
ON THE COCOMPLETENESS OF Cat

FATIMA NASIR ABBASI

Abstract. This paper provides a self-contained account of the cocomplete-

ness of Cat, the category of small categories, by embedding it in the presheaf

category of simplicial sets.
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1. Introduction

This paper will serve as a brief exploration of basic categorical concepts as we
prove the completeness and cocompleteness of Cat. We will prove in Section 5 that
it suffices to show that a category contains all its (co)products and (co)equalizers
to prove (co)completeness.

The completeness of Cat will be immediate, as we can explicitly construct prod-
ucts and equalizers. However, the explicit construction of coequalizers is not as
straightforward and we choose a different route to prove cocompleteness.

In Section 6, we explore the functor category of simplicial sets and show that it
is cocomplete by virtue of being a presheaf category. We prove that right adjoints
preserve limits and the dual and use these results to show that if a category is
cocomplete, its reflective subcategories would also be cocomplete.

It only remains to prove that Cat is a reflective subcategory of sSet. We explic-
itly construct the nerve and Π functors in Section 7 to do so, after which we obtain
a complete proof of cocompleteness of Cat.
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2. Basic Category Theory

Category theory provides a language which allows us to abstract out some of the
contextually negligible details to establish similarities between concepts in different
areas of mathematics. In a sense, it is a zooming-out, where the resolution is just
good enough to view critical details, allowing us to look at a bigger picture. It deals
with objects on a larger scale than what one usually does, and builds an environment
to observe how objects interact with other objects in that environment.

It also provides important proof-writing tools like diagram chasing and ideas of
duality, ‘abstract nonsense’ as Steenrod puts it, that provide us with a concrete
language to prove abstract ideas of category theory.

Saunders MacLane and Samuel Eilenberg discovered the universal coefficient
theorem of algebraic topology that relates homology and cohomology groups of a
space X via a group extension:

0 Ñ ExtpHn´1pXq, Gq Ñ HnpX,Gq Ñ HompHnpXq, Gq Ñ 0

To generalize this theorem, it needed to be shown that the above group homomor-
phisms are natural between continuous maps of topological spaces. Mathematicians
have used the term ‘natural’ colloquially to indicate that something was ‘defined
without making any arbitrary choices.’ In trying to rigorously prove this generaliza-
tion, Eilenberg and MacLane set to formalize this notion of naturality. To do that,
they introduced the concept of natural transformations. They then introduced the
concept of functors to describe the source and target of these transformations and
categories to describe the target and source of functors.

2.1. Categories, Functors and Natural Transformations.
Sets are the most basic collection of items in mathematics, but depending on

what we need the elements for, we often need more sophisticated versions than
simple collections of items. Enforcing an operation on a set gives a group and
imposing a set of open sets, a topology, on a set gives a topological space. The
different structures make these resultant collections of objects useful in different
ways.

Often, it is useful to look at how objects relate to each other. It then makes
sense to look at collections of objects and the morphisms between them.

Definition 2.1. A category C consists of:

‚ a collection of objects obpCq

‚ for all A,B P obpCq, a collection of morphisms HompA,Bq

‚ a composition function that defines for any two morphisms f P HompA,Bq

and g P HompB,Cq, a morphism g ˝ f P HompA,Cq

‚ there exists an identity morphism idA for all A P obpCq

satisfying the following axioms:

‚ composition is associative, meaning for any three morphisms f P HompA,Bq,
g P HompB,Cq, h P HompC,Dq, ph ˝ gq ˝ f “ h ˝ pg ˝ fq

‚ for any morphism f : X Ñ Y , f ˝ idX “ f “ idY ˝ f

We can construct categories out of sets as objects with functions as the mor-
phisms, topological spaces with continuous functions, groups with group homomor-
phisms and rings with ring homomorphisms etc. In this way, categories offer a great



ON THE COCOMPLETENESS OF Cat 3

deal of abstraction and allow us to study large collections of objects at the same
time.

Definition 2.2. A functor F defined from category A to B consists of:

‚ Fa P obpBq for all a P obpAq

‚ Ff P morpBq for all f P morpAq

satisfying the following axioms:

‚ composition is preserved, meaning for morphisms f : A Ñ B and g : B Ñ

C, Fg ˝ Ff “ F pg ˝ fq

‚ identities are preserved, meaning for any object a, Fida “ idFa

It is natural to think about categories as objects in their own right, so we could
try to construct categories that have categories as objects and functors as the
morphisms between them.

Definition 2.3. A category C is called small if obpCq and morpCq are sets. A
category C is locally small if for any two objects A,B in C, HompA,Bq is a set.

Definition 2.4. We define Cat as the category of small categories and functors
between them.

Such a category, whose objects are categories is called a 2-category. We can keep
building up in a similar manner and eventually reach an 8´category.

Definition 2.5. A natural transformation η between functors F ,G : A Ñ B is
defined as a collection of morphisms ηx for each x P A, such that for any f : X Ñ Y
in A, the following diagram commutes:

FX
Ff //

ηX

��

FY

ηY

��
GX

Gf
// GY

Natural transformations generalize the idea of homotopies to the categorical
level.

2.2. Duality.
The notion of an opposite category equips us with a concrete way to talk about the
principle of duality in category theory.

Definition 2.6. Let C be any category. Then, the opposite category Cop is defined
as:

‚ obpCq = obpCopq

‚ morpCopq is obtained by reversing all arrows in morpCq. For every
f P morpCq, morpCopq contains fop such that the domain of f is the
codomain of fop and the codomain of f is the domain of fop.

fop : X Ñ Y P Cop // f : Y Ñ X P C

Whenever we have a theorem that is true for all categories, it is necessarily
true for the opposite categories. So, the statement for each theorem gives us the
statement for a dual theorem obtained by reversing all the morphisms and the
proof for any theorem gives us a proof for the dual theorem, similarly obtained by
reversing all the arrows.
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Definition 2.7. A contravariant functor F from C to D is defined from the opposite
category Cop to D.

To stress that a functor is not contravariant, they are sometimes called covariant
functors.

2.3. Presheaves.

Definition 2.8. For any category C, a D´valued presheaf is a contravariant functor
F : C Ñ D. In particular, a set-valued presheaf for a category C is the functor
F : Cop Ñ Set.

Definition 2.9. A presheaf category is the functor category with set-valued presheaves
as objects and the natural transformations between them as morphisms.

So, for any small category, we have its presheaf category:
PShpCq :“ rCop, Sets
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3. Limits and Colimits

Diagrams are a key way to prove important results in category theory. We will
formalize the notion of a diagram and define limits and colimits on diagrams.

Definition 3.1. A diagram in category C is a functor D : I Ñ C, where I is any
small category called the indexing category.

Definition 3.2. A constant functor on an object c P obpCq from a category I takes
all objects in I to c and all morphisms to the identity morphism idc.

Definition 3.3. A cone with vertex c, over a diagram D of a category C is a
natural transformation λ : c ñ D, where the domain is the constant functor at c.
The components λi are called the legs of the cone.

In other words, for any diagram in a category, a cone over it consists of a vertex
and morphisms from the vertex to every element in the diagram, so that for every
f : X Ñ Y in the diagram, the following commutes:

c

λX

��

λY

  
X

f // Y

Definition 3.4. The universal cone over a diagram is called the limit of the dia-
gram.

Here, universality means that for any other cone over the diagram with vertex
c1, there exists a unique factorization h : c1 Ñ c, where c is the vertex of the limit.

c1

λ1
X

  

λ1
Y

��

D!h

��
c

λX

��

λY

  
X

f // Y
Consider the following important examples of limits:

Definition 3.5. The limit over the diagram containing two objects is called the
product of the two objects.

The product of objects A and B is an object A ˆ B equipped with projection
maps πA, πB , such that for any other C with projection maps hA, hB , there exists
a unique factorization h : C Ñ A ˆ B, such that the following diagram commutes.

C

hA

��

hB

��

D!h

��
A ˆ B

πA

��

πB

##
A B

For two sets A and B, the categorical product turns out to be the Cartesian
product equipped with projection maps.
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Definition 3.6. The limit over a diagram with two morphisms having common
codomain is defined to be pullback over the diagram.

Take the following diagram:

C

g

��
A

f // B
The pullback over the diagram is an object P , with morphisms to A,B,C such

that the diagram commutes:

P
pC //

pA

��

pB

��

C

g

��
A

f // B
This implies that pB “ f ˝ pA and pB “ g ˝ pC , which is equivalent to f ˝ pA “

g ˝ pC , so the diagram that needs to commute simplifies to:

P
pC //

pA

��

C

g

��
A

f // B

P is also such that for any other object P 1 with morphisms to A and C, there
exists a unique factorization h from P 1 to P .

P 1

p1
A

��

p1
B

		

D!h

��
P

pA

��

pC // C

g

��
A

f // B

Definition 3.7. The limit over the empty diagram is defined as a terminal object
in the category.

Let c be a terminal object in a category C. Then, for any other object c1 in the
category, there exists a unique morphism h : c1 Ñ c. Since the diagram is empty,
the commuting conditions vanish.

c1 D!h // c

In other words, an object is called a terminal object in the category if there
exists a unique morphism from any other object in the category to it.

Definition 3.8. The limit over a diagram containing two parallel morphisms is
called the equaliser of the morphisms.

Consider the following diagram:

A
f //

g
// B
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Then, the equalizer over it is E with morphisms eA, eB such that the following
diagram commutes:

E

eA

��

eB

  
A

f //

g
// B

So, we have f ˝ eA “ eB and g ˝ eA “ eB , which implies f ˝ eA “ g ˝ eA. Take
e “ eA and we get that the following diagram must commute:

E
e // A

f //

g
// B

Definition 3.9. A left cancellative morphism is called a monomorphism. In other
words, a morphism f : A Ñ B is a monomorphism if for any two morphisms
x, y : C Ñ A such that f ˝ x “ f ˝ y, we have x “ y.

Proposition 3.10. Equalisers are monomorphisms.

Proof. Consider the following diagram:

E
e // A

f //

g
// B

Take morphisms x, y : Z Ñ E, such that e ˝ x “ e ˝ y. Then, we have a morphism
z : Z Ñ A, where z “ e ˝ x “ e ˝ y.

E
e // A

f //

g
// B

Z

x

OO

y

OO

z

??

Now, f ˝ z “ f ˝ e ˝ x “ g ˝ e ˝ x “ g ˝ z. Then, z is an equalizer of the morphisms
f, g. By the universal property of E, there exists a unique morphism h : Z Ñ E,
which implies that x “ y “ h.

□

There exist dual notions to cones, limits and the specific examples of limits dis-
cussed. These notions can be defined by reversing the directions of the morphisms
in the diagrams.

Definition 3.11. A cocone over a diagram, or a cone under a diagram D with
nadir c is a natural transformation λ : D ñ c, where the codomain is the constant
functor at c.

In other words, for any diagram in a category, a cone under it consists of a vertex
and morphisms to the vertex from every element in the diagram, so that for every
f : X Ñ Y in the diagram, the following commutes:

X
f //

λX

��

Y

λY~~
c
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Definition 3.12. The universal cone under a diagram is called the colimit of the
diagram.

Consider some important examples of colimits:

Definition 3.13. The colimit over the diagram containing two objects is called
the coproduct of the two objects.

The coproduct of objects A and B is an object A \ B equipped with inclusion
maps iA, iB , such that for any other C with inclusion maps i1

A, i
1
B , there exists a

unique factorization h : A \ B Ñ C, such that the following diagram commutes.

A

iA ##

i1
A

��

B

iB{{

i1
B

��

A \ B

D!h
��
C

For two sets A and B, the coproduct turns out to be the disjoint union of the
sets equipped with the canonical inclusion maps.

Definition 3.14. The colimit over a diagram with two morphisms having common
domain is defined to be pushout over the diagram.

Take the following diagram:

A
f //

g

��

C

B

The pushout over the diagram is an object P , with morphisms from A,B,C to
P such that the diagram commutes:

A
f //

g

��

pA

��

C

pC

��
B

pB // P

This implies that pA “ pB ˝ g and pA “ pC ˝ f , which is equivalent to pB ˝ g “

pC ˝ f , so the diagram that needs to commute simplifies to:

A
f //

g

��

C

pC

��
B

pB // P

P is also such that for any other object P 1 with morphisms from B and C, there
exists a unique factorization h from P to P 1.
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A
f //

g

��

C

pC

��
p1
C

��

B
pB //

p1
B ''

P

D!h
��

P 1

Definition 3.15. The colimit over the empty diagram is defined as an initial object
in the category.

Let c be an initial object in a category C. Then, for any other object c1 in the
category, there exists a unique morphism h : c Ñ c1. Since the diagram is empty,
the commuting conditions are trivial.

c
D!h // c1

In other words, an object is called an initial object in the category if there exists
a unique morphism from the object to any other object in the category.

Definition 3.16. The colimit over a diagram containing two parallel morphisms
is called the coequaliser of the morphisms.

Consider the following diagram:

A
f //

g
// B

Then, the coequalizer over it is E with morphisms eA, eB such that the following
diagram commutes:

E

A

eA

OO

f //

g
// B

eB

``

So, we have eB ˝ f “ eA and eB ˝ g “ eA, which implies eB ˝ f “ eB ˝ g. Take
e “ eB and we get that the following diagram must commute:

A
f //

g
// B

e // E

Definition 3.17. A right cancellative morphism is called an epimorphism, that is,
a morphism f : A Ñ B is an epimorphism, if for any two morphisms g, h : B Ñ C
such that g ˝ f “ h ˝ f , we have g “ h.

Proposition 3.18. Coequalisers are epimorphisms.

Proof. Dual of Proposition 3.10. □

Definition 3.19. A category is complete if it contains all of its limits. Dually, a
category is cocomplete if it contains all of its colimits.
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4. Adjunctions & Subcategories

Definition 4.1. An adjunction is a pair of functors F ,G : A Ñ B, such that there
exists an isomorphism:

DpFc, dq – Cpc,Gdq

for all c P C, d P D, where the isomorphism is natural in both variables.
Here, naturality in D means that for all morphisms k : d Ñ d1 in D, the following
diagram commutes:

DpFc, dq
– //

k˚

��

Cpc,Gdq

Gk˚

��
DpFc, d1q

– // Cpc,Gd1q

and dually in C, for all morphisms h : c Ñ c1, the following diagram commutes:

DpFc, dq
– //

Fh˚

��

Cpc,Gdq

h˚

��
DpFc1, dq

– // Cpc1,Gdq

Here, F is a left adjoint to G and G is a right adjoint to F .
The corresponding morphisms f# and f b are called transposes or adjuncts.

Fc
f#

// d // c
fb

// Gd

An important family of adjunctions are the free and forgetful functors.

A
U

K

//
S

F
oo

The forgetful functor U is the right adjoint to the free functor F .
Take the specific example where A is a group and S is the underlying set. Then,
the forgetful functor does exactly what you would expect it to do. It forgets the
overlying structure, which is the group operation and gives the underlying set for
the group. The free functor returns the free group generated by the set S.

Proposition 4.2. Given an adjunction F % G, there exists a natural transfor-
mation η : 1C ñ GF , called the unit of the adjunction. The components of the
natural transformation ηc : c Ñ GFc at c are defined to the transpose of the identity
morphism idFc.
Dually, there exists a natural transformation ϵ : FG Ñ 1D, called the counit of the
adjunction. The components of the natural transformation ϵ : FGd Ñ d at d are
defined to the transpose of the identity morphism idGd. [1]

Definition 4.3. A subcategory of a category is a sub-collection of objects and
morphisms of the category such that it contains:

‚ the domains and codomains of all the morphisms
‚ the composite of all composable pairs of morphisms in the subcategory
‚ the identity morphism for all objects in the subcategory



ON THE COCOMPLETENESS OF Cat 11

In other words, a subcategory is a subcollection of objects and morphisms of a
category such that it is a category.

Definition 4.4. A functor F : C Ñ D is:

‚ full if the map Cpx, yq Ñ DpFx,Fyq is surjective
‚ faithful if the map Cpx, yq Ñ DpFx,Fyq is injective
‚ fully faithful if it is both full and faithful
‚ essentially surjective on objects if for every object c P D, there exists an
object d P D, such that Fc – d

Fullness and faithfullness are local conditions and may not be surjective or injec-
tive on morphisms respectively but we can define corresponding global conditions.

Definition 4.5. A faithful functor that is injective on objects is called an em-
bedding and a fully faithful functor that is injective on objects is called a full
embedding.

In case of an embedding, the functor will be injective on morphisms.

Definition 4.6. Let F : A Ñ B define a full embedding of A in B. Then A is a
full subcategory of B.

Definition 4.7. A reflective subcategory D of a category C is a full subcategory
such that its inclusion admits a left adjoint, also called the reflector or the locali-
sation.

D � � K

i
// C

Loo

Proposition 4.8. Consider an adjunction

A
F

K

//
B

G
oo

with counit ϵ : FG ñ idB and unit η : idA ñ GF. G is fully faithful if and only if
every component of ϵ is an isomorphism.
Dually, F is fully faithful if and only if every component of η is an isomorphism.

Proof. We only prove the first statement and the dual case will follow just by
reversing all the morphisms.
pñq

We need to show that there exists a morphism ϵ´1
b : b Ñ FGb for all b P B, such

that:
ϵb ˝ ϵ´1

b “ ϵ´1
b ˝ ϵb “ id

Suppose not. Since Bpx, yq Ñ ApGx,Gyq is bijective, there cannot exist a map of
the form Gϵ´1

b : Gb Ñ GFGb. But, for Gb P A, we have the component of the unit
ηGb : Gb Ñ GFGb. Contradiction.
pðq

In order to prove that Bpx, yq Ñ ApGx,Gyq is bijective, we show that we have the
composite isomorphism:

Bpx, yq Ñ BpFGx, yq Ñ ApGx,Gyq

The first isomorphism is given by pre-composition of the maps f : x Ñ y with ϵx.
So, we obtain a map f ˝ ϵx : FGx Ñ x Ñ y. For any map g : FGx Ñ y, we have a
map g ˝ ϵ´1

x : x Ñ FGx Ñ y. We know ϵ´1
x : x Ñ FGx exists for all x P B because
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every component of ϵ is an isomorphism. So, we obtain an isomorphism between
Bpx, yq and BpFGx, yq.

The second isomorphism is supplied by the adjunction. For any map f# :
FGx Ñ y, we have its unique transpose f b : Gx Ñ Gy in A and vice versa. □

Theorem 4.9. Right adjoints preserve limits.

Proof. Consider a diagram K : I Ñ D over a category D with the limit cone
λ : lim K ñ K in D. Then applying the right adjoint functor G : D Ñ C, we get a
cone over the diagram GK : I Ñ C in the category C. We need to prove that this
cone is the limit over the diagram.

Consider another cone µ : c ñ GK. Then applying F to this diagram, we get
a cone over the diagram K with Fc as the vertex. By universality of lim K, there
exists a unique morphism ζ : Fc Ñ lim K.

The map ζ has a transpose ζb : c Ñ Glim K, which is a factorization of µ through
Gλ. It is unique because for any other factorization c Ñ Glim K, we will have a
transpose ζ# in C. The transpose ζ# is unique by universality of the limit cone
and is always equal to ζ. Then its unique transpose ζb will equip the cone Glim K
with the universal property of a limit. □

Dually, we will have:

Theorem 4.10. Left adjoints preserve colimits.

Proposition 4.11. If D ãÑ C is a reflective subcategory, then D has all the colimits
that C admits, created by applying the reflector functor to the colimit in C.

Proof. Let i : D ãÑ C be the full embedding whose left adjoint is the reflector
functor L and consider a diagram F : J Ñ D.

Applying the inclusion functor, we obtain a diagram iF in C. Take the colimit
cone λ : iF ñ c over the diagram iF in C. Applying the reflector functor, we get a
diagram LiF in D.

Since L is a left adjoint, it preserves colimits. So, we obtain a colimit cone
Lλ : LiF ñ Lc over LiF . Since i is fully faithful, we know that the counit supplies
an isomorphism: Li – 1D. We then obtain a colimit cone Lλ over the original
diagram F . □
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5. Completeness of Cat

Theorem 5.1. A category is complete if and only if every family of objects has a
product and every pair of parallel arrows has an equalizer. [2]

Proof.
(ñ)
A complete category has all of its limits. Since products and equalizers are specific
types of limits, so a complete category would have all the products and equalizers.
(ð)
Consider a category D to be an arbitrary indexing category for the diagram
F : D Ñ C. We construct the products:

(ΠDPDFD, p1
D) and (ΠfPDF ptpfqq, p2

tf )

where tpfq is the target of a morphism f in D.

Take α to be the unique factorization p2
tf ˝ α “ p1

tf

ΠDPDFD
p1
tf

''

α // ΠfPDF ptpfqq

p2
tf

��
F ptfq

and β to be the unique factorization p2
tf ˝ β “ Ff ˝ p1

sf

ΠDPDFD

p1
sf

��

β // ΠfPDF ptpfqq

p2
tf

��
F psfq

Ff // F ptfq

Combining the two diagrams, we get:

ΠDPDFD

p1
sf

��

p1
tf

''

α //
β
// ΠfPDF ptpfqq

p2
tf

��
F psfq

Ff // F ptfq

We define pL, lq to be the equalizer of the morphisms α and β and pD : L Ñ FD
defined as pD “ p1

D ˝ l.

FD F ptfq

L

pD

;;

� l // ΠDPDFD

p1
sf

��

p1
D

OO
p1
tf

88

α //

β
// ΠfPDF ptfq

p2
tf

OO

p2
tf

��
F psfq

Ff // F ptfq

Claim: L is a cone over the diagram D.
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Proof. For any morphism f : D Ñ D1 in D, we need to show that the following
diagram commutes:

L
pD

}}

pD1

!!
FD

Ff // FD1

So, we need to prove that pD1 “ Ff ˝ pD.

pD1 “ p1
D1 ˝ l “ p2

tf ˝ α ˝ l “ p2
tf ˝ β ˝ l “ Ff ˝ p1

D ˝ l “ Ff ˝ pD □

Now, we need to show that L is a universal cone over the diagram D.
Take pQ, qDq another cone over the diagram D, with q : Q Ñ ΠDPDFD, a unique
morphism such that qD “ p1

D ˝ q.

Q
qD //

q
##

FD F ptfq

L � l // ΠDPDFD

p1
sf

��

p1
D

OO
p1
tf

88

α //

β
// ΠfPDF ptfq

p2
tf

OO

p2
tf

��
F psfq

Ff // F ptfq

Proposition 5.2. p1
D and p2

tf are monomorphisms.

Proof. Take morphisms x, y : Z Ñ ΠDPDFD, such that p1
D ˝x “ p1

D ˝y. Then, with
a morphism zD : Z Ñ FD “ p1

D ˝ x “ p1
D ˝ y, the following diagram commutes:

Z

x

��
y

��

zD

%%
ΠDPDFD

p1
D // FD

So, Z is also a product, which means there exists a unique morphism
h : Z Ñ ΠDPDFD ùñ h “ x “ y.
We can prove similarly for p2

tf .
□

Claim: pQ, qq defines an equalizer over α and β.

Proof. For any f : D Ñ D1,
p2
tf ˝ α ˝ q “ p1

D1 ˝ q “ qD1 “ Ff ˝ qD “ Ff ˝ p1
D ˝ q “ p2

tf ˝ β ˝ q
ùñ α ˝ q “ β ˝ q. □

Since pQ, qq is an equalizer over α, β, then there exists a unique factorization
m : Q Ñ L, such that q “ l ˝ m.
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Q

m

��

qD //

q

##

FD F ptfq

L � l // ΠDPDFD

p1
sf

��

p1
D

OO
p1
tf

88

α //

β
// ΠfPDF ptfq

p2
tf

OO

p2
tf

��
F psfq

Ff // F ptfq

Claim: m is the factorization required to establish that pL, pDq is the limit over
the diagram D.

Proof. In other words, we need to show that pD ˝ m “ qD.
pD ˝ m “ p1

D ˝ l ˝ m “ p1
D ˝ q “ qD

□

Claim: m is the unique factorization required to establish that pL, pDq is the
limit over the diagram D.

Proof. Take another factorization m1 : Q Ñ L, such that pD ˝ m1 “ qD for all
D P D.

Q

m1

��
m

��

qD //

q

$$

FD F ptfq

L

pD

��

� l // ΠDPDFD

p1
D

zz
p1
sf

��

p1
D

OO
p1
tf

88

α //

β
// ΠfPDF ptfq

p2
tf

OO

p2
tf

��
FD F psfq

Ff // F ptfq

Since, l is a monomorphism, it suffices to show that l ˝ m “ l ˝ m1, which is equiv-
alent to showing that p1

D ˝ l ˝ m “ p1
D ˝ l ˝ m1.

p1
D ˝ l ˝ m “ p1

D ˝ q “ qD “ pD ˝ m1 “ p1
D ˝ l ˝ m1 □

□

Dually, we will have:

Theorem 5.3. A category is cocomplete if and only if every family of objects has
a coproduct and every pair of parallel arrows has an coequalizer.

Theorem 5.4. Set is complete and cocomplete.

Proof. To prove (co)completeness of Set, we will construct explicit (co)products
and (co)equalizers.

The categorical products of sets are defined to be the Cartesian products and
equalizers for any two morphisms f, g : A Ñ B is E, a subset of A, such that for
all a P E, fa “ ga.

The coproducts for sets are defined to be the disjoint unions of sets and the
coequalizer for any two morphisms f, g : A Ñ B is B{p„q, where „ is an equivalence
relation, defined as: @a P A, fpaq „ gpaq. □
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Theorem 5.5. Cat is complete.

Proof. It suffices to construct products and equalizers.

Definition 5.6. For any two categories C and D, we have C ˆ D such that:

‚ its objects are of the form pc, dq, where c P obpCq and d P obpDq

‚ its morphisms are of the form pf, gq : pc, dq Ñ pc1, d1q for all the morphisms
f : c Ñ c1 in C and g : d Ñ d1 in D.

‚ its identities and compositions are defined component-wise.

n-ary versions of this product give us the required product and the equalizer
for two morphisms F ,G : C Ñ D is a subcategory of C with objects c such that
Fc “ Gc and morphisms f such that Ff “ Gf □
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6. Simplicial Sets

Let ∆ be the category whose objects are finite, non-empty, totally-ordered sets
rns “ t0, 1, ..., nu

and morphisms are order-preserving maps between the sets.

Definition 6.1. A simplicial object in a category C is a functor F : ∆op Ñ C.
In particular, a simplicial set is a contravariant functor from ∆ to Set.

We use the notation sSet for the functor category Set∆
op

of simplicial sets,
where the morphisms are natural transformations between simplicial sets.

It is easy to show that all the morphisms in the category ∆ can be created by
the composites of the coface and codegeneracy morphisms, denoted by δi and σi

respectively, as shown. For each n ě 0, we have n ` 1 injections δi : rn ´ 1s Ñ rns,
defined for 0 ď i ď n as:

δirks “

#

k k ă i

k ` 1 k ě i

and n ` 1 surjections σi : rn ` 1s Ñ rns defined as:

σirks “

#

k k ď i

k ´ 1 k ą i

Clearly, the coface maps skips the i-th element in the image and the codegeneracy
maps duplicates the i-th element in the image. These maps satisfy the following
relations:

(6.2) δiδj “ δjδi´1 i ă j

σjσi “ σiσj`1 i ď j

σjδi “

$

’

&

’

%

1 i “ j, j ` 1

δiσj´1 i ă j

δi´1σj i ą j ` 1

Dually, the face and degeneracy morphisms in the∆op category endow simplicial
sets with face and degeneracy morphisms satisfying the required conditions. For a
simplicial set X, we get:

di “ Xδi : Xn Ñ Xn´1 0 ď i ď n
si “ Xσi : Xn Ñ Xn`1 0 ď i ď n

satisfying the relations dual to 6.2.
We obtain an equivalent definition for simplicial sets:

Definition 6.3. A simplicial set is a sequence of sets Xn with face and degeneracy
morphisms di : Xn Ñ Xn´1 and si : Xn Ñ Xn`1 satisfying the following relations:

(6.4) didj “ dj´1di i ă j

sjsi “ sj`1si i ď j

disj “

$

’

&

’

%

1 i “ j, j ` 1

sj´1di i ă j

sjdi´1 i ą j ` 1
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For any simplicial set X, elements of the set Xn are called its n´simplices.

Proposition 6.5. The presheaf category for any category D is complete and co-
complete.

Proof. Take the presheaf category for a small category D and a diagram
F : I Ñ SetD

op

. Then, for a fixed object d P D, consider the functor Fd : I Ñ

Set. We then take the (co)limit over this diagram which exists because Set is
(co)complete. In other words, we take the level-wise (co)limits. □

Proposition 6.6. sSet is complete and cocomplete.

Proof. This follows directly from the above proposition since sSet is a presheaf
category. □
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7. Cocompleteness of Cat

We will show that there exists the adjunction

Cat � �

N

K // sSet
Πoo

where the inclusion is a full embedding of Cat into sSet. Since sSet is cocomplete,
then by Proposition 4.11, Cat is also cocomplete.

Definition 7.1. Define the nerve of any small category C to be a simplicial set NC
containing:
NC0 = obpCq

NC1 = morpCq

NC2 = tpairs of composable arrows in Cu

...
NCn = tn-strings of composable arrows in Cu

The degeneracy maps si : NCn Ñ NCn`1 takes the n-string of composable
arrows c1 Ñ c2 Ñ ... Ñ cn and obtains a string of n ` 1 composable arrows by
inserting the identity of ci at the i-th spot.

The face maps di : NCn Ñ NCn´1 leaves out the first and last arrows for when
i “ 0 and i “ n respectively and composes the i-th and pi ´ 1q-th arrows when
0 ă i ă n to obtain a string of n ´ 1 arrows. [3]

Definition 7.2. For any simplicial set S, we define Π to be the functor
Π : sSet Ñ Cat. Define:

‚ obpΠSq = S0

‚ morpΠSq “ S1 modulo relations generated by S2

The degeneracy morphisms s0 : S0 Ñ S1 supply the identity morphisms and the
face morphisms d1, d0 : S1 Ñ S0 assign domain and codomain to every arrow.

Once we obtain all the morphisms from S1, we modulo by the relations generated
by S2. h “ gf if we have a 2-simplex in s P S2 such that sd0 “ g, sd1 “ h and
sd2 “ f.

0
f

��

h

��
1

g // 2
We can completely define a category by its objects, morphisms, composition and

identities so in this way we obtain the category ΠS for a simplicial set S.
Claim: Π is a left adjoint to N and N is right adjoint to Π.

Proof. We need to show that for any morphism k : C Ñ C 1, the following diagram
commutes:

CatpΠX,Cq
– //

k˚

��

sSetpX,NCq

Nk˚

��
CatpΠX,C 1q

– // sSetpX,NC 1q

For any morphism f# : ΠX Ñ C, we have the composite k ˝ f# : ΠX Ñ C 1.
The transpose of this map is pk ˝ f#qb : X Ñ NC 1, which can be given by the
composite Nk˚ ˝ f b : X Ñ NC 1. f b takes X to NC since it is the transpose of f#.
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Then, we get an induced map Nk˚ from k which takes NC to NC 1 by acting on
each set of the sequence in NC and mapping it to respective sets in NC 1.

Dually, we need to show that for any morphism h : X 1 Ñ X, the following
diagram commutes:

CatpΠX 1, Cq
– //

Πh˚

��

sSetpX 1, NCq

h˚

��
CatpΠX,Cq

– // sSetpX,NCq

For any morphism f# : ΠX Ñ C, we have the composite f# ˝ Πh : ΠX 1 Ñ C.
The transpose of this map is pf# ˝ Πhqb : X 1 Ñ NC, which can be given by the
composite f b ˝ h : X 1 Ñ NC. By definition, h takes X 1 to X. f b is the transpose
of f# and a map of simplicial sets which takes X to NC by acting on each set of
the sequence in X and mapping it to respective sets in NC. □

Claim: Every component ΠNC of the counit of the adjunction is an isomor-
phism.

Proof. Take the category C. Applying the nerve functor, we obtain NC, defined
as explained above. Applying Π, we obtain the category ΠNC, which has:

‚ obpΠNCq “ NC0 “ obpCq

‚ morpΠNCq “ NC1 “ morpCq

‚ composition given by the objects in NC2, which is the set of pairs of com-
posable arrows in C.

‚ By definition of nerve, we know that s0 : NC0 Ñ NC1 is obtained by
inserting the identity morphism of c0 P NC0 at the 0-th spot. So, it is
exactly the identity morphism for c0. We also know that the degeneracy
morphisms for NC supply the identity morphisms for ΠNC so we get the
same identities as in C.

Hence, we have shown that ΠNC – C for any category C. □

Since every component of the counit is an isomorphism, we have shown that N
is fully faithful by Proposition 4.8.
It is clear by construction that the inclusionN is injective. So, N is a full embedding
of Cat into sSet, proving that Cat is a reflective subcategory of sSet.
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