ |P | · |L|1/2 + |L|+ |L| · |P |1/2 + |P |

≲ (|P | · |L|)2/3(|P |1/3|L|−1/6 + |L|1/3|P |−1/6) + |L|+ |P |

By our assumption, we can bound the expression (|P |1/3|L|−1/6+ |L|1/3|P |−1/6)
by a constant, and the bound from Szemeredi-Trotter is immediately implied.
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Thus, we will assume |P |1/2 << |L| << |P |2. Then we apply the Polynomial
Cell Partition in Lemma 2.14 to find a hypersurface H of degree d ≲ t1/2 that

decomposes R2 into cells C1, C2, ..., CO(t) such that each cell contains at most |P |
t

points from P . For the sake of simplicity, we will consider cells C1, C2, ..., Ct and
note that if we created Kt cells, the proof is identical due to the constant K being
absorbed.

Then, we bound incidences in each cell and then incidences on the hyperplane.
To do this, we introduce notation P0 = P ∩H to denote points on H, L0 = L∩H to
denote lines that intersect H, Pi = P ∩Ci to denote points within the cell Ci, and
Li = L ∩ Ci to denote lines that intersect cell Ci. Here, lines are double counted,
as lines in L0 can occur in multiple Li, but since we are finding an upper bound,
this is okay.

Therefore, we have that

|I(P,L)| ≤ |I(P0, L0)|+
t∑

i=1

|I(Pi, Li)|.

Then, by Lemma 2.3, we have that

|I(Pi, Li)| ≲ |Pi||Li|1/2 + |Li|

≲
|P |
t
|Li|1/2 + |Li|.

We observe that for a line l in Li, it is not contained in H. If l ⊂ H then we have
that it cannot intersect a cell. Thus, by Lemma 3.3, we have that a line in Li can
intersect H at most d ≲ t1/2 times. Therefore, each line in Li can intersect at most
d cells because intersecting H implies crossing from one cell to another. Therefore,

t∑
i=1

|Li| ≲ t1/2|L|.

Then, by applying the Cauchy-Schwartz inequality, we have that(
t∑

i=1

|Li|1/2
)2

≤
t∑

i=1

|Li|
t∑

i=1

1

≲ (t1/2|L|) · t

= t3/2|L|.

Therefore, we have that
∑t

i=1 |Li|1/2 ≲ t3/4|L|1/2. Now, we can bound incidences
in the cells by putting these two together, such that

t∑
i=1

|I(Pi, Li)| ≤
t∑

i=1

(
|P |
t
|Li|1/2 + |Li|

)
≲

|P |
t
t3/4|L|1/2 + t1/2|L|

= t−3/4|P ||L|1/2 + t1/2|L|.

Now, we will bound incidences found on our hypersurface. We will do this by
splitting L0 into two sets: L′

0 to denote lines in L0 that are on H and L′′
0 to denote
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lines that only intersect H at some points. Note that for a line l that is in L′′
0 , by

Lemma 3.2, we have that l intersects H in at most d ≲ t1/2 points. Therefore,

I(P0, L
′′
0) ≲ t1/2|L′′

0 | ≲ t1/2|L|.

Then, by Lemma 3.3, we have that |L′
0| ≲ t1/2. Applying the bound in Lemma

2.3, we have that

|I(P0, L
′
0)| ≲ |L0||P0|1/2 + |P0|

≲ t1/2|P |1/2 + |P |.

Therefore, putting these two bounds together, we have that

|I(P0, L0)| = |I(P0, L
′
0)|+ |I(P0, L

′′
0)|

≲ t1/2|P |1/2 + |P |+ t1/2|L|

≲ t1/2|L|1/2 + |P |+ t1/2|L| By assuming |P |1/2 << |L|

≲ t1/2|L|1/2 + |P |.

Thus, we have successfully bounded incidences on H and within cells, therefore,
we put this all together to get that

|I(P,L)| ≤ |I(P0, L0)|+
t∑

i=1

|I(Pi, Li)|

≲ t1/2|L|1/2 + |P |+ t−3/4|P ||L|1/2 + t1/2|L|

≲ t1/2|L|1/2 + |P |+ t−3/4|P ||L|1/2.

Now, we can let t = |P |4/3
|L|2/3 to achieve our desired bound and since we assumed

|L| << |P |2 then t ≥ 1 and we are done. □

Using the bound on unit distances, we are able to find a maximal bound on the
pairs of points that are a distance r apart, where r is any real number. Therefore, we
immediately are able to obtain a lower bound on the number of distinct distances.
Since we arrive at a bound of ≲ |P |4/3 on the number of identical distances, then we
have that there must be a minimal bound of ≳ |P |2/3 of distinct distances because
there are ∼ |P |2 total pairs of points.

Erdös posed the distinct distance problem in the same 1946 paper in which he
introduced the unit distance question. He made the following conjecture that

Conjecture 4.4. For a finite set of n points P, we have that |d(P )| ≳ |P |
(log |P |)1/2 .

If we consider n points on a square
√
n ×

√
n integer grid, then this bound

is tight. This conjecture on a generalization of a lower bound remains an open

problem. However, Guth and Katz obtained a very close bound of ≳ |P |
log |P | . We

will not extensively go into detail about the Guth-Katz proof, but the original
paper is very well explained and largely self-contained so we strongly recommend
referencing the original argument. We will briefly review the key ideas.

First, we motivate an incidence approach to the question. Guth and Katz re-
duced the question into a linear problem by considering the Elekes and Sharir
framework [6] which relies mostly on some euclidean geometry. To see how this

works, first assume by contradiction that |d(P )| ≲ |P |
log |P | for some large set of
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points P . We note here that there are
(|P |

2

)
∼ |P |2 different line segments. Then,

through an application of the Cauchy-Schwartz inequality, they find that there must
be many distinct but congruent pairs of line segments p1p2, p3p4 (i.e. line segments
of equal length |p1 − p2| = |p3 − p4|). In fact they find that the number must be(|P |

2

)2
|d(P )|

−
(
|P |
2

)
≳ |P |3 · log |P |.

Therefore, there are ≳ |P |3 · log |P | pairs of congruent line segments.
Then, Guth and Katz re-framed the question in terms of rigid motions. Rigid

motion refers to any movement between points such that the relative distance and
position between the points are conserved. In other words, two line segments are
congruent if there exists a rigid motion relative to the endpoints of the segments.
Therefore, our bound of ≳ |P |3 · log |P | equivalently describes a bound sets of four
points and a rigid motion R. Then, they observed that the set of rigid motions
between two points x and y in R2 form a line in R3 through the euclidean geometry
fact that a rigid motion can be described through a rotation centered at a point
along the perpendicular bisector of x and y. Thus, a pair of points within our
collection creates a distinct line in R3 and we now have a collection L of ∼ |P |2 lines.
Using the bound above, since there are ≳ |P |3 · log |P | quintuples (p1, p2, p3, p4, R),
this gives rise to ≳ |P |3 · log |P | intersections between two lines l, l′ in L. Therefore,
we can rephrase the distinct distance problem into an incidence question: is it
possible for ∼ n2 lines in R3 to generate ≳ n3 · log n pairs of intersecting lines? If
the answer is ‘no’ then the bound of Θ( n

logn ) is proven. However, the answer is ‘yes’

but Guth and Katz were able to find the following restrictions in order to prove the
theorem.

Theorem 4.5 (Guth-Katz). Let L be a set of N2 lines in R3 such that no more
than N lines intersect at a single point and no plane or double ruled surface contains
more than N lines. Then the number of incidences of lines in L, |I(L)|, is at most
≲ N3 · logN.

The proof by Guth and Katz uses the polynomial method and cell partitions in
the same spirit of the first proof of Szemerédi-Trotter that we presented. An outline
of the proof is as follows. They bound the set of all points of concurrency for the
set of lines, S and do this by contradiction. First, they separate the problem into
two cases: if S contains points with least 2 lines going through it or if S contains
points with more than 2 lines going through it. Then, through a generalization of
the polynomial cell partition lemma, they obtain a hypersurface of degree O(t1/3)

that creates O(t) cells with at most |S|
t points of S in each cell.

Beginning with the latter case, they obtain two more subcases: the cellular case
and the algebraic case. The cellular case is when there are more points within the
cells than there are on the surface. In this case, the proof will use a generalization of
Szémeredi-Trotter in three dimensions and the proof for the bound is similar to the
proof we presented on Szémeredi-Trotter. The algebraic case is when there are more
points on the algebraic surface than within the cells. Through a degree argument,
the algebraic surface defining the cells must contain ‘many’ lines in L. Then, by
the assumption that there are at least 3 lines going through each point of S, they
argue that these lines must be contained in a plane, which gives a contradiction.
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Then, assuming that S contains points with at least 2 lines going through each
point, Guth and Katz invoke the polynomial method to find a hypersurface that
vanishes at all points of S. Then, many lines of L will intersect this hypersurface
many times, and they will be essentially contained on the hypersurface. However,
this forces components of the hypersurface to be single ruled sufaces, (a surface in
which every point has one line passing through it), double rules surfaces (a surface
in which every point has two lines passing through it), or planes. By assumption,
the latter two cannot contain many lines, so the majority of lines must come from
the single rules surfaces. But, the number of times lines from a single ruled surfaces
can intersect other lines from single rules surfaces can be controlled, and this gives
a contradiction.

Therefore, as a result of this theorem, we find a contradiction and the bound

|d(P )| ≳ |P |
log |P | holds.
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