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Abstract. This paper introduces a pursuit-evasion game and describes the

undirected graphs on which the game is winnable. The game consists of a rat
walking in a graph and an exterminator attempting to catch it. A winning

strategy for the exterminator is a sequence of vertices which intersects every

walk. Such a strategy exists if and only if every component of the graph is
a lobster tree. The proof is constructive, and provides a linear-time pursuer

trajectory on such a graph.
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1. Introduction

This paper is motivated by the following puzzle.
Imagine you are an exterminator hired to exterminate a rat hiding in a building

consisting of three adjacent rooms in a line. The extermination process is a turn-
based game. Every turn, you open a door to a room of your choice. If the rat is in
this room, you kill it and win. Otherwise, you close the door, and the rat moves to
a room adjacent to its actual hiding place. The rat must move, and it may move
to a room you have previously searched. The challenge is to find a strategy that is
guaranteed to locate the rat in a finite number of searches.

A winning strategy to this game would be to open door 2 twice. If the rat is not
caught by turn 1, it must have been hiding in either room 1 or room 3. In either
case, it must move to an adjacent room, and both of these rooms have only one
neighbor: room 2. Then our second search of room 2 is guaranteed to find the rat.

What if the building consisted of four adjacent rooms? What about five, or
larger n? What if the adjacency structure of the building is more complicated than
a sequence of rooms in a line?

For instance, Figure 1.1 depicts a possible strategy to exterminate a 5-room
building in only 6 searches. Room searches are filled in, and all possible rat paths
are snuffed out, one by one.
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Figure 1.1. Solution to the 5-room variation

This generalized problem can be defined in the language of graph theory. It asks:

Problem 1.2. Given a graph G, is there a k-vertex sequence (sn)
k
n=1 in G, for

some finite k, which intersects every k-vertex walk (tn)
k
n=1 through G (sm = tm for

some m ≤ k)?

The main result of this paper is that for undirected graphs, this property is
equivalent to being a “lobster forest”, a graph whose components are lobsters.

Definition 1.3. A tree is a lobster if there is a path within distance 2 of all
vertices. See Figure 1.4 for an example.

Figure 1.4. A lobster tree

Some background in pursuit-evasion games is provided in Section 2. A useful
characterization of graphs, called “spinewidth,” is defined and investigated in Sec-
tion 3. The main result is proved in Section 4. Finally, some unanswered questions
and possible applications are addressed in Section 5.

2. Pursuit-Evasion

Problem 1.2 is one of a larger class of problems in game theory, called “pursuit-
evasion games.” This game consists of one group (the pursuers) attempting to track
down members of another group (the evaders) in an environment. This environment
can be continuous or discrete.

Pursuit-evasion games have a rich history. As early as the 18th century [9], math-
ematicians were calculating “pursuit trajectories”, the paths traced by pursuers.
Not long after, the evader was introduced. Now, optimal strategies were required
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for both agents simultaneously. These were analytical problems; they involved con-
tinuous space and continuous time. It wasn’t until 1976 that a pursuit-evasion
problem was posed in a discrete, graph-theoretic environment [12]. However, in
this problem, agents occupied points on edges, and still moved continuously. Fi-
nally, in 1978, the Cops and Robbers game [4, 10], utilized discrete time. Instead
of occupying points on the edge of a graph, agents occupied vertices, and moved to
neighbors one step at a time.

Pursuit-evasion problems are abundant, and are applicable in a number of fields,
including “mobile robotics, search-and-rescue, surveillance, tracking, harvesting
and many others” [7]. Much literature is written on this subject, especially in
recent years [2, 11], in part due to the vast number of ways these games may vary.
A fundamental difference is between continuous and discrete formulations, for both
environment and time. There may be one pursuer or several. The evader may
be adversarial (optimal), drunk (random), or simple (moving on a predetermined
path). The evader may be visible to the pursuer or invisible, and vice versa. Move-
ment may be optional or forced. Velocity may be bounded, unbounded continuous,
or discontinuous.

In our case, the exterminator is the sole pursuer, and the rat is the sole evader.
However, since the problem is deterministic and not probabilistic (we want a guar-
antee of success, not an expectation), it is equivalent to A) exterminating many
rats, starting everywhere and making every possible decision, and also to B) an in-
telligent rat, fully aware of our entire plan and able to choose its starting location.

Our query can be described as a pursuit-evasion problem with the following
attributes:

• The environment is discrete (a graph).
• At every step, the pursuer and the evader each occupy a vertex of the
environment graph. (In some other pursuit-evasion games, the players may
occupy a point on an edge [12].)

• The pursuer succeeds when he occupies the same vertex as the evader.
• The pursuer and evader move simultaneously. These time steps, or “turns,”
are discrete.

• The pursuer has unlimited locomotion. This is often described as the pur-
suer having a “helicopter.”

• The evader must move to a neighbor each turn. Broken down further:
– The evader may move at most distance 1 each turn. This is often

described as the evader having “velocity 1.”
– The evader must move each turn. In other words, we require the evader

follow a walk on the graph. (In some other pursuit-evasion games, the
evader is allowed to follow a “lazy” walk, where he may either move
or remain still.)

• The evader is invisible. The pursuer has no information available to him,
aside from his own location and the shape of his environment.

• The evader is adversarial. The evader has perfect information on the pur-
suer’s location and plan, and the evader chooses his own starting vertex.

We ask on what graphs does the exterminator have a winning strategy.
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3. Spinewidth

Before answering the main problem, it will be helpful to define a certain value
on graphs, and to develop an understanding of this value’s relationship to other
graph-theoretic structures. The value is a measure of how “fat” the graph is, i.e.
how far its vertices are from a central path.

Definition 3.1. The spinewidth of a connected graph G, written sw(G), is the
smallest number n such that G contains a path within distance n of all vertices in
G. A spine is such a path within distance n of every vertex.

To frame this concept in well-established terms, here are some immediate obser-
vations:

• A traceable graph is a graph with spinewidth 0.
• A path graph is a tree with spinewidth 0.
• A caterpillar is a tree with spinewidth ≤ 1.
• A lobster is a tree with spinewidth ≤ 2.

Remark 3.2. Observe that spinewidth is analagous to the notion of radius, with
a single point center replaced by a path center. Recall radius measures how far a
graph’s vertices are from a central point, chosen to minimize this distance. Indeed,
for this reason, spinewidth is bounded by radius. To see why, consider the 0-long
path given by (o), where o is the central vertex achieving radius r(G).

The majority of our investigation into this property will deal with spines of trees.
This will be sufficient because, in general, spinewidth is determined by a graph’s
spanning trees, in the following sense:

Proposition 3.3. The spinewidth of a graph G is the minimum spinewidth over
all spanning trees of G.

Proof. Suppose H is a spanning tree of G. Let (qi)
z
i=0 be a spine for H achieving

spinewidth n. Then q is also a path through G, and every vertex in G connects to
q by a path of length at most n. In other words, the spinewidth of G is at most n.
This proves the spinewidth of G is a lower bound on the spinewidth of all spanning
trees of G.

Now suppose the graph G has spinewidth w, and let (pi)
l
i=0 be a spine of G. We

will construct a spanning tree H of G with spinewidth w.
Begin with only the edges of the spine p. For each non-p vertex v, take the first

edge of a shortest path from v to p. The path traced by these edges, from any v to
a neighbor 1 closer to p, will be a shortest path to p, and hence of length ≤ w. So,
the subgraph H resulting from this process has spinewidth at most w.

Because H includes every vertex, it is spanning. Because it begins with l edges
and adds v− (l+ 1) more (one for each non-p vertex, of which there are l+ 1) and
because every vertex is connected to the spine p which is itself connected, H is a
connected subgraph with v vertices and v − 1 edges, hence it is a spanning tree.

We already knew w was a lower bound on spanning tree spinewidth, and now we
have a tree whose spinewidth is at most w, so sw(H) = w, proving the claim. □

The remainder of this section deals with three principal areas of interest. First,
we analyze the relationship between spines and longest paths. Second, we describe
a family of “fundamental trees” for the value of spinewidth. Third, we analyze how
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spinewidth interacts with the interior operation on graphs (the removal of all leaf
nodes).

But before all that, we begin with a few technical lemmas. Recall that the
length of a path is the number of edges. This number is one less than the number
of vertices. The distance between two connected vertices is the length of the shortest
path connecting them (or equivalently the shortest walk).

Lemma 3.4. For any connected subgraph H of a tree G, each vertex v in G is
closest to a unique vertex x in H, and any walk from v to y ∈ H runs through x.

Proof. Recall that on a tree there is a unique simple path between any two vertices.
Let x be one of the vertices on H closest to v. The unique simple path between

x and any other y on H is the one which lies entirely on (connected) H.
These two paths v → x and x → y must be disjoint, since the latter consists

entirely of vertices in H, and if any H vertex is visited before x then x was not
closest to v. Thus their concatenation v → x → y is simple.

In other words, for all y ∈ H, the unique simple path from v to y begins with
the unique simple path from v to x. In general, all walks v → y (which can be
loop-erased to the simple path v → y) must contain x.

For each y ∈ H \ {x}, since the unique path v → y is an extension of the path
v → x, it is strictly longer. Thus, x is the unique vertex of H closest to v. □

Lemma 3.5. Suppose H is a connected subgraph of a tree G, and vertex v is
distance n+ 1 from H, where n ≥ 0. Then among v’s neighbors:

• Exactly one is distance n from H
• The rest are distance n+ 2 from H
• All share the same nearest H-point with v.

Proof. Let (ti)
n+1
i=0 be the unique simple path from v to the nearest vertex h in H,

as guaranteed by Lemma 3.4. Observe t0 = v and tn+1 = h ∈ H. Moreover, t1
exists since n ≥ 0. Because t is a path, (t0, t1) ∈ E and t1 is a neighbor of t0 = v.

The truncation t′i = ti+1 is an n-long path from t′0 = t1 to t′n = h, so t1 is
distance at most n from H. Any shorter path t1 → H would concatenate with
(t0, t1) to produce a path shorter than n + 1 from v to H, a contradiction. Hence
t1 is distance n from H.

Suppose y is a neighbor of v other than t1. Observe y ̸= h, or else (v, y) = (v, h)
is the unique simple path v → h, whose first edge is (v, t1), so y = t1. Moreover,
y /∈ H, or else h was not the unique vertex of H nearest to v.

If we have tj = y for some j = 2, ..., n, then the truncation t0 → tj of simple
path t would be a different simple path v → y than the 1-long simple path (v, y)
(impossible). So, y does not occur on t and it may be adjoined to the head while
remaining a simple path:

si =

{
y i = 0

ti−1 1 ≤ i ≤ n+ 2

Thus s is the unique simple path y → h. Observe it has length n+ 2.
By Lemma 3.4, any walk from y to H must run through the nearest vertex of

H. By the construction of t, only tn+1 = h lies in H, so sn+2 = h must be this
nearest vertex. Therefore, s is the shortest path from y to the nearest vertex of H,
hence y is distance n+ 2 from H.
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In both cases, the constructed shortest path toH ended at h, the nearestH-point
to v, so all neighbors of v share the same nearest H-point with v. □

Lemma 3.6. On a connected graph G with spinewidth n, for each endpoint y of a
spine of minimum length, there is a vertex x closer to y than to any other vertex
on the spine, and x is distance n away from y.

To see an instance of the behavior this lemma guarantees, refer to Figure 3.7.
Throughout this paper, many figures with relevant spines will be drawn so the spine
lies at the bottom of the graph.

y

x

spinewidth = 3

length = 4

Spine vertices

Other vertices

Figure 3.7. d(x, y) = sw(G) = 3

Proof. Let (pi)
l
i=0 be a spine of minimum length. It suffices to prove the claim for

y = p0. The same logic applies to both endpoints.
Assume all vertices are either A) just as close or closer to pi than to p0, for some

i ̸= 0, or B) within n− 1 distance of p1.
Consider the shorter path p′i = pi−1 which skips p0. For any type A vertex, a

shortest path from v to spine vertex pi is still a shortest path to a vertex of p′i−1,
since by assumption pi ̸= p0. For any type B vertex, the path to p0 of length at
most n − 1, followed by the edge (p0, p1) is at most an n-long path to p1 = p′0.
Therefore, every vertex is at most n away from p′, so p′ is a shorter spine than p,
a contradiction. Hence the claim is shown. □

Proposition 3.8. For a tree,

minimum spine length+ 2× spinewidth = maximum path length

This result should not be surprising. It is intuitive that the two simple paths
guaranteed by Lemma 3.6, each of length sw(G), could concatenate with the spine
of minimum length to form a path, and that this path is of maximal length. In
Figure 3.7, G has spinewidth 3 and minimum spine length 4, and indeed the longest
paths have length 10.

Proof. Let (pi)
l
i=0 be a spine of minimum length for tree G, where l is the minimum

spine length, and w the spinewidth.
First, suppose l = 0. Consider all the furthest vertices from p0, all having

distance w from p0. Assume the simple paths to these far vertices all begin with
the same edge (p0, c). Then every vertex not within w−1 of p0 is within w−1 of c,
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so (p0, c) is a path achieving distance w−1 from all vertices. But this is impossible,
since w was the spinewidth. So, there are at least two edges which begin simple
paths to far vertices. Then there are at least two disjoint simple paths of length
w beginning at p0, say to far vertices x0 and xl. Their concatenation x0 → xl is
2w-long.

Now, suppose l > 0. From Lemma 3.6 each endpoint p0, pl is the closest spine
vertex to some vertex x0, xl which is w far from it.

The concatenation of simple paths x0 → p0, p0 → pl, pl → xl is itself a sim-
ple path, since no pi precedes p0 nor succeeds pl (by definition of xi), and since
any intersection between the first and last paths among the non-pi vertices would
constitute a path from p0 to the intersection to pl. This would be a simple path
p0 → pl other than the one lying solely on spine p (impossible).

The path x0 → xl then has length 2w + l.

d(x0, xl) = d(x0, p0) + d(p0, pl) + d(pl, xl) = 2w + l

We have shown that whether l = 0 or l > 0, there is a path of length 2w + l.
We want to determine which paths in G have length equal to or greater than this
one. Let (ti)

k
i=0 be a k-long simple path through G for some k ≥ 0. Let pa and pb

be the unique spine vertices closest to t0 and tk respectively, invoking Lemma 3.4.
By definition of spinewidth, the paths pa → t0 and pb → tk are both bounded by
length w. Also the simple path pa → pb along p is bounded by l (the length of p).
The simple path t between t0 and tk is the shortest walk between t0 and tk (since
the shortest walk is a simple path, and trees have unique simple paths). Therefore,
the length k of the arbitrary simple path t is bounded by the length of the walk
t0 → pa → pb → tk, which is at most 2w + l. In other words, the path we already
found is of maximum length 2w + l. □

Moreover, we can observe that the only time this bound is an equality and not
a strict < is when pa and pb are exactly l apart, which is to say they are opposite
endpoints of the spine p.

By the same logic as above, the path t0 → pa → pb → tk is simple. By simple
path uniqueness, this must be t itself, so t must visit each vertex in p.

In other words, every vertex in G is within w of some vertex in t, so t is itself
a spine, whenever t is of maximum length. We state this final result as its own
corollary:

Corollary 3.9. Any longest path in a tree contains a minimum length spine. So,
a longest path in a tree is a spine.

This result is not true of graphs in general. For instance, Figure 3.10 depicts a
graph without a spine achieving maximum path length.

Figure 3.10. Maximum path length 13, maximum spine length 12

Definition 3.11. Define Tn to be the tree which consists of 3 copies of the path
graph Pn and a node adjacent to the head of each copy.
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Figure 3.12. T1, T2, and T3

Provided in Figure 3.12 are the first three examples of Tn

In a sense, these graphs are “fundamental” trees of spinewidth n. Their presence
is the sole determining factor in the value of spinewidth (for trees). Equivalently,
Tn+1 is the only minimal forbidden subgraph for trees of spinewidth ≤ n.

Proposition 3.13. A tree G has spinewidth ≥ n iff it contains Tn as a subgraph.

Proof. Suppose Tn is a subgraph of the tree G. The induced degree of every vertex
on the spine (pi) of G is at most 2 (being a path), so at least 1 of the 3 central
edges is untouched by p. This exclusion isolates one of the three axes from the
spine. The shortest path from the extreme point x of this axis to the spine must
then include the unique simple path from x to the center, which is distance n. So,
the spinewidth is at least n.

Now suppose tree G has spinewidth ≥ n, and let (pi)
m
i=0 be a path of G achieving

maximum length m (and therefore a spine of G by Corollary 3.9).
There is at least one vertex x which is distance n away from p, or else p would be

a spine achieving spinewidth ≤ n− 1. From Lemma 3.4, there is a unique nearest
pj to x, for some j. Assume pj is less than n away from an endpoint e1. Then the
simple path from the other endpoint e2 to x (running through pj) has length

d(e2, x) = d(e2, pj) + d(pj , x) = m− d(e1, pj) + n ≥ m− (n− 1) + n = m+ 1

But then p wasn’t a longest path of G, a contradiction. Therefore, pj is at least
distance n away from both endpoints.

Thus three disjoint n-long simple paths (pj → x, pj → e1, pj → e2) begin at pj ,
exactly the structure which defines Tn. □

The same does not hold for arbitrary graph G. After all, every Tn is a subgraph
of the complete graph K3n+1, which are all traceable and have spinewidth 0. In
general, trees are the connected graphs which attain high spinewidth. Adding an
edge never increases spinewidth, it only possibly decreases it.

Definition 3.14. A leaf in a graph, or an external node, is a vertex with degree
≤ 1. The interior I(G) of a graph G is the subgraph induced by the set of non-leaf
nodes, or internal nodes.

This concept is visually represented in Figure 3.15. The white nodes are leaves
and the black nodes are internal nodes. The subgraph of black nodes is the interior
of the total graph.

The graph this figure provides can be described as a tree with spinewidth 3.
Inspecting the black subgraph, we find another tree, this one with spinewidth 2.
One might suspect that taking the interior of a tree always reduces the spinewidth
by 1, and indeed this is true.

Proposition 3.16. The interior of a connected graph is connected (or ∅).
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Leaf node

Internal node

Figure 3.15. Graph interior

Proof. Consider the size of I(G)

Case I) I(G) = ∅.
Case II) I(G) has 1 vertex, and thus is trivially connected.
Case III) I(G) has at least 2 vertices. Let x and y be vertices in I(G).

They are inherited from G, which is connected, so let (sn)
l
n=1 be a path

in G with s1 = x, sl = y. All vertices si for 1 < i < l are of degree
at least 2, since si ∼ si−1, si ∼ si+1. Hence these are all kept in I(G).
Then the path s lies entirely in I(G), so x and y are connected in I(G),
and I(G) is connected.

□

Corollary 3.17. The interior of a tree is a tree (or ∅).

Proof. I(G) is a subgraph, so any cycle in I(G) must also occur in G. □

Lemma 3.18. In a connected graph G other than the isolated point K1 or isolated
edge K2, every leaf has a non-leaf neighbor.

Proof. Suppose v is a leaf in an arbitrary connected graph G without a non-leaf
neighbor.

Case I) dv = 0
Then v is connected to no other vertices, so it is all of G, and G = K1.

Case II) dv = 1
Then v has one neighbor u, which is also a leaf, and hence connects to
no other vertices. Then G = K2.

□

Proposition 3.19. If the spinewidth of a tree G is n + 1 then the spinewidth of
I(G) is n, for any n ≥ 0. That is,

sw(G) = n+ 1 =⇒ sw(I(G)) = n

Furthermore, G and I(G) share the same minimum length spines.

Proof. Let (pi)
l
i=0 be a spine of minimum length for tree G with spinewidth n+ 1.

By Lemma 3.6, both endpoints of p are the heads of simple paths consisting of
no other p vertices. Then the endpoints both border at least one p vertex (p1 and
pl−1 respectively) as well as one non-p vertex. Each has degree d ≥ 2.

Non-endpoints of p also have degree d ≥ 2, since pi ∼ pi−1 and pi ∼ pi+1. Then
p is entirely non-leaf, and is retained in I(G).
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There are no vertices distance n + 2 from p, so from Lemma 3.5, all vertices
distance n + 1 from p have exactly one neighbor, and are therefore leaves not
retained in I(G). In other words, there are no vertices distance n + 1 from p in
I(G), hence

sw(I(G)) ≤ n

Let (qi)
l′

i=0 be a spine for I(G).
Graph G is neither K1 nor K2, since sw(G) ≥ 1, so we may apply Lemma 3.18

to it. Any vertex v in G is either a non-leaf or a leaf with a non-leaf neighbor.
Then d(v, q) is bounded by either sw(I(G)) or sw(I(G)) + 1 respectively.

q is a simple path in G within distance (sw(I(G)) + 1) of every vertex, so

n+ 1 ≤ sw(I(G)) + 1 =⇒ sw(I(G)) ≥ n

sw(I(G)) = n

Furthermore, a minimum length spine of G is a path within distance n of all of
I(G), so it is a spine of I(G). Likewise, a spine of I(G) is a path within distance
n + 1 of all of G, so it is a spine of G. Those spines achieving minimum length in
either graph achieve the same length in the other, so G and I(G) share minimum
length spines. □

Corollary 3.20. The spinewidth of a tree G is the minimum n such that In(G) is
a path graph.

Proof. The above result gives that each application of I lowers spinewidth until it
hits zero, at which point In(G) remains a tree, so In(G) is a path graph.

Because spinewidth only lowers by one per each application, n is also the first
time In(G) can be a path graph. □

Incidentally, this gives a linear-time algorithm to find a longest path in a tree.
The tree can be successively reduced to its interior until In(G) has at most 2 leaves.
At this point it is a path graph, and backtracking to find a path of n vertices from
each endpoint gives a path of maximum length, by Proposition 3.8.

Proposition 3.21. The minimum spine (pi)
l
i=0 of a tree G is unique up to reversal,

and any path in G is a spine iff it contains p as a subpath.

Proof. By Proposition 3.19, every application of I reduces the spinewidth by 1 but
retains the same minimum length spines. If spinewidth began at n, then after n ap-
plications, the only spines of In(G) are the traces of the path graph, of which there
are at most two (forwards and backwards). Then G also had only one minimum
length spine (pi)

l
i=0, say of length l, up to reversal.

The backward direction of the claim is trivial, since any path containing p as a
subpath is trivially a spine itself.

Now, suppose (qi)
k
i=0 is another spine of G with non-minimum length k > l.

Truncate q as much on each side as possible while the result remains a spine. Call
this truncation (q′i)

z
i=0. To prove the claim, it suffices to show this spine is of

minimum length. Then it would be the unique spine of minimum length p.
If both endpoints q′0, q

′
z have vertices x0, xz closest to them and distance n away,

then the unique simple path x0 → q′0 → q′z → xz is of length 2n + z. From
Proposition 3.8, all simple path lengths are bounded by 2n + l, so z ≤ l and q′ is
of minimum length.
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Now suppose there are no vertices whose nearest q-point is an endpoint at dis-
tance n. Without loss of generality, call this endpoint q′0. Then the truncation
(q′′i )

z−1
i=0 given by

q′′i = q′i+1

maintains the same distance to any vertex whose closest q′ point was not q′0. For all
other vertices, the distance grows by only 1, since q′0 and q′′0 are neighbors. These
distances were at most n − 1, so this new truncation q′′ is also a spine. But this
violates our assumption that q′ could not be truncated further while remaining a
spine. A contradiction.

Thus, the claim is shown. □

4. Exterminable Graphs

We now return to our original query Problem 1.2. Let us begin by giving a name
to the property we are searching for.

Definition 4.1. An extermination sequence for graph G is a k-vertex sequence
of vertices in G which intersects every k-vertex walk through G. An exterminable
graph is one which admits an extermination sequence.

Although the final result of this paper only applies to undirected graphs, the
problem itself is well-posed for directed graphs as well. For this reason, and since
many of the intermediate steps apply to both types, we will consider directed graphs
in addition to undirected graphs.

Listed below are some principles of intuition endowed by the puzzle, and also
where these principles will appear as formalized proofs throughout this section.

• In general, larger buildings are more difficult to exterminate.
– Any “sub-building” (subgraph) should be easier than the larger build-

ing it appears in. After all, we may always consider a sub-building
as belonging to a larger complex, and perform the same room checks.
The rat won’t be more able to escape our search than if it had more
options. This is proved for subgraphs in Proposition 4.3

• Multiple disconnected buildings can be checked one by one.
– If we are hired to exterminate a rat hiding in one of several buildings,

and we would be able to kill the rat if it were hiding in any one of the
buildings, then we can win. Simply checking each building individually
by its particular strategy should suffice. Exactly this strategy is used
to prove this result in Corollary 4.5

• Sometimes there are two groups of rats, and exterminating both groups is
only as hard as exterminating one.

– Inspecting Figure 1.1, one might notice that halfway through the strat-
egy, all rats beginning in an even-numbered room have been killed.
Furthermore, even if we refrained from searching any more rooms, the
dirty region would never grow back to the full building. This is be-
cause there are two groups of rats which can never meet, and which
alternate habitats every turn. This distinction is illustrated by Fig-
ure 4.2, where the extermination strategy has been split into its two
halves. One kills all “even” rats, the other all “odd” rats.
If we can kill all of one group, that same strategy should be able to
kill all of the other, by simply waiting until they appear identical to
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the ones we already know how to kill. This property, which is only
relevant for bipartite graphs, is proven in Proposition 4.8

Figure 4.2. The two groups of rats in P5

• The exterminator reduces the “dirty” region of the graph.
– Another valid mathematical interpretation of the problem is: instead

of finding a sequence which catches every possible rat, find a sequence
which reduces the set of possibly rat-infested rooms from everywhere
to nowhere. These two notions of exterminable, one microscopic, con-
sidering every walk individually, and one macroscopic, considering the
total region of not-yet-intersected walks, ought to be equivalent. A
sequence of rooms which meets every possible rat path should also be
a sequence of rooms which reduces the “dirty” region of the graph,
the set of rooms where a rat might be hiding, from everywhere to
nowhere. This equivalence is formalized and proved in Definition 4.9
and Proposition 4.12.

• “Progress” must always be possible. Stagnation is defeat.
– A “simple” strategy should never return to a prior state, only ever

make progress until there is no progress to be made (no rats survive).
For instance, if all 3 rooms in the original puzzle had been connected
in a triangle, there could be no successful strategy, because no mat-
ter which room was checked, the rat could be anywhere next turn.
The first, general statement appears as Corollary 4.14, and the second
statement (that a circle of rooms cannot be exterminated) appears as
Corollary 4.16.

Proposition 4.3. If H is a subgraph of G, and G is exterminable, then H is
exterminable.

Proof. Let (sn)
k
n=1 be an extermination sequence of G, and let v be a vertex in H.

Define sequence (s′n)
k
n=1 in H as

s′n =

{
sn sn ∈ H

v sn /∈ H
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Any walk (tn)
k
n=1 through H is also a walk through G, so it intersects s at some

m ≤ k. Then s′ also intersects t at m:

sm = tm ∈ H ⇒ s′m = sm = tm

□

Proposition 4.4. A directed graph is exterminable iff every strongly connected
component is exterminable.

Proof. Every strongly connected component of a directed graph G is a subgraph of
G, so the forward direction follows from Proposition 4.3.

Let Ci, for i = 1, ..., l, be the strongly connected components of G, ordered so
that for any j > i there is no path Cj → Ci. This order is possible since the
“condensation” of a directed graph (the graph constructed by quotienting out by
strong connectivity) is directed acyclic, and hence defines a partial order, which
can be extended to a total order.

Suppose these Ci are exterminable, so each Ci has a ki-vertex extermination
sequence (si,n)

ki
n=1. Define di to be the partial sums of ki:

dj =

j∑
i=1

ki

Define sequence (sn)
dl
n=1 through G as the concatenation of these sequences in

order:

1 ≤ n− dj−1 ≤ kj =⇒ sn = sj,n−dj−1

Strong induction on i will prove the following claim: “For any dl-vertex walk
(tn)

dl
n=1 and any m ≥ di, if tm ∈ Ci then t intersects s.”
Suppose the claim holds for all j < i. Let m ≥ di and t be a walk with tm ∈ Ci.

There is a walk tdi−1+1 → tm given by truncating t. From the ordering of Ci, we
must have that tdi−1+1 ∈ Cj for some j ≤ i.

If j < i, then the desired result follows from the inductive hypothesis (di ≥
dj , tdi ∈ Cj). Else, j = i.

By the component ordering, t can never leave Ci after vertex di−1 + 1. If it
moved to an earlier Cj , it would be a direct violation of the ordering. If it moved
to a later Cj , its eventual return by vertex m would be a violation. Then we may
truncate t to a walk t′ lying entirely in Ci.

t′n = tn+di−1
, for n = 1, ..., ki

But si,n is an extermination sequence for Ci, so there is some x ∈ 1, ..., ki at
which si,x = t′x. Then s intersects t at di−1 + x:

sdi−1+x = si,x = t′x = tdi−1+x

Thus the induction is shown. Therefore, no matter which strongly connected
component Ci contains tdl

, we have dl ≥ di, so t must intersect s. In other words,
s is an extermination sequence. □

In an undirected graph, this reduces to the following statement:

Corollary 4.5. An undirected graph is exterminable iff every component is exter-
minable.
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We are building towards proving the desired microscopic-macroscopic equiva-
lence. An intermediate step is to describe “partial cleanings” of a graph G, i.e.
reductions of partially dirty states, via a sequence which intersect all walks begin-
ning in some specified subset of G.

Definition 4.6. A subset S ⊂ V is sub-exterminable if some k-vertex sequence
intersects every k-vertex walk beginning in S.

Before we link this new concept to the upcoming reformulation of exterminability,
let us clarify how it coincides with our prior construction:

Proposition 4.7. G = (V,E) is exterminable iff every subset S ⊂ V is sub-
exterminable.

Proof. Both directions are trivially true. Any walk in G beginning in S is a walk
in G, so it intersects any extermination sequence of G. If every subset is sub-
exterminable, then V is sub-exterminable, so some sequence intersects every walk
beginning in V (all possible walks). □

This concept allows us to describe the exterminability of smaller portions of a
graph. It is a necessary step to begin to describe the gradual descent of the dirty
region. In the meantime, it gives a language to formalize our intuition about the
simplification of bipartite graph strategies.

Proposition 4.8. If undirected bipartite G has parts A and B, and A is sub-
exterminable, then G is exterminable.

Proof. Let (s′n)
k
n=1 be the k-vertex sub-extermination sequence for A, for some k.

Define 2k-vertex sequence (sn)
2k
n=1 in G as

sn =

{
s′n n ≤ k

s′2k+1−n n > k

Let (tn)
2k
n=1 be a 2k-vertex walk in G.

First suppose t1 ∈ A. Then the first half of t is a k-vertex walk beginning in A,
and at some m ≤ k, it intersect s′. At this m, it also intersects s:

sm = s′m = tm

Now suppose t1 ∈ B. The walk t must alternate between parts of G (consecutive
t-points are adjacent). Then t2k, occurring odd many (2k−1) steps after t1, must lie
in A. Define the reversed walk t′n = t2k+1−n. Now we have t′1 ∈ A, so t′ intersects
s′ at some m ≤ k by the same logic at above. Then sn intersects tn at 2k+ 1−m:

s2k+1−m = s′m = t′m = t2k+1−m

t was an arbitrary 2k-vertex walk, so s is an extermination sequence. □

In fact, “undirected” is not a property required in the above proof. Instead of
concatenating a reversal of the original sequence, we could have concatenated the
original sequence in the same order, shifted to the right by either 0 or 1 so that this
second run-through begins on a turn with opposite parity as the first. However, we
only need the statement on undirected graphs, and the reversal method guarantees
a faster extermination sequence whenever both apply.
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Finally we may define our two notions of exterminability and show their equiva-
lence. The first notion involves a sequence of vertices which intersects every walk.
The second involves a sequence of searches which reduces the set of possible rat
locations from everywhere to nowhere. As the exterminator progressively cleans the
building, there will be some shrinking region in which a rat might still be hiding.
We wish to formalize the step-by-step shrinking.

For a set of possible rat locations S, and for room choice u, we will define ρ(S, u)
to be the set of possible rat locations next turn, given that the rat was not in
room u. In other words, ρ(S, u) is a reduction of the dirty region S, generated by
searching room u. Then, we can consider the space of all possible dirty regions, i.e.
vertex sets, and ask whether we can reduce each S1 to each S2, step by step. This
structure is a directed graph ΩG, whose vertices are dirty regions and whose edges
are one-step reductions.

Definition 4.9. For any directed graph G = (V,E), consider the following function
ρ defined on vertex sets in G. P(V ) is the set of vertex sets.

ρ : P(V )× V → P(V )

ρ(S, u) = {v ∈ V |(s, v) ∈ E, s ∈ S, s ̸= u}
Define directed graph ΩG on the collection of vertex sets as

ΩG = (P(V ), E′)

E′ = {(S, T )|ρ(S, u) = T, u ∈ V }

For any dirty region S and vertex u, ρ(S, u) is the next dirty region resulting
from searching vertex u. So, ΩG is the road map for cleaning. It shows which dirt
arrangements can be reduced to each other. We would like to say that a cleaning
route through this map is also an extermination sequence, and vice versa.

As an example, Figure 4.10 provides the road map for path graph P3. Vertex
sets are represented by the black region of the graph. The two-edge path V → ∅
corresponds to the two-vertex extermination sequence for P3. Since we don’t care
too much about the vertex labels, and vertex sets are fundamentally identical with
automorphic copies, we may just as easily work with ΩG up to automorphism, for
readability. Such a condensed road map is provided in Figure 4.11.

Proposition 4.12. S is sub-exterminable iff there is a (directed) walk from S to ∅
in ΩG.

Proof. Suppose there is no (directed) walk from S to ∅ in ΩG. Let (sn)
k
n=1 be a

k-vertex sequence, and consider the sequence (tn)
k+1
n=1 in ΩG constructed by:

t1 = S

tn+1 = f(tn, sn)

By definition of the edge set of ΩG, each (tn, tn + 1) is an edge in ΩG, so t is a
walk. Then by the assumption, tk+1 ̸= ∅. Let xk+1 ∈ tk+1.

Construct a k-vertex walk xn through G by the following induction. For each
n ∈ k, ..., 1, we maintain that xn+1 ∈ tn+1. By choice of xk+1 this holds for the
base case n = k. For smaller n, since we have

xn+1 ∈ tn+1 = f(tn, sn) = {v ∈ V |(x, v) ∈ E, x ∈ tn, x ̸= sn}
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Figure 4.10. ΩP3

Figure 4.11. ΩP3
up to automorphism

there must be some v ∈ tn, v ̸= sn such that (v, xn+1) ∈ E. Define xn to be this v.
Then x is a walk in G and each xn ∈ tn as promised.

Also, since each xn ̸= sn, we have constructed a walk xn beginning at x1 ∈ t1 = S
not intersecting the sequence sn, so sn cannot be a sub-extermination sequence. sn
was arbitrary, so S has no sub-extermination sequence. This concludes the forward
direction.
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Suppose ΩG admits a (directed) path from S to ∅, and call this path (tn)
k+1
n=1,

of length k. Since each (tn, tn+1) ∈ E, we know that at each n, there is some sn
satisfying

tn+1 = f(tn, sn)

This defines a k-vertex sequence (sn)
k
n=1 in G.

Let (xn)
k
n=1 be an arbitrary k-vertex walk through G beginning in S. Since

x1 ∈ S = t1 and xn /∈ ∅ = tk+1, there is some minimum m at which

xm ∈ tm, xm+1 /∈ tm+1

By the construction of t, tm+1 = f(tm, sm). If sm were not xm, then the presence
of the edge (xm, xm+1) would force the inclusion of xm+1 into tm+1, so we observe
sm = xm.

Since x was an arbitrary k-vertex walk beginning in S, s is a sub-extermination
sequence for S, and S is sub-exterminable. □

The above bijection between extermination sequences and paths through ΩG has
the property that length is retained. For this reason, the shortest extermination
sequence and the shortest path from V to ∅ have (approximately) the same size.

Corollary 4.13. Any shortest extermination sequence in G has size either dΩG
(V, ∅)

or dΩG
(V, ∅) + 1.

Proof. There are two reasons why a k-vertex sequence (sn)
k
n=1 might result in a

path from V to ∅ in ΩG. Either A) every possible walk has been intersected by step
k, or B) all the possible walks that have not yet been intersected by step k have
nowhere to go next turn (they are at a vertex with out-degree d+ = 0). Either way,
the next dirty region (represented by tk+1 in the above proof) is the empty set.

In type A, s is an extermination sequence. In type B, we must append a vertex
to the end of s. The choice of vertex does not matter. This is because s does not
intersect every k-vertex walk through G, however there are no (k+1)-vertex walks
through G which don’t intersect s in the first k steps.

If there is a type A s which constructs a shortest path from V to ∅ in ΩG, then
this s is a shortest extermination sequence, and it has dΩG

(V, ∅) vertices. Otherwise,
there are only type B sequences constructing shortest paths from V to ∅ in ΩG,
and the shortest extermination sequence has dΩG

(V, ∅) + 1 vertices. □

The contrapositive of Proposition 4.12 is useful to prove that certain graphs are
not exterminable. It is stated below for convenience.

Corollary 4.14. G is not exterminable whenever some path-component in ΩG does
not contain ∅.

We now begin to classify graphs with respect to exterminability. We find two
classes which cannot be exterminable and one class which is. This will be enough
to describe all undirected graphs.

Proposition 4.15. If G has no vertex with in-degree ≤ 1 (if minimum in-degree
δ− ≥ 2), then G is not exterminable.

Proof. Using Corollary 4.14, it suffices to find a family of vertex sets closed under
arrows in ΩG, not containing ∅.
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Consider the (singleton) collection {V }. Pick arbitrary x, y ∈ V . Since y has
in-degree ≥ 2, it has at least two in-neighbors, so at least one is not x. Call this
vertex z.

(z, y) ∈ E, z ̸= x =⇒ y ∈ f(V, x)

Since y was arbitrary, V ⊂ f(V, x). Then for any x, the arrow in ΩG generated
by x points back to V , so our collection is closed, proving the claim. □

Corollary 4.16. No undirected cycle is exterminable. Any exterminable undirected
graph is acyclic.

Proof. Corollary of above (cycles are 2-regular graphs). The second claim follows
from incorporating Proposition 4.3. □

This concludes the intuitive proofs about exterminable graphs, i.e. the results
promised in the beginning of this section.

The remainder of the section will rely heavily on results from Section 3 about
spinewidth. It will be shown that all trees with spinewidth greater than 2 are not
exterminable, whereas all trees with spinewidth at most 2 are. The latter is a
constructive proof, and supplies an exact extermination sequence.

Proposition 4.17. T3 is not exterminable.

Proof. Using Corollary 4.14, it suffices to find a family of vertex sets closed under
directed edges in ΩG (i.e. a path-component of some S) not containing ∅.

Consider the family depicted by Figure 4.18. Vertex sets are represented by the
black regions in the graph. All arrows (up to automorphism) in ΩT3

beginning in
the family depicted are included in the figure.

Since there is no path to ∅, T3 is not exterminable. □
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Figure 4.18. Path component in ΩT3 not containing ∅

Proposition 4.19. If tree G has spinewidth ≤ 2, then G is exterminable.

Proof. First consider G = K1. Let V = {v}. The 1-vertex sequence (v) intersects
the only 1-vertex walk t = (v).

Next consider G = K2. Let V = {u, v}. The 2-vertex sequence (v, v) intersects
the two 2-vertex walks t = (u, v) and t′ = (v, u).

Finally consider when G is neither K1 nor K2, so by Lemma 3.18 there is some
non-leaf vertex and the interior of G is nonempty.

I(G) ̸= ∅
If G has spinewidth 0, it is a pathgraph Pn for n ≥ 3, and I(G) is also a path

graph Pn−2. Otherwise, by Corollary 3.17 and Proposition 3.19, I(G) is a tree of
spinewidth ≤ 1. In either case, I(G) is a tree of spinewidth ≤ 1.

Let (pi)
l
i=1 be a longest path through I(G), say with l vertices. By Proposi-

tion 3.21, p contains the minimum spine of I(G), which by Proposition 3.19 is also
a spine of G, so p is a spine of both I(G) and G. G is bipartite (G is a tree), so
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let A be the part containing p1. For each i in 1, ..., l, define ki to be the number of
non-p neighbors of pi (in I(G)), and label these neighbors as vi,j for j = 1, ..., ki.

Let qi be the partial sums of 2ki + 1.

qi =

i∑
j=1

(2kj + 1)

Define sequence (sn)
ql
n=1 in G:

1 ≤ n ≤ 2ki + 1 =⇒ sqi−1+n =

{
vi,n/2 n even

pi n odd

Visually, this sequence is a walk, a contour tracing of I(G), as illustrated by
Figure 4.20. The example graph G used in Figure 4.20 and Figure 4.21 is the same
lobster from Figure 1.4.

p1 p2 p3 p4 p5 p6

v2,1 v2,2 v2,3 v4,1 v4,2 v5,1

Figure 4.20. Contour tracing of I(G)

I claim this sequence is a sub-extermination sequence for part A. It would then
follow by Proposition 4.8 that G is exterminable.

By Lemma 3.4, to each vertex v in G there is a unique nearest pz, so we label
each vertex by its nearest spine point’s index, by defining φ : G → N as φ(v) = z.
A example of a φ-labelling is provided in Figure 4.21

1 2 3 4 5 6

1 1 2 2 2 4 4 5 5 6

2 2 2 2 4 4 4 4 5

Figure 4.21. A φ-labelling of G

Suppose (tn)
ql
n=1 is a ql-vertex walk beginning in A. Since walks alternate parts

of a bipartite graph, and since s and t begin in the same part, they will always be
in the same part. Consider arbitrary edge (tn, tn+1) on walk t.

Case I) Both tn and tn+1 are p-points.
Then their edge lies on p, i.e. tn = pi, tn+1 = pi±1, or else the 1-long
(tn, tn+1) would be a simple path tn → tn+1 other than the path lying
entirely on p (impossible).
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Case II) At least one is not a p-point.
Then this vertex has distance ≥ 1 from p, so we may apply Lemma 3.5
and see that tn and tn+1 share the same nearest p-point. In other words
φ(tn) = φ(tn+1).

Thus, on any walk t, the only time φ(tn) changes is when t walks along p. Now,
assume t never intersects s.

(4.22) ∀n : tn ̸= sn

Then:
t1 ̸= s1 = p1

tql ̸= sql = pl

Since p is a longest path in tree I(G), its endpoints can have no non-p neighbors
in I(G), or else p could be extended to a path with longer length. So, the endpoints
of p have no non-leaf neighbors in G. That is, the only vertices v with φ(v) = 1
are p1 and neighbors of p1. Of these, the only vertex in the same part as p1 is p1.
Likewise for pl. This tells us:

φ(t1) > 1 = φ(s1)

φ(tql) < l = φ(sql)

Then there is some minimum m at which φ(tm) ≤ φ(sm).
First, observe that φ(tm) = φ(sm). Since φ of a walk changes by at most 1 per

step, the only other possibility for m would be both s and t walk along p and pass
through each other at step m, at edge (pw, pw+1) for some w:

sm−1 = pw =⇒ φ(sm−1) = w

tm−1 = pw+1 =⇒ φ(tm−1) = w + 1

sm = pw+1 =⇒ φ(sm) = w + 1

tm = pw =⇒ φ(tm) = w

But then sm and tm are neighbors, and must lie on different parts of bipartite
G, a contradiction. So, we do have φ(tm) = φ(sm). Call this shared value w.

Because m is the first occasion at which φ(tm) = φ(sm), one of these values
must have just changed, either a decrease from t or an increase from s (or both).

In the first case, we must have tm = pw, since φ(tm) can only change while
walking along p. But the only possible sm which satisfies both A) sm and tm lie in
the same part, and B) φ(sm) = w, is sm = pw, so t and s intersect, a contradiction.

Otherwise φ(tm) = φ(tm−1) and sm = pw, sm−1 = pw−1. (In fact, the only m
at which this s step occurs is m = qw−1 + 1.) Since A) tm lies on the same part as
sm, and B) φ(tm) = w, we must have that tm is a leaf of some vw,j .

For the next 2kw steps, t cannot intersect s, so for any n ≤ kw, tm+2n ̸=
sm+2n = pw. Then t is restricted to vw,j and its leaves. Furthermore, it must
alternate between these two options. But this means

tm+2j−1 = vw,j = sqw−1+2j = sm+2j−1

so t intersects s, a contradiction.
All cases are exhausted, so our assumption (4.22) was incorrect, and every

ql-vertex walk t beginning in A must intersect s. In other words, s is a sub-
extermination sequence for part A of bipartite G, and therefore G is exterminable.

□
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Theorem 4.23. A connected graph is exterminable iff it is a lobster.

Proof. Recall that a lobster is just a tree with spinewidth ≤ 2.
Suppose connected G is a lobster. Then by Proposition 4.19 it is exterminable
Now suppose connected G is exterminable. By Corollary 4.16 G is acyclic, so

G is a tree. By Proposition 4.3 and Proposition 4.17 G does not contain T3. By
Proposition 3.13 G has spinewidth ≤ 2. In other words, G is a lobster. □

Corollary 4.24. An undirected graph is exterminable iff every component is a
lobster.

Proof. Combines Theorem 4.23 with Corollary 4.5. □

5. Future Directions

This problem, and other variations, are still ripe with undiscovered phenomena.
Notably, this paper leaves unsolved the problem on general directed graphs. Pro-
vided below are two more tools for analyzing such graphs and their exterminability.

First, a directed graph can be reversed and remain exterminable. Recall the
graph transpose, or GT , is the graph constructed by reversing all arrows.

Proposition 5.1. G is exterminable iff GT is exterminable.

Proof. By symmetry, it suffices to prove only the forward direction. So, suppose G
is exterminable. Let (sn)

k
n=0 be an extermination sequence for G. Define sequence

(s′n)
k
n=0 as the reversal of s

s′n = sk−n

Let (t′n)
k
n=0 be a (k+ 1)-vertex walk through GT . Define sequence (tn)

k
n=0 in G

as the reversal of t′

tn = t′k−n

Observe that tn is a walk through G:

(tn+1, tn) = (t′k−n−1, t
′
k−n) ∈ E(GT ) =⇒ (tn, tn+1) ∈ E(G)

Then at some step m, t intersects s. Thus, at k −m, s′ intersects t′:

s′k−m = sm = tm = t′k−m

Hence s′ is an extermination sequence for GT , and GT is exterminable. □

Second, graphs can be transmuted via an action by their automorphism group,
and remain exterminable.

We must define this action of the symmetric group Sn on the set of graphs with
n vertices. The typical “vertex-shuffling” action attributed to Sn permutes the n
vertices, which carry their arrows with them. This has the result that for any graph
G and any permutation σ, G is isomorphic to σ(G). No graph can be permuted to
a “different” graph. However, the new action defined below, an “arrow-shuffling”
action, does not have this property. It is able to transmute a graph into a “different”
graph. We will differentiate between these two actions by writing ν(σ,G) to mean
a vertex-shuffled G, and α(σ,G) to mean an arrow-shuffled G.

Definition 5.2. Define left action α ofSn on n-vertex directed graphs. Let σ ∈ Sn

and let G be a graph with n vertices. The vertex set of α(σ,G) is defined to be the
same vertex set as G. The edge set is defined as

(u, v) ∈ E(G) ⇐⇒ (u, σ(v)) ∈ E(α(σ,G))



RAT-CATCHING: A PURSUIT-EVASION GAME ON UNDIRECTED GRAPHS 23

To be clear, this is not the typical action of the symmetric group on G. Usually,
we consider permutations of vertices. This new action is different: it keeps vertices
fixed but moves the targets of arrows.

For instance, consider the following automorphism σ on the 8-node 1-regular
graph, depicted by Figure 5.3. The transformation fixes the first edge, reflects the
second, and swaps the third with the fourth.

1 2 3 4

5 6 7 8

G

1 6 4 3

5 2 8 7

ν(σ,G)

σ

Figure 5.3. Specific automorphism on 8-node 1-regular graph

The transmuted graph α(σ,G), under the arrow-shuffling action, would then be
the graph depicted in Figure 5.4. Notice this new graph is not isomorphic to the
original.

1 2 3 4

5 6 7 8

Figure 5.4. α(σ,G)

This action is especially useful when we restrict to the automorphism group
Aut(G) of a graph with n vertices, i.e. the subgroup of Sn which is trivial under
the vertex-shuffling action. This definition of automorphism group coincides with
the standard definition for graphs.

Proposition 5.5. G is exterminable iff α(σ,G) is exterminable for all σ ∈ Aut(G).

Proof. Fix σ ∈ Aut(G). First, there is a bijection between sequences in G and
sequences in α(σ,G) which preserves walks.

For sequence (sn)
k
n=0 in G, for any k, define Ψ(s)n as

Ψ(s)n = σn(sn)

Clearly the original sn can be recovered from Ψ(s)n by applying σ−n. The
existence of an inverse mapping proves bijectivity.

This mapping Ψ of sequences preserves intersections.

sn = tn =⇒ Ψ(s)n = σn(sn) = σn(tn) = Ψ(t)n

It also preserves walks.

(sn, sn+1) ∈ E(G) =⇒ (σn(sn), σ
n(sn+1)) ∈ E(G)

=⇒ (Ψ(s)n,Ψ(s)n+1) = (σn(sn), σ
n+1(sn+1)) ∈ E(α(σ,G))
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So, if sequence s intersects every walk through G, then Ψ(s) intersects every
walk through α(σ,G).

The backwards direction of the claim is trivial, since the identity of Aut(G) has
trivial action on G. □

Neither property found use in the paper, although they are not without their
merits. For instance, they can be used to show the graphs of Figure 5.6, Figure 5.7,
and Figure 5.8 are equally exterminable.

Figure 5.6. Equally exterminable graphs, Collection I

Figure 5.7. Equally exterminable graphs, Collection II

Figure 5.8. Equally exterminable graphs, Collection III
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The common weakness in these methods is that they apply too rarely. The first
only equates the exterminabilities of two graphs, and when the original graph is
undirected it is entirely useless. The second relies on symmetries inherent in G,
which are rather rare across general graphs.

The original rat problem can be further generalized by asking “What if a team of
n exterminators was hired? How many exterminators does this building require?”
A formalization for this property is given below.

Definition 5.9. An n-extermination sequence is an n-large collection of k-
vertex sequences (sj,i)

k
i=1 through G, one for each j = 1, ..., n, such that every

k-vertex walk (ti)
k
i=1 in G intersects at least one sequence (sj,i = ti for some j

and i). Equivalently, it is a k-large sequence Si of vertex sets, each of size at most
n, such that every k-vertex walk (ti)

k
i=1 in G lies in one of the sets at some step

(ti ∈ Si for some i). A graph G is n-exterminable if n is the smallest number
such that G admits an n-extermination sequence.

Many of our results can be very slightly tweaked to say more in this new language.
Some examples are listed below.

Proposition 5.10. Suppose G is n-exterminable.

(i) Every subgraph of G is (≤ n)-exterminable.
(ii) G has an n-exterminable strongly connected component.
(iii) GT is n-exterminable.
(iv) n ≥ δ− (the minimum in-degree).
(v) n ≥ δ+ (the minimum out-degree).
(vi) n ≤ 1 iff G is exterminable.

We may further attain some upper and lower bounds on n, relating this number
to some established graph-theoretic properties.

Proposition 5.11. G is 0-exterminable iff G is a directed acyclic graph.

Proof. The only graph for which every k-long walk intersects one of an empty set of
sequences is a graph with no k-long walks for large enough k. This class of graphs
is the well-established “directed acyclic graph.” □

Proposition 5.12. Suppose G is n-exterminable. Then n ≤ V −α(G), where α(G)
is the anticlique number of G.

Proof. Let A be an anticlique of size α(G), and let B be its complement of size
V −α(G). The (V −α(G))-extermination sequence (B,B) intersects every 2-vertex
walk, since no edge goes from A to A. □

Corollary 5.13. Complete graph Ka is (a− 1)-exterminable.

Proof. Ka is (a − 1)-regular, so n ≥ a − 1. Ka has anticlique number α(Ka) = 1
(every node is loop-less), so n ≤ a− 1. □

Corollary 5.14. Suppose G is n-exterminable. Then n ≥ ω(G) − 1, where ω(G)
is the clique number of G.

Proof. Subgraphs require less or equally many exterminators as the whole graph,
by Proposition 5.10. The clique in G of size ω(G) requires ω(G) − 1. Then the
whole graph requires at least that many. □
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Corollary 5.15. If a ≤ b, then complete bipartite graph Ka,b is a-exterminable.

Proof. Ka,b has minimum degree δ(Ka,b) = a, so n ≥ a. Ka,b has anticlique number
α(Ka,b) = b, so n ≤ (a+ b)− b = a. □

The following are two unproven claims on n-exterminable graphs.

Conjecture 5.16. An m × n 2-dimensional grid, for m ≤ n, is (
⌊
m
2

⌋
+ 1)-

exterminable. More generally, an n1 × · · · × nd d-dim grid, for n1 ≤ · · · ≤ nd,

is
(⌊

V
2nd

⌋
+ 1

)
-exterminable, where V =

d∏
i=1

ni.

This value is certainly an upper bound. However, it is difficult to prove it is a
lower bound.

Conjecture 5.17. For every n ≥ 0 there is an n-exterminable tree.

This should hold because a complete rooted binary tree of arbitrarily high depth
should require arbitrarily many exterminators.

One application of this framework is on Markov chains. Suppose we have a
Markov process, and we wish to discover which state the process is in. Assume that
the number of states we are able to check per turn of the process does not depend
on which states we check, and call this number n. This goal is accomplishable in
finite time exactly when the corresponding directed graph (weights do not matter
for now) is n-exterminable.

However, this is not a complete picture. Markov chains are not simply progres-
sions of possible states, they have accompanying probabilities. What if we also
cared about the expected number of turns before the conclusion of our search. It
is conceivable that a search strategy which prioritizes worst-case duration will not
prioritize expected-case duration, and vice versa.

Indeed, this is often the case. Provided below are a few simple examples of this
behavior.

Definition 5.18. Define Xx×y to be the tree which consists of x copies of the path
graph Py, called axes, and a node adjacent to the head of every copy. Enumerate
the path graph vertices as vi,j , for i = 1, ..., x and j = 1, ..., y. Name the center
vertex o, adjacent to each vi,1.

It is easy to see this is an extension of the symmetric T-shaped tree family
constructed in Definition 3.11:

Tn = X3×n

Example 5.20. Consider the following two strategies on Xx×2. One is greedy
(always searching the most likely room), one is methodical (with a guarantee of
eventual capture). To calculate expected probabilities, we use random walks on the
graph. Let (gn)

∞
n=0 be the constant sequence given by gn = o for all n. Let (sn) be

the extermination sequence of Xx×2 as constructed by Proposition 4.19.
Then the respective durations, expected and maximum, are

g s

Maximum ∞ 4x− 2

Expected
9x+ 1

2x+ 1
≈ 4.5

2x3 + 9x2 − 9x− 6 + (12x+ 6) · 2−x

2x2 + x
≈ x+ 4
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o v1,1 v1,2 . . . v1,y

v2,1 v2,2 . . . v2,y

...
...

. . .
...

vx,1 vx,2 . . . vx,y

y

x

Figure 5.19. Xx×y

In fact, the infinitely many mixes between these two strategies, i.e. those which
check only the center vertex some finite number of times, then proceed with the
methodical strategy, are all mutually incomparable (none is strictly preferable to
another). They may even all be “maximal,” in the sense that no strategy is strictly
better than any of them, better in both the expected case and the worst case
simultaneously.

Example 5.21. Let α ∈ [0, 1] be arbitrary. Consider the maximal strategies on
the weighted directed graph in Figure 5.22. We begin with initial distribution
P (x) = α, P (y) = 1− α.

x y
1− α

α 1

Figure 5.22. Weighted Directed Graph

The strategies which visit x twice are never maximal. This is because after the
first visit to x, there is 0% chance of the rat being there ever again. Therefore,
upon visiting x, a maximal strategy will visit y once, then terminate (at this point
the rat will have been caught with 100% certainty).

This means that every maximal strategy is uniquely defined by how many times
it visits y before visiting x. Call this number n. If it never visits x (the unique
constant y strategy) let us say n = ∞.

General n n = 0 n = ∞
Maximum n+ 2 2 ∞

Expected 1+αn−3αn+1+αn+2

1−α 2− α 1
1−α

We can condense this into three cases, depending on the relative size of α and

2− ϕ ≈ 0.382, where ϕ is the golden ratio ϕ = 1+
√
5

2 ≈ 1.618.
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Case I) α > 2− ϕ
The expectation curve is monotonically increasing. The longer the
strategy waits to search vertex x, the worse the expected search du-
ration is. This agrees with the maximum duration trend, so the only
maximal strategy is to immediately search vertex x.
Maximal values of n: {0}.

Case II) α = 2− ϕ
The expectation curve is flat. It has constant value ϕ. No matter how
long we wait to search vertex x, we expect to terminate after ϕ searches.
Since all strategies have equal expected duration, the maximality condi-
tion is solely dependent on maximum duration. Then the only maximal
strategy is to immediately search vertex x.
Maximal values of n: {0}.

Case III) α < 2− ϕ
The expectation curve is monotonically decreasing. The longer the
strategy waits to search vertex x, the better the expected search dura-
tion is, approaching a value of 1

1−α , which is attained by the constant-y
strategy. This goes directly against the maximum duration trend, so
every strategy is maximal. There are infinitely many maximal strate-
gies.
Maximal values of n: N ∪ {∞}.

Even without turning to probability and random walks, one might be curious
about an extermination sequence of minimum length. Corollary 4.13 provides a
tool to find this length on a chosen graph, although it requires finding a shortest
path through a directed graph of non-polynomial size.

I believe that the algorithm constructed in Proposition 4.19 is close to optimal
in its total duration, but I do not provide a proof of this claim. Recall this full
sequence is the concatenation of one sequence constructed per each component,
each of which is the interior contour tracing plus its reversal immediately after.

Conjecture 5.23. For isolated node K1, the sole 1-vertex sequence is a shortest
extermination sequence.

For other trivial (edgeless) G, any 2-vertex sequence is a shortest extermination
sequence.

For nontrivial undirected graph G whose components are lobsters, the extermina-
tion sequence constructed by Proposition 4.19, modified so every trivial component
is skipped, has minimum duration.
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