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Abstract. This expository paper aims to derive intersection properties of Brownian
motion in the Euclidean space. Highlights of our methods include Hausdorff dimension,
potential theory of Brownian motion, and ideas of percolation and trees. We address
the existence or non-existence of intersection points for multiple independent Brownian
motions, and the closely related question about self-intersections of finite multiplicity.
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1. Introduction

Brownian motion is a mathematical model for random continuous movements. A famil-
iar picture of Brownian motion is provided by simple random walks. Consider a sequence of
independent, identically distributed random variables {Xi}i∈N, with P{Xi = 1} = P{Xi =
−1} = 1/2. The simple random walk started from the origin is the process {Sn | n ∈ N}
given by Sn =

∑n
i=1 Xi. We can turn this discrete process into a continuous one by linear

interpolation. Let
S(t) = S⌊t⌋ + (t− btc)(S⌊t⌋+1 − S⌊t⌋).

Then, if we zoom out the timeline and set S∗
n(t) = S(nt)/

√
n, the central limit theorem

tells us that the distribution of S∗
n(t) converges to the normal distribution with mean 0 and
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variance t. It can be shown that {S∗
n(t) | t ≥ 0} converges in distribution to Brownian

motion, which we define below. By this description, we may think of Brownian motion
as the macroscopic picture of microscopic fluctuations. One can also infer why we define
Brownian motion to have the following properties.

Definitions 1.1. A real-valued stochastic process {B(t) | t ≥ 0} is a linear Brownian
motion started in x if it satisfy the following properties:

� B(0) = x;
� the function t 7→ B(t) is continuous almost surely;
� B(t) has independent increments, i.e., for all times s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤
sn ≤ tn, the random variables B(t1)−B(s1), · · · , B(tn)−B(sn) are independent;

� B(t) has normally distributed stationary increments, i.e., for all times s and t,
the random variables B(t + s) − B(s) are normally distributed with mean 0 and
variance t.

A d-dimensional Brownian motion started in (x1, . . . , xd)
T is a stochastic process

whose coordinates consist of d independent linear Brownian motions started respectively
in x1, . . . , xd. A standard Brownian motion (in some arbitrary or specified dimension
d) is a Brownian motion started from the origin.

Notation 1.2. We write Px and Ex for conditional probability and conditional expectation,
respectively, given that the Brownian motion in question starts in x.

Fact 1.3. Brownian motion exists, and in fact can be explicitly constructed

Brownian motion has a ubiquitous presence in allied fields of mathematics. It is most
well known as a model for phenomena in statistical physics and financial markets, from the
movement of particles in a dust cloud to stock prices, among many other applications. In
mathematics itself, Brownian motion is a foundational object related to a wide range of
problems in probability. The specific topic we investigate in this paper – the intersections
of Brownian paths – is also far from an isolated subject. The intersection properties of
Brownian motion are analogous to those of random walks, and both are closely linked to
statistical physics, see [5]. As another example, the fact that Brownian motion almost surely
has no self-intersections in dimensions d ≥ 4, which we prove in Theorem 4.3, suggests that
the self-avoiding random walk and the simple random walk behave similarly. There is a
precise statement of this for d ≥ 5 in [6].

We shall shortly give a brief overview of some basic properties of Brownian motion.
Then, we make a detour to Hausdorff measure and Hausdorff dimension in section 2. An
immediate application of this discussion allows us to determine the size of Brownian paths.
Other ideas introduced here, including the capacity of a set and tree-like approximation of
a set by dyadic cubes, will be important in what follows. Section 3 returns the focus to
Brownian motion. The main question of interest here is the hitting of a fixed set in Rd by
d-dimensional Brownian motion. We are able to determine whether the hitting probability is
zero by a nonrandom attribute of a set – its capacity, with the powerful theorem of Kakutani
3.16. Our investigations culminate in Sections 4 and 5, where we obtain precise intersection
properties of Brownian motion in different dimensions.

1.1. Basic Properties of Brownian Motion. Using standard facts of normal distribu-
tions, one can deduce the following two invariance properties of Brownian motion. Note
that it suffices to show them for linear Brownian motions.
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Proposition 1.4 (Scaling invariance). If {B(t) | t ≥ 0} is a standard Brownian motion,
then for any a > 0, the process {W (t) | t ≥ 0} given by W (t) = 1

aB(a2t) is also a standard
Brownian motion

Proposition 1.5 (Time inversion). If {B(t) | t ≥ 0} is a standard Brownian motion, then
the process {W (t) | t ≥ 0} given by

W (t) =

{
0 for t = 0

tB(1/t) for t > 0

is also a standard Brownian motion.

These two propositions suggest the fractal nature of Brownian motion, i.e., it shares
similar geometric structures at all scales. A standard tool in the study of fractal sets is
Hausdorff dimension, which we will inverstigate in the next section. Before that, we state
a precise continuity condition satisfied by Brownian motions. A function f : [0,∞) → R is
locally α-Hölder continuous at x for some x ≥ 0 if there exists δ > 0 and a Hölder
constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y|α, for all y ≥ 0 satisfying |y − x| < δ.

The theorem below can be shown with the help of an explicit construction of Brownian
motion; see 1.20 in [1].

Theorem 1.6. For any α < 1/2, Brownian motion is almost surely everywhere locally
α-Hölder continuous.

Hölder continuity is useful when we want to relate the Hausdorff dimension of the range
of a function to that of its domain. In particular, we apply it to determine the dimension
of a Brownian path in Theorem 2.17.

2. Hausdorff Dimension

While the usual integral dimension tells the size of a line apart from that of a disk, it
is too crude to distinguish the size of a line from that of other curves. This observation
suggests that to make sense of the size of Brownian paths, we need a more general notion
of dimension. In this section, we discuss the general properties of Hausdorff dimension
and provide techniques to estimate it. Among other subsequent applications, we use these
techniques to determine the dimension of Brownian paths. As we will see in section 4, one
can determine whether two independent Brownian motions intersect each other by analyzing
the dimensions of their paths and that of the ambient space. With this purpose in mind,
we restrict our discussion to subsets of Euclidean spaces.

Definition 2.1. For a set E ⊂ Rd and α ≥ 0, δ > 0, let

Hα
δ (E) := inf

{ ∞∑
i=1

|Ei|α | E ⊂
∞⋃
i=1

Ei and |Ei| ≤ δ for all i
}

be the α-value of the most efficient covering (approximately speaking) of E by sets of
diameter bounded by δ, where | · | denotes diameter. Then the α-Hausdorff measure of
E is

Hα(E) = lim
δ↓0

Hα
δ (E).

It can be shown that Hα is an exterior measure.
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Note that Hα
δ (E) increases as δ decreases, because we have less choices of coverings;

hence the limit exists and is a supremum. Also observe that if 0 ≤ α ≤ β and Hα(E) = 0,
then |Ei|β ≤ |Ei|α for any covering {Ei}i∈N of E by small sets, so Hβ(E) = 0. This allows
us to define the Hausdorff dimension.
Definition 2.2. The Hausdorff dimension of a set E ⊂ Rd is

dimE = inf{α | Hα(E) = 0} = sup{α | Hα(E) > 0}.

Intuitively, Hα(E) measures the α-dimensional mass of E among sets of dimension α, so
that it will be negligible when α is greater than the dimension of E and large if α is smaller
than the “true” dimension. The following alternative formulation of Hausdorff dimension
confirms this intuition.
Proposition 2.3.

dimE = inf{α | Hα(E) < ∞} = sup{α | Hα(E) = ∞}

Proof. It suffices to show that for all β > α, Hα(E) < ∞ implies Hβ(E) = 0. Suppose
Hα(E) equals some finite constant C. Then for any δ > 0, there exists a covering E1, E2, . . .
of E where each Ei has diameter ≤ δ and α-value ≤ C + 1, so that Hα

δ (E) ≤ C + 1. Then,
for any covering E1, E2, . . . of E with |Ei| ≤ δ,

∑
i |Ei|β ≤ δβ−α

∑
i |Ei|α. This shows

Hβ
δ (E) ≤ δβ−αHα

δ (E) ≤ δβ−α(C + 1). Let δ ↓ 0 to get Hβ(E) = 0. □

As one naturally expects, the Hausdorff dimension of subsets of Rd are no greater than
d. Since Rd can be covered by a countable number of unit cubes and α-Hausdorff measure is
countably subadditive, we can see this by showing that the unit cube Q has zero α-Hausdorff
measure for all α > d. This is immediate if we partition Q into (1/(δ/

√
d))d cubes each

with diameter ≤ δ, and observe that Hα
δ (Q) ≤

√
d
d
δα−d, which goes to 0 as δ does.

At this point, we can already give an upper bound for the dimension of the range of
Brownian motion using local Hölder continuity 1.6. Suppose f : [0,∞) → Rd is a locally α-
Hölder continuous function, and A is a subset of [0, 1]. At each point x ∈ [0,∞], there exists
a neighborhood Ax of x such that f is α-Hölder continuous in Ax with Hölder constant Cx.
Then, denoting the image of Ax by Bx, we have

Hβ(Bx) ≤ Cβ
xHαβ(Ax)

for any β ≥ 0, whence dim(Bx) ≤ 1
α dim(Ax). It is not hard to check that Hausdorff

dimension is countably stable, i.e.,

dim

∞⋃
i=1

Ei = sup
1≤i<∞

{dimEi}.

As a result, dim(B) ≤ 1
α dim(A) by taking countable unions. When f is replaced by the

random function B(t), we take the limit α ↑ 1/2 to derive the following upper bound on the
dimension of Brownian paths.
Proposition 2.4. For any fixed set A ⊂ [0,∞) and d-dimensional Brownian motion B(t),

dimB(A) ≤ (2 dimA) ∧ d, almost surely.

This bound is sharp, as we will obtain a lower bound in Theorem 2.17 after introducing
requisite techniques. In general, an α-dimensional set can have α-Hausdorff measure ranging
from zero, finite nonzero, to infinity. It is an interesting fact that for d ≥ 2, the 2-Hausdorff
measure of B(A) for any A ⊂ [0,∞) is almost surely zero. Here we show a weaker result.
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Proposition 2.5. H2(B([0, 1])) < ∞ almost surely.

Proof. Consider a covering of B([0, 1]) by closed balls

B
(
B( kn ), max

k
n

≤t≤ k+1
n

∣∣B(t)−B( kn )
∣∣), k = 0, . . . , n− 1.

Since Brownian motion is uniformly continuous on the unit interval, for any δ > 0, we can
find a large enough n such that the diameter of each ball in the above cover is less than δ.
Note that by stationary increment and scaling invariance,

E
[(

max
k
n

≤t≤ k+1
n

∣∣B(t)−B( kn )
∣∣)2] = E

[(
max

0≤t≤ 1
n

|B(t)|
)2]

=
1

n
E
[(

max
0≤t≤1

|B(t)|
)2]

.

Although we will not go into the details here, the right hand side expectation is finite.
Therefore, the expected value of H2

δ is bounded above by

E
[
4

n−1∑
k=0

(
max

k
n

≤t≤ k+1
n

∣∣B(t)−B( kn )
∣∣)2] = 4E

[(
max
0≤t≤1

|B(t)|
)2]

.

Then by Fatou’s lemma,

E
[
lim inf
n→∞

4

n−1∑
k=0

(
max

k
n

≤t≤ k+1
n

∣∣B(t)−B( kn )
∣∣)2] < ∞,

which shows that the liminf is almost surely finite and concludes the proof. □

2.1. Lower bounds for the Hausdorff Dimension. Observe from this proof and Propo-
sition 2.3 that it is relatively easy to give an upper bound for the Hausdorff dimension of a
set: it is enough to find an explicit cover with finite α-value in the limit where the diameters
of the covering sets shrink to zero. To find lower bounds for the Hausdorff dimension, we
use some physical intuition.

We say a measure µ on a set E ⊂ Rd is a mass distribution on E if 0 < µ(E) < ∞.
Intuitively, µ spreads a positive finite mass over E. If we can distribute this mass in such a
way that its local density is small, then the set E must be large in some sense.

Proposition 2.6. (Mass distribution principle) Let E ⊂ Rd and α ≥ 0. If there exists a
mass distribution µ on E and constants C, δ > 0 such that

µ(V ) ≤ C|V |α

for all Borel sets V with |V | ≤ δ, then dimE ≥ α.

Proof. For any covering E1, E2, . . . of E with |Ei| ≤ δ,
∞∑
i=1

|Ei|α ≥
∞∑
i=1

µ(Ei)

C
≥ µ(E)

C
> 0.

The statement follows by taking the infimum over all such covers and passing to the limit
δ ↓ 0. □

Next, we provide another method for obtaining lower bounds for the Hausdorff dimen-
sion.



6 RUOCHUAN XU

Definition 2.7. Let E ⊂ Rd and K : Rd ×Rd → [0,∞]. The K-energy of a measure µ on
E is

IK(µ) =

∫∫
K(x, y) dµ(x) dµ(y),

and the K-capacity of E is

CapK(E) = 1/[inf{IK(µ) | µ a probability measure on E}].

Notation 2.8. In most of our applications, K(x, y) = f(|x− y|), in which case we use the
terms f -energy and f -capacity. If further K(x, y) = |x− y|−α, we use the terms α-energy
and α-capacity. In these cases we change the subscripts in the notation accordingly.

The idea of the energy method is a simple one similar to that of the mass distribution
principle. The condition that the mass in each small set is bounded by a power of its size is
replaced by finiteness of an energy, which suggests that the local density is low enough to
overcome the singularity of the integrand.

Theorem 2.9 (Energy method). Let E ⊂ Rd, α ≥ 0, and µ be a mass distribution on E.
Then, for any δ > 0,

Hα
δ (E) ≥ µ(E)2∫∫

|x−y|<δ

dµ(x) dµ(y)
|x−y|α

.

Therefore,
� If Iα(µ) < ∞, or in particular if Capα(E) > 0, then dimE ≥ α.
� If Hα(E) < ∞, then for any mass distribution µ on E, Iα(µ) = ∞, so Capα(E) = 0.

Proof. Given ϵ > 0, choose E1, E2, . . . to be a pairwise disjoint covering of E by sets of
diameter less than δ, such that

∑
|Ei|α ≤ Hα

δ (E) + ϵ. Then

µ(E) ≤
∞∑
i=1

µ(Ei) =

∞∑
i=1

|Ei|
α
2
µ(Ei)

|Ei|
α
2
,

and ∫∫
|x−y|<δ

dµ(x) dµ(y)

|x− y|α
≥

∞∑
i=1

∫∫
Ei×Ei

dµ(x) dµ(y)

|x− y|α
≥

∞∑
i=1

µ(Ei)
2

|Ei|α
.

Now we apply the Cauchy-Schwarz inequality to get

µ(E)2 ≤
∞∑
i=1

|Ei|α
∞∑
i=1

µ(Ei)
2

|Ei|α
≤ (Hα

δ (E) + ϵ)

∫∫
|x−y|<δ

dµ(x) dµ(y)

|x− y|α
.

The stated inequality follows by passing to the limit ϵ ↓ 0.
If Iα(µ) < ∞, then letting δ ↓ 0 gives Hα(E) = ∞, hence dimE ≥ α. Note that

Capα(E) > 0 implies that there exists a mass distribution µ on E with µ(E) = 1 and
Iα(µ) < ∞.

For the last statement, assume Iα(µ) < ∞. Then letting δ ↓ 0 and using dominated
convergence gives Hα(E) = ∞, which shows the contrapositive of what we want. □
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2.2. Trees and Frostman’s Lemma. We provide a converse to the mass distribution
principle 2.6, which leads to an extremely useful formulation of the Hausdorff dimension of
a set in Theorem 2.16. The proof of Frostman’s lemma relies on an introduction of trees –
an essential tool in fractal geometry.

Definitions 2.10. A tree is a connected graph T = (V,E), where V is a finite or countable
set of vertices, and E ⊂ V ×V is the set of ordered edges, such that the following properties
hold:

� every vertex v ∈ V has a unique parent w ∈ V with (w, v) ∈ E, except for a unique
root, which has no parent;

� there is a unique self-avoiding path from the root to any other vertex v, where the
number of edges in this path is called the generation of v;

� for every vertex v ∈ V , the number of children w ∈ V with (v, w) ∈ E is finite.

When T is finite, the boundary ∂T of T consists of the vertices with no children. When
T is infinite, calling any infinite self-avoiding path started in the root a ray, the boundary
∂T is the set of rays. A cutset is a set Π of edges if every ray contains an edge in Π.

Notation 2.11. We denote the root by r, and for any other vertex v, denote the parent of
v by v̂. For any v, w ∈ V , let v ∧ w denote the least common ancestor of v and w, i.e., the
vertex in the intersection of the paths from r to v and from r to w with minimal generation.
Similarly, for any two rays ξ and η, ξ ∧ η is the vertex in the intersection of the rays with
minimal generation. We also write v ≤ w when v = v ∧ w.

Definitions 2.12. For an infinite tree, assign to each edge a capacity with a mapping
C : E → [0,∞). A flow with strength c > 0 is a mapping θ : E → [0, c] with the following
properties:

� flow is unleashed at the root and conserved at each other vertex, i.e.∑
w : ŵ=r

θ(r, w) = c and θ(v̂, v) =
∑

w : ŵ=v

θ(v, w), ∀ v 6= r;

� for any edge e ∈ E, θ(e) ≤ C(e).

We cite without proof the following well-known result of graph theory, and a useful
measure extension theorem.

Theorem 2.13 (Max-flow min-cut).

max
{
strength (θ) | θ a flow with capacities C

}
= inf

{∑
e∈Π

C(e) | Π a cutset
}
.

Theorem 2.14 (Carathéodory’s extension theorem). Let C be an algebra, which means
A,B ∈ C implies Ac and A ∪ B are in C. If ν̃ defined on C is countably additive, then ν̃
extends to a measure ν on σ(C).

Whereas the mass distribution principle gives a lower bound on dimension given a
suitable mass distribution, we now construct a mass distribution given a lower bound on
dimension.

Theorem 2.15 (Frostman’s lemma). If A ⊂ Rd is closed with Hα(A) > 0, then there
exists a Borel probability measure µ supported on A and a positive constant C such that
µ(D) ≤ C|D|α for all Borel sets D ∈ Rd.
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Proof. Note that a bounded piece of A must have positive α-Hausdorff measure. By changing
coordinates and letting µ ≡ 0 on the rest of A, we may assume A ⊂ [0, 1]d. The idea of the
proof is to exploit a bijection between A and the boundary of a tree, and use the max-flow
min-cut theorem to construct a measure that is positive on A.

To this end, we divide the unit cube dyadically, where each of the 2nd cubes at step n
is further divided into 2d subcubes. Associate a tree T = (V,E) to the dyadic cubes, such
that the root is associated with [0, 1]d and each vertex has 2d children. As the dyadic cubes
approximate A, we remove edges ending in vertices associated with subcubes that do not
intersect A. Then we get a natural bijection Φ : ∂T → A.

For edges e at generation n, we assign the capacities C(e) = (
√
d2−n)α. It is clear that

if we associate to every edge e in a cutset Π of T the cube corresponding to the initial
vertex of e, then Π corresponds to a covering of A. Since we can choose cutsets where the
diameters of the associated cubes are arbitrarily small, for any δ > 0

inf
{∑

e∈Π

| Π a cutset
}
≥ inf

{ ∞∑
i=1

|Ai|α | A ⊂
∞⋃
i=1

Ai and |Ai| < δ
}

Letting δ ↓ 0, the left hand side is bounded from zero as Hα(A) > 0. By the max-flow
min-cut theorem, there exits a flow θ : E → [0,∞) of positive strength and θ(e) ≤ C(e) for
all edges e ∈ E.

For each edge e ∈ E, we let T (e) ⊂ ∂T to be the set consisting of all rays containing
e. One can check that the collection C(∂T ) of finite disjoint unions of the sets T (e) is a an
algebra on ∂T , and we define ν̃ on C(∂T ) by ν̃(T (e)) = θ(e). Conservation of flow implies
that ν̃ is countably additive, so that using Carathéodory’s extension theorem, ν̃ extends to
a measure ν on σ(C(∂T )). The desired measure on A is given by

µ = ν ◦ Φ−1, which satisfies µ(C) = θ(e),

where C is the cube associated with the initial vertex of e.
To check that each Borel set D ⊂ Rd satisfies the claimed bound, choose an integer

n such that 2−n <
∣∣D ∩ [0, 1]d

∣∣ ≤ 2−n+1. Then D ∩ [0, 1]d can be covered by 3d cubes of
side length 2−n. It follows that µ(D) ≤ 3dC(e) ≤ 3ddα/2|D|α. The proof is completed by
normalizing µ. □

Frostman’s lemma has the following important corollary.

Theorem 2.16. For any closed set A ⊂ Rd,

dimA = sup
{
α | Capα(A) > 0}.

Proof. The ≥ direction follows from the energy method 2.9. Thus it remains to show that
for any α < dimA, there exists a probability measure on A with finite α-energy. Choose
β slightly larger than α with Hβ(A) > 0. Possibly replacing A by a smaller subset with
positive β-Hausdorff measure, we can assume A is contained in a set of diameter less than
one. By Frostman’s lemma, there exists a probability measure µ on A and a positive
constant C such that µ(D) ≤ C|D|β for all Borel sets D. Pick x ∈ E and consider the
annuli Sk(x) = {y | 2−k < |x− y| ≤ 2−k+1}. Then

Iα(µ) ≤
∫

dµ(y)

|x− y|α
=

∞∑
k=1

∫
Sk(x)

dµ(y)

|x− y|α
≤

∞∑
k=1

µ(Sk(x))2
kα ≤ C

∞∑
k=1

(2−k+2)β2kα < ∞,

which shows the ≤ direction and concludes the proof. □
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2.3. First Application to Brownian motion. We now reap the fruit of our labor in the
previous subsection. Note that the following theorem implies that for d ≥ 2, the dimension
of a Brownian path is almost surely 2.

Theorem 2.17. For any fixed set A ⊂ [0,∞) and d-dimensional Brownian motion B(t),

dimB(A) = (2 dimA) ∧ d, almost surely.

Proof. In light of Proposition 2.4, we only need the lower bound. By Theorem 2.16, for any
α < dimA∧d/2, there exists a probability measure µ on A such that Iα(µ) < ∞. We derive
a mass distribution µ̃ on B(A) given by µ̃(E) = µ(B−1(E) ∩ A) for any Borel E ⊂ Rd.
Equivalently, µ̃ satisfies ∫

Rd

f(x) dµ̃(x) =

∫
A

f(B(t)) dµ(t)

for any measurable f . To apply the energy method, we want to show that

EI2α(µ̃) = E
∫∫

dµ̃(x) dµ̃(y)

|x− y|2α
= E

∫ 1

0

∫ 1

0

dµ(t) dµ(s)

|B(t)−B(s)|2α
< ∞.

The expected value of the integrand is

E|B(s)−B(t)|−2α
= E

[(
(t− s)1/2|B(1)|

)−2α]
= |t− s|−α

∫
Rd

1

(2π)d/2
2

|z|2α
e−|z|2/2dz,

where the integral can be evaluated in polar coordinates and equals some finite constant C
because 2α < d. Using Fubini’s theorem,

EI2α(µ̃) = C

∫∫
dµ(t) dµ(s)

|t− s|α
≤ CIα(µ) < ∞.

This means I2α(µ̃) < ∞ almost surely, hence dimB(A) ≥ 2α almost surely. The lower
bound follows by letting α ↑ dimA ∧ d/2. □

The notions of energy and capacity are developed in this section as an estimate for the
Hausdorff dimension of a general set, and we have just seen its power in determining the
precise relation between the dimensions of the domain and range of Brownian motion. In
the next section, we return our focus to further properties of Brownian motion. The central
problem of interest is to estimate the probability that a Brownian path visits a certain set.
It turns out that energy and capacity also play a crucial role there, as Theorem 3.16 shows.

3. Recurrence and Transience

Recall that the study of Brownian motion can be motivated by simple random walk,
which is a canonical discrete-time and discrete-space Markov chain. We now investigate
Brownian motion in the framework of Markov processes.

3.1. Markov Properties of Brownian Motion. Since Brownian motion has independent
and stationary increments, it is a time-homogeneous Markov process in the sense that
{B(t+s)−B(s) | t ≥ 0} is a Brownian motion independent of the process {B(t) | 0 ≤ t ≤ s},
for any fixed time s. More technically, let

F(s) :=
⋂
u>s

σ(B(t) | 0 ≤ t ≤ u).
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Observe that {B(t+ s′)− B(s′) | t ≥ 0} is independent of F(s) for any s′ > s. Taking the
limit s′ ↓ s, we find that {B(t+ s)−B(s) | t ≥ 0} is independent of F(s). Brownian motion
enjoys a similar property when s is replaced by a particular class of random times.

Definition 3.1. A random variable T taking values in [0,∞] is a stopping time with
respect to {B(t) | t ≥ 0} if {T ≤ t} ∈ F(t) for every t ≥ 0. Intuitively, this means that we
can determine whether T ≤ t just with the information of Brownian motion up to time t.

Theorem 3.2 (Strong Markov Property). If T is an almost surely finite stopping time,
then the process {B(T + t)− B(T ) | t ≥ 0} is a standard Brownian motion independent of
F(T ).

Because Brownian motion starts afresh at any fixed or stopping time, it is natural
to formulate the distribution of d-dimensional Brownian motion in terms of the Markov
transition kernel

p(t, x, y) = (2πt)−d/2 exp

(
−|x− y|2

2t

)
,

where p(t, x, ·) is just the density of a normal distribution with mean x and covariance
matrix t times the identity. Then, for any set A ∈ Rd,

P{B(t) ∈ A | F(s)} =

∫
A

p(t− s,B(s), y) dy. (3.3)

3.2. Recurrence, Transience, and the Green Kernel. A general question one can ask
about Markov processes is whether they diverge in a certain sense. The notions of recurrence
and transience provide a rough answer to this question. We then introduce tools to more
precisely estimate the total time that Brownian motion spends in a given set.

Definition 3.4. Let {X(t) | t ≥ 0} be a Markov process where t can take values in R or N,
and X(t) can take values in Rd or N. Then we say X is

� transient if almost surely, limt↑∞ |X(t)| = ∞;
� point recurrent if almost surely, for every x in the state space there exists a

sequence {tn}n∈N with tn → ∞, such that X(tn) = x for all n;
� neighborhood recurrent if X(t) takes values in Rd and, almost surely, for any

x in Rd and ϵ > 0, there exists a sequence {tn}n∈N with tn → ∞, such that
X(tn) ∈ B(x, ϵ) for all n.

The following result is standard; for details, see sections 8.4 and 8.5 of [2], or sections
3.1 and 3.2 of [1], which gives a more rigorous treatment.

Theorem 3.5. d-dimensional Brownian motion is
� point recurrent for d = 1;
� neighborhood recurrent, but not point recurrent for d = 2;
� transient for d ≥ 3.

In fact, when d ≥ 3, let Tr be the first time the Brownian motion visits B(0, r). Then, for
any x outside B(0, r),

Px{Tr < ∞} =
rd−2

|x|d−2
. (3.6)

As one might expect, when Brownian motion is point recurrent or neighborhood recur-
rent, the total time it spends in a bounded set is infinite, whereas in the transient case this
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time is finite almost surely. For linear Brownian motion run up to a finite time t, it can be
shown that the occupation measure given by

µt(A) =

∫ t

0

1A(B(s)) ds for A ⊂ R Borel

is almost surely absolutely continuous with respect to the Lebesgue measure (see [1] 3.26).
For the two dimensional case, we also want to estimate the time Brownian motion spends
in a bounded set before some finite time. Instead of a fixed time, we are interested in a
stopping time.
Definition 3.7. Let {B(t) | t ≥ 0} be a standard d-dimensional Brownian motion. Then a
transient Brownian motion is the process {B(t) | 0 ≤ t < T} in either of the following
two cases:

I. d ≥ 3 and T = ∞;
II. d ≥ 2 and T is the first exit time from a bounded region D ⊂ Rd.
The following proposition is an appropriate modification of (3.3). See [1] 3.30.

Proposition 3.8. For a transient Brownian motion, there exists a transition (sub-)density
p∗(t, x, y) : [0,∞)× Rd × Rd → [0, 1] such that, for any t > 0,

Px

{
B(t) ∈ A and t < T} =

∫
A

p∗(t, x, y) dy for A ⊂ Rd Borel. (3.9)

The explicit forms of this transition (sub-)density are given in each case by
I. p∗(t, x, y) = p(t, x, y);

II. p∗(t, x, y) = p(t, x, y)− Ex

[
p(t− T,B(T ), y)1{t > T})

]
.

If {Xn | n ∈ N} is a transient Markov chain, then the expectation Ex

[∑
n 1y(Xn)

]
estimates the number of times y is visited by the Markov chain started from x. A similar
quantity is the following.
Definition 3.10. For transient Brownian motion with transition (sub-)densities as above,
the Green kernel G : Rd → Rd → [0,∞] is the function

G(x, y) =

∫ ∞

0

p∗(t, x, y) dt

As the discrete analog suggests, G(x, ·) is the density of the expected occupation measure
for transient Brownian motion started in x.
Theorem 3.11. For any measurable f : Rd → [0,∞],

Ex

∫ T

0

f(B(t)) dt =

∫
f(y)G(x, y) dy.

In particular,

Ex

∫ T

0

1A(B(t)) dt =

∫
A

G(x, y) dy. (3.12)

Proof. Using Fubini’s theorem and (3.9)

Ex

∫ T

0

f(B(t)) dt =

∫ ∞

0

Ex

[
f(B(t))1{t<T}

]
dt =

∫ ∞

0

∫
p∗(t, x, y) f(y) dy dt

=

∫ ∫ ∞

0

p∗(t, x, y) dt f(y) dy =

∫
G(x, y) f(y) dy.
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□

After some calculation, we obtain the following expressions for the Green kernel. Details
can be found in [1] 3.33 and 3.37.

Proposition 3.13. For the two cases of transient Brownian motion in Definition 3.7,
I. G(x, y) = C|x− y|2−d for a constant C depending only on d;

II. G(x, y) = 1
π log |x− y|−1

+ Ex

[
1
π log |B(T )− y|

]
.

3.3. Polar Sets and Capacities. As we have seen above, the Green kernel is linked to how
much time Brownian motion spends in a given Borel set in Rd. Now we want to investigate
a closely related question, namely to estimate the probability that a Brownian motion ever
hits a given set.

Throughout this section, we assume D is a bounded region in Rd and A ⊂ D is closed.
It is perhaps surprising that the precise connection between the Green kernel and the hitting
probability of A is provided by the notion of capacity introduced in the previous section.
To begin with, we define a measure on A whose total mass is the hitting probability of A.

Definition 3.14. With notation as above, let {B(t) | 0 ≤ t < T} be a transient Brownian
motion, and τ = inf{0 < t < T | B(t) ∈ A} be the first hitting time of A. The harmonic
measure on A is the measure µ such that for any A′ ⊂ A Borel,

µ(A′) = P0

{
B(τ) ∈ A′ ⋂ τ < T

}
.

That is, µ describes the (sub-)probability distribution of B(τ) on A. Note also that

µ(A) = P0

{
τ < T

}
= P0

{
B(t) ∈ A for some 0 < t < T

}
(3.15)

We are specifically interested in whether the hitting probability of A is positive. The
set A is called polar for transient Brownian motion, if for all x ∈ Ac,

Px

{
B(t) ∈ A for some 0 < t < T

}
= 0,

and nonpolar otherwise. Polarity of A for usual Brownian motion is similarly defined. It can
be shown that if there exists an x in the unbounded component of Ac such that Brownian
motion started in x has a positive chance to hit A, then Brownian motion started anywhere
in the unbounded component of Ac has a positive chance to hit A (see [1] 3.42). Thus,
for A not containing the origin, it suffices to consider standard Brownian motion and the
probability in (3.15) to determine the polarity of A.

The criterion we wish to prove for the remainder of this section is:

Theorem 3.16 (Kakutani). Let Λ be a closed set in Rd. For the radial potential f defined
by

f(ϵ) :=

{ ∣∣log ϵ−1
∣∣ for d = 2,

ϵ2−d for d ≥ 3,

Λ is polar for d-dimensional Brownian motion ⇐⇒ Capf (Λ) = 0.

Notation 3.17. For quantities a(Λ) and b(Λ) depending on Λ, write a(Λ) � b(Λ) if there
exist constants c and C not depending on Λ, such that

c b(Λ) ≤ a(Λ) ≤ C b(Λ).
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Comparing the radial potential to the expressions of the Green kernel given in Propo-
sition 3.13, we find that the radial potential is a constant multiple of the Green kernel in
d ≥ 3 and also a constant multiple of the first term in the case d = 2. It therefore seems
tempting, at least when d ≥ 3, to prove Kakutani’s theorem by proving

Px

{
B(t) ∈ Λ for some t > 0

}
� CapG(Λ)

for some x ∈ Λc. However, we note that the left hand side probability depends on the
starting point x, whereas the G-capacity of Λ is translation invariant. Moreover, by scaling
invariance 1.4, the probability that B(t) ever hits Λ does not change if we scale Λ up or down
with respect to the starting point; whereas the G-capacity cannot in general stay constant.

Therefore, we consider the following scale-invariant version of the Green kernel, and
prove Kakutani’s theorem by showing a quantitative estimate.

Definition 3.18. The Martin kernel M : D ×D → [0,∞] is given by

M(x, y) :=
G(x, y)

G(0, y)
for x 6= y; M(x, x) := ∞.

Theorem 3.19. Let {B(t) | 0 ≤ t < T} be a transient d-dimensional Brownian motion and
A ⊂ D ⊂ Rd\{0} compact. Then

1

2
CapM (A) ≤ P0

{
B(t) ∈ A for some 0 < t < T

}
≤ CapM (A).

Note that the above theorem estimates the hitting probability for transient Brownian
motion, but Kakutani’s theorem concerns polarity for usual Brownian motion, which does
not agree with the transient case in the plane. Thus to apply this estimate, we need the
following fact.

Proposition 3.20. A compact set A ⊂ R2\{0} is polar for planar Brownian motion if and
only if it is polar for transient Brownian motion defined until first exit from every bounded
domain D.

Proof. The only if part is straightforward to see. To prove the contrapositive of the if
direction, assume that A is nonpolar for planar Brownian motion. Then for some large
enough time S, the probability that Brownian motion hits A before S is at least q for some
q > 0. For any bounded D containing A,

P{hits A before leaving D} ≥ P{hits A before S
⋂

does not exit D before S}.

By neighborhood recurrence, we can choose a large enough D such that the probability that
Brownian motion exits D before S is less than q/2. This shows that the right hand side
probability in the above display is at least q/2. Therefore, the transient Brownian motion
defined until first exit from D is also nonpolar. □

Assuming Theorem 3.19, we prove Kakutani’s theorem.

Proof. (of Theorem 3.16) By taking countable unions, it suffices to consider compact subsets
A of Λ contained in a large domain D and not containing the origin, so that G(0, y) is
bounded away from zero and infinity. As a result, CapM (A) vanishes if and only if CapG(A)
vanishes. By Theorem 3.19 and Proposition 3.20, A is polar for Brownian motion if and
only if its M -capacity vanishes. Thus it remains to show that the G-capacity of A vanishes
if and only if its f -capacity vanishes.
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When d ≥ 3, G(x, y) is a constant multiple of f(|x− y|), hence the above statement.
When d = 2, recall that

G(x, y) =
1

π
log |x− y|−1 + Ex

[ 1
π
log |B(T )− y|

]
.

As A is a positive distance away from Dc, the right hand side expectation is bounded above
for x, y ∈ A. Therefore, the finiteness of G-energy is dependent only on the contribution of
the first term, which is a constant multiple of f(|x− y|). This concludes the proof. □

Now, we give the proof of Theorem 3.19.

Proof of the upper bound in Theorem 3.19. Given the link between the harmonic measure
µ and hitting probability in (3.15), we want to consider the M -energy of µ. Let τ be the
first hitting time of A, and y be any point in D. By the strong Markov property,

P0{|B(t)− y| < ϵ
⋂

t ≤ T} ≥ P0{|B(t)− y| < ϵ
⋂

τ ≤ t ≤ T}
= EPB(τ){|B(t)− y| < ϵ

⋂
t ≤ T}. (3.21)

Integrating both sides of (3.21) over t and using the defining property of the Green kernel
in (3.12), the left hand side yields

E0

∫ T

0

1{|B(t)− y| < ϵ} dt =
∫
B(y,ϵ)

G(0, y′) dy′. (3.22)

By the definition of harmonic measure and Fubini’s theorem, the right hand side becomes∫ ∞

0

EPB(τ){|B(t)− y| < ϵ
⋂

t ≤ T} dt

=

∫ ∞

0

∫
A

Px{|B(t)− y| < ϵ
⋂

t ≤ T} dµ(x) dt

=

∫
A

Ex

∫ ∞

0

1{|B(t)− y| < ϵ}1{t ≤ T} dt dµ(x)

=

∫
A

∫
B(y,ϵ)

G(x, y′) dy′ dµ(x). (3.23)

Combining (3.21), (3.22), and (3.23), we obtain that∫
B(y,ϵ)

∫
A

G(x, y′) dµ(x) dy′ ≤
∫
B(y,ϵ)

G(0, y′) dy′.

Divide both sides by L(B(y, ϵ)) and take the limit ϵ ↓ 0 to get∫
A

G(x, y) dµ(x) ≤ G(0, y) =⇒
∫
A

M(x, y)dµ(x) ≤ 1.

Since this holds for all y ∈ D, IM (µ) ≤ µ(A). As µ/µ(A) is a probability measure on A,

CapM (A) ≥ 1

IM (µ/µ(A))
≥ µ(A)2

IM (µ)
≥ µ(A) = P0

{
B(t) ∈ A for some 0 < t < T

}
.

□

To tackle the lower bound, we need two technical lemmas. The first one is standard,
whereas the second one is proved in [1] 8.23.
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Lemma 3.24 (Paley-Zygmund Inequality). If X is a nonnegative random variable with
E[X2] < ∞, then

P{X > 0} ≥ E[X]2

E[X2]
.

Lemma 3.25. For x, y ∈ A, let

hϵ(x, y) =

∫
B(y,ϵ)

G(x, y′) dy′ and h∗
ϵ (x, y) = sup

|x−x′|<ϵ

∫
B(y,ϵ)

G(x′, y′) dy′. (3.26)

Then there is a constant C such that for all sufficiently small ϵ,

h∗
ϵ (x, y) ≤ C G(x, y).

Proof of the lower bound in Theorem 3.19. Take ϵ > 0 to be smaller than half the distance
of A to Dc∪{0}, and define hϵ(x, y) and h∗

ϵ (x, y) for x, y in A as in (3.26). Fix a probability
measure ν on A, and define the random variable

Zϵ =

∫
A

∫ T

0

1{B(t) ∈ B(y, ϵ)}
hϵ(0, y)

dt dν(y).

By (3.12) and the definition of hϵ, E0Zϵ = 1. To calculate the second moment, we use the
symmetry between integrating over s ≤ t and over t ≤ s, along with Markov property:

E0Z
2
ϵ = 2E0

∫ T

0

ds

∫ T

s

dt

∫∫
1{B(s) ∈ B(x, ϵ)}1{B(t) ∈ B(y, ϵ)}

hϵ(0, x)hϵ(0, y)
dν(x) dν(y)

≤ 2E0

∫∫ ∫ T

0

1{B(s) ∈ B(x, ϵ)} ds h∗
ϵ (x, y)

hϵ(0, x)hϵ(0, y)
dν(x) dν(y)

= 2

∫∫
h∗
ϵ (x, y)

hϵ(0, y)
dν(x) dν(y).

Note that limϵ↓0 L(B(0, ϵ))−1h∗
ϵ (x, y) = G(x, y) and limϵ↓0 L(B(0, ϵ))−1hϵ(0, y) = G(0, y).

Since G(0, y) is bounded away from zero and infinity for all y ∈ A, we apply Lemma 3.25
to get that, for some constant C ′ and all sufficiently small ϵ > 0,

h∗
ϵ (x, y)

hϵ(0, y)
≤ C ′G(x, y)

G(0, y)
= C ′ M(x, y).

If ν has infinite M -energy, then the lower bound trivially holds; if ν is of finite M -energy,
we use dominated convergence to obtain

lim
ϵ↓0

EZ2
ϵ ≤ 2

∫∫
G(x, y)

G(0, y)
dν(x) dν(y) = 2IM (ν).

Now, using the Paley-Zygmund inequality,

P{∃ t > 0, y ∈ A such that B(t) ∈ B(y, ϵ)} ≥ P{Zϵ > 0} ≥ (EZϵ)
2

EZ2
ϵ

= (EZ2
ϵ )

−1

By compactness of A and continuity and transience of Brownian motion, if the Brownian
path visits every ϵ-neighborhood of A, then it must also intersect A. It follows that

P{∃ t > 0 such that B(t) ∈ A} ≥ lim
ϵ↓0

(EZ2
ϵ )

−1 ≥ 1

2IM (ν)
.

As ν is an arbitrary probability measure on A, this concludes the proof. □
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4. First Look at Intersection: Existence

Let {B1(t) | t ≥ 0} and {B2(t) | t ≥ 0} be two independent d-dimensional Brownian
motions with arbitrary starting points. We ask whether the paths of B1 and B2 intersect in
different dimensions. Because of point recurrence of linear Brownian motion, an intersection
exists almost surely in dimension d = 1. The idea for the cases d ≥ 2 is that, by indepen-
dence, we view the path of B1 as fixed, so that nonexistence of intersection is equivalent
to the polarity of the path of B1 with respect to the other Brownian motion B2. Then, we
apply Kakutani’s theorem and results on Hausdorff dimension discussed earlier.

Theorem 4.1. Almost surely,
� for d ≥ 4, two independent Brownian paths in Rd have empty intersection, except

for a possible common starting point;
� for d ≤ 3, two independent Brownian paths in Rd have an intersection other than a

possible common starting point.

Proof. Note that in d ≥ 3, Capf (A) = Capd−2(A) for any Borel A ⊂ Rd, where f is the
radial potential. By Theorem 2.17 and Theorem 2.16 applied to the path of B1,

2 = dimB1[0,∞) = sup{α | Capα(B1[0,∞)) > 0}. (4.2)
Therefore, for d ≥ 5, as d− 2 is strictly larger than 2, Capf (B1[0,∞)) = 0.

When d = 4, by Proposition 2.5, H2(B1[0,∞)) < ∞. Using the second form of the
energy method 2.9, we get Capf (B1[0,∞)) = Cap2(B1[0,∞)) = 0. By Kakutani’s theorem
3.16, this implies B1[0,∞) is polar for B2.

To prove the statement for d ≤ 3, observe that if two Brownian motions in R3 almost
surely intersect, then by projection onto the first two coordinates, two Brownian paths in
R2 must also intersect almost surely. Therefore, it suffices to consider d = 3. In this case,
Capf (B1[0,∞)) = Cap1(B1[0,∞)) > 0, by (4.2), showing that two Brownian paths in R3

intersect with positive probability.
To show this probability is in fact one, we first assume B1 and B2 start in different

points. By rotational invariance and scaling invariance, the probability that B1 and B2

never intersect is independent of their starting positions; denote this probability by q. Then,
for any given ϵ > 0, we can choose a large time t such that the probability that B1 and B2

do not intersect before t is at most q + ϵ. Using the Markov property,
q ≤ P{B1(t1) 6= B2(t2) for all 0 < t1, t2 ≤ t}P{B1(t1) 6= B2(t2) for all t1, t2 > t}
≤ (q + ϵ)q

As q < 1 and ϵ > 0 is arbitrary, this shows q = 0, whence the two paths intersect almost
surely. In the case that B1 and B2 share a starting point, we use the Markov property to
conclude

P{B1(t1) 6= B2(t2) for all t1, t2 > 0} = lim
t′↓0

P{B1(t1) 6= B2(t2) for all t1, t2 > t′} = 0

□

In fact, when B1 and B2 share a starting point in d ≤ 3, they almost surely intersect
nontrivially before any t > 0. This is because given any ϵ > 0, we can find a large enough
time tϵ such that the probability that B1 and B2 intersect before tϵ is at least 1− ϵ. As tϵ is
finite, using scaling invariance, we see that the probability that B1 and B2 intersect before
t is also bounded below by 1− ϵ.
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It is natural to ask for the existence of self-intersection of a single Brownian motion. As a
moment of thought would suggest, this question is essentially equivalent to the corresponding
one for independent Brownian paths. Thus the result below follows from Theorem 4.1.
Theorem 4.3. Almost surely,

� for d ≥ 4, a Brownian path in Rd does not intersect itself;
� for d ≤ 3, a Brownian path in Rd intersects itself.

Proof. Observe that in both cases, we can prove the statements by just considering Brownian
motion run until time 1. For d ≥ 4, it suffices to show that for any rational q ∈ (0, 1), there
almost surely exists no times 0 ≤ t1 < q < t2 ≤ 1 with B(t1) = B(t2). Given q, we consider

B1(t) = B(q + t)−B(q), 0 ≤ t ≤ 1− q

B2(t) = B(q − t)−B(q), 0 ≤ t ≤ q.

By the defining properties of Brownian motion, B1 and B2 are independent Brownian mo-
tions. Theorem 4.1 shows that B1 and B2 almost surely do not intersect, hence the two
sections of B before and after time q almost surely do not intersect.

When d ≤ 3, the Brownian motions

B1(t) = B
(1
2
+ t
)
−B

(1
2

)
, 0 ≤ t ≤ 1

2
,

B2(t) = B
(1
2
− t
)
−B

(1
2

)
, 0 ≤ t ≤ 1

2
,

almost surely intersect before time 1
2 , as they have the same starting point. □

5. Second Look at Intersection: Points of Finite Multiplicity

The previous section tells us that two independent Brownian paths almost surely have
empty intersection in d ≥ 4 and nonempty intersection in d ≤ 3. It is then natural to ask for
more details in the latter case: do k independent d-dimentional Brownian motions share a
common point? It turns out that, although an intersection between two paths almost surely
exists in both cases, the intersection behaviors in dimensions two and three are drastically
different when more Brownian paths are taken into consideration.
Theorem 5.1. Almost surely,

� for d = 3, three independent Brownian paths in R3 have empty intersection, except
for a possible common starting point;

� for d = 2 and any interger k ≥ 2, k independent Brownian paths in R2 have an
intersection other than a possible common starting point.

Given the techniques used in the previous section, we prove the first statement by
considering two Brownian paths as fixed and showing their union to be polar for the third
one. Specifically, we employ a similar strategy as for the d = 4 case in the proof of Theorem
4.1. Recall that it suffices to exhibit a cover with finite α-value to show the α-Hausdorff
measure to be finite, as in the proof of Proposition 2.5. Moreover, approximation of a closed
set by dyadic cubes was an element in the proof of Theorem 2.15. We also make use of these
earlier introduced ideas.

Proof of Theorem 5.1 for d = 3. It suffices to show that three Brownian paths almost surely
have empty intersection in any unit cube Q not containing the starting points. By Kakutani’s
theorem, we only need to show Cap1(B1[0,∞)∩B2[0,∞)∩Q) = 0. Further, using the energy
method 2.9, we can show this by proving that H1(B1[0,∞) ∩B2[0,∞) ∩Q) < ∞.
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To do this, let Qn be the collection of the n-th generation of dyadic cubes each of side
length 2−n, and Q∗

n be the subcollection of cubes in Qn that are hit by both B1 and B2.
Then, noting that the distance between Q and the starting points is bounded from below
and using (3.6), there exists a constant C such that for any cube Qn ∈ Qn;

P{Qn ∈ Q∗
n} = P{B(t) ∈ Qn for some t > 0}2 ≤ C2−2n.

For every n, Q∗
n is a covering of B1[0,∞) ∩ B2[0,∞) ∩ Q. The expected one-value of this

covering is

E
[ ∑
Qn∈Q∗

n

|Qn|
]
= 23n(C2−2n)

√
32−n ≤ C

√
3

This shows that, by Fatou’s lemma,

E
[
lim inf
n→∞

∑
Qn∈Q∗

n

|Qn|
]
≤ lim inf

n→∞
E
[ ∑
Qn∈Q∗

n

|Qn|
]
≤ C

√
3.

Therefore, almost surely, H1(B1[0,∞) ∩B2[0,∞) ∩Q) < ∞. □
We shall prove Theorem 5.1 for d = 2 through a new route. Note that it suffices to show

that the intersection of k independent Brownian paths has positive Hausdorff dimension.
Perhaps surprisingly, a much stronger result holds.

Theorem 5.2. For d = 2 and any integer k ≥ 2, let {B1(t) | t ≥ 0}, . . . , {Bk(t) | t ≥ 0} be
k independent planar Brownian motions. Then, almost surely,

dim
(
B1[0,∞) ∩ . . . ∩Bk[0,∞)

)
= 2.

5.1. The Percolation Method. As the upper bound in the above theorem is immediate,
we again need to find lower bounds for Hausdorff dimension. In addition to the ones dis-
cussed in section 2.1, we introduce a new method to tackle this problem. The idea is to
construct a random test set Γ; if Γ has a positive chance to intersect a fixed set A, then A
must be somewhat large. A slight modification of the simple construction of dyadic cubes
turns out to be very useful.

Given a unit cube Q, let Qn be the collection of the n-th generation of dyadic cubes
each of side length 2−n. We construct a random collection Q⋆

1 by selecting each of the 2d

cubes in Q1 independently with probability 2−γ for some fixed γ ∈ [0, d]. Then, inductively,
construct Q⋆

n+1 by selecting each of the cubes in Qn+1 that are contained in a larger cube
in the previously selected collection Q⋆

n. In this way, we obtain a percolation limit set

Γ[γ] :=

∞⋂
n=1

Γn, where Γn :=
⋃

Qn∈Q⋆
n

Qn.

We also define

Q :=

∞⋃
n=1

Qn and Q⋆ :=

∞⋃
n=1

Q⋆
n.

The percolation limit set Γ[γ] plays the role of a random test set, where the probability
for Γ[γ] to hit a given set is positively related to the retention probability of dyadic cubes,
hence negatively related to γ. This idea is more precisely stated in the following theorem.

Theorem 5.3 (Hawkes). For any γ ∈ [0, d] and fixed closed set A ⊂ Q, the following
statements hold.

(i) If dimA < γ, then A ∩ Γ[γ] = ∅ almost surely.
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(ii) If dimA > γ, then P{A ∩ Γ[γ] 6= ∅} > 0.

Note that (i) gives a lower bound for dimA when P{A ∩ Γ[γ] 6= ∅} > 0.

Proof of (i). Suppose dimA < γ. By the definition of Hausdorff dimension, for any ϵ > 0,
there exists a covering A1, A2, . . . of A such that

∑
i |Ai|γ < ϵ. Since each Ai is contained

in no more than 3d dyadic cubes of smaller diameter, we may assume A1, A2, . . . ∈ Q. For
Ai ∈ Qn, |Ai| =

√
32−n, whereas P{Ai ∈ Q⋆

n} = (2−γ)n. Let N be the (a priori possibly
infinite) number of cubes in A1, A2, . . . that survive the percolation. Since these cubes form
a covering of A ∩ Γ[γ],

P{A ∩ Γ[γ] 6= ∅} ≤ P{N > 0} ≤ EN =

∞∑
i=1

P{Ai ∈ Q⋆} =
1

√
3
γ

∞∑
i=1

|Ai|γ <
ϵ

√
3
γ .

Since ϵ > 0 is arbitrary, this implies that A ∩ Γ[γ] almost surely. □

Proof of (ii). Just like the proof for the lower bound in Theorem 3.19, this proof also relies
on the Paley-Zygmund inequality 3.24 and finiteness of an energy. By Theorem 2.16, if
dimA > γ, them there exists a probability meaure µ on A with Iγ(µ) < ∞. For every
positive integer n, define the random variables

Zn =
∑

Qn∈Q⋆
n

µ(Qn)

|Qn|γ
=

∑
Qn∈Qn

µ(Qn)2
nγ
1{Qn∈Q⋆

n}.

The point of this definition is that, if Zn > 0, then Γn must intersect A, so that by com-
pactness, Zn > 0 for all n implies A ∩ Γ[γ] 6= ∅. Since Zn+1 > 0 only if Zn > 0,

P{A ∩ Γ[γ] 6= ∅} ≥ P{Zn > 0 for all n} = lim
n→∞

P{Zn > 0}.

We want to use the Paley-Zygmund inequality to find a lower bound for P{Zn > 0} that is
independent of n. Thus, calculate the first and second moment of Zn:

E[Zn] =
∑

Qn∈Qn

µ(Qn) 2
nγ P{Qn ∈ Qn} =

∑
Qn∈Qn

µ(Qn) = 1

E[Z2
n] =

∑
Qn∈Qn

∑
Rn∈Qn

µ(Qn)µ(Rn) 2
2nγ P{Qn ∈ Q⋆

n and Rn ∈ Q⋆
n}.

Note that if C ∈ Q⋆
m is the smallest cube containing Qn and Rn, then the respective

retentions of Qn and Rn are not independent until after step m of the percolation. Therefore,
the probability in the above display is 2−γm2−2γ(n−m). Also note that for any x ∈ Qn and
y ∈ Rn,

|x− y| ≤
√
d2−m =⇒ 2γm ≤ dγ/2|x− y|−γ

.

Combining what we have above,

E[Z2
n] =

∑
Qn∈Qn

∑
Rn∈Qn

µ(Qn)µ(Rn)2
γm ≤ dγ/2

∫∫
dµ(x) dµ(y)

|x− y|γ
= dγ/2Iγ(µ).

Therefore, applying the Paley-Zygmund inequality, we have P{Zn > 0} ≥ 1/
(
dγ/2Iγ(µ)

)
,

where the right hand side is positive and independent of n. This gives the desired result. □

In order to use Hawkes’s theorem to prove the remaining part of Theorem 5.1, we need
a zero-one law, which relies on Blumenthal’s well-known zero-one law.
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Theorem 5.4 (Blumenthal’s zero-one law). Let x ∈ Rd and A be an event in the germ
σ-algebra F(0) = ∩u>t σ(B(t) | 0 ≤ t ≤ u), then Px(A) is either zero or one.

Proof. Recall from section 3.1 that any A ∈ σ(B(t) | t ≥ 0) is independent of F(0). As
F(0) ⊂ σ(B(t) | t ≥ 0), any A ∈ F(0) is independent of itself, hence has probability either
zero or one. □

Lemma 5.5. For any γ > 0 and independent Brownian motions {B1 | t ≥ 0}, . . . , {Bk |
t ≥ 0},

P
{
B1[0,∞) ∩ . . . ∩Bk[0,∞) ≥ γ

}
is either zero or one, and is independent of the starting points of B1, . . . , Bk.

Proof. As one might expect, we use Blumenthal’s zero-one law in conjunction with scaling
invariance. For any s ≥ 0 and t ∈ (0,∞], let

I(s, t) = B1(s, t) ∩ . . . ∩Bk(s, t) and p(t) = P
{
dim I(0, t) ≥ γ

}
.

Suppose first that B1, . . . , Bk share a starting point. By monotonicity of the events,
P
{
dim I(0, t) ≥ γ for all t > 0

}
= lim

t↓0
p(t).

Since the event in question is in the germ σ-algebra, the left hand side probability is either
zero or one. On the other hand, scaling invariance says that p(t) is the same for all 0 <
t < ∞, hence it is either zero and one for all 0 < t < ∞. Taking t → ∞, we have either
p(∞) = 0 or p(∞) = 1, proving the case when B1, . . . , Bk start at the same point.

Now, suppose p(∞) = 0 and pick any finite positive time s. By Markov property,
0 = P

{
dim I(s,∞) ≥ γ

}
=

∫
P
{
dim I(s,∞) ≥ γ | B1(s) = x1 ∩ . . . ∩Bk(s) = xk

} k∏
i=1

p(t, 0, xi) dx1 . . . dxk.

This implies that P{dim I(0,∞) ≥ γ} = 0 for Lkd-almost every configuration of starting
points. Thus, for the case where B1, . . . , Bk have arbitrary starting points, P{dim I(s,∞) ≥
γ} = 0 for any s > 0. By the countable stability of Hausdorff dimension, dim I(0,∞) ≥ γ
if and only if dim I(s,∞) ≥ γ for sufficiently small rational s > 0. Therefore,

P
{
dim I(0,∞) ≥ γ

}
= lim

s↓0
P
{
dim I(s,∞) ≥ γ

}
= 0.

One can argue analogously for the case p(∞) = 1. □

Proof of Theorem 5.2, hence Theorem 5.1 for d = 2. We want to show that the dimension
of the intersection of any k Brownian paths in any unit square is at least two. Fix γ < 2,
and choose β1, . . . , βk > 0 such that γ + β1 + . . . + βk < 2. Observe that for independent
percolation limit sets Γ[γ] and Γ[β1], . . . ,Γ[βk],

Γ[γ] ∩
k⋂

i=1

Γ[βi]

is a percolation limit set with parameter γ + β1 + . . .+ βk. Recall that dimB1[0,∞) = 2 >
γ + β1 + . . .+ βk. Then, by part (ii) of Hawkes’s theorem 5.3,

P
{
B1[0,∞) ∩ Γ[γ] ∩

k⋂
i=1

Γ[βi] 6= ∅
}
> 0.
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Now, if we view Γ[βk] as the random test set, then with positive probability,

P
{
B1[0,∞) ∩ Γ[γ] ∩

k⋂
i=1

Γ[βi] 6= ∅ | B1[0,∞) ∩ Γ[γ] ∩
k−1⋂
i=1

Γ[βi]
}
> 0.

By part (i) of Hawkes’s theorem, this implies that

P
{
dim

(
B1[0,∞) ∩ Γ[γ] ∩

k−1⋂
i=1

Γ[βi]
)
≥ βk

}
> 0. (5.6)

Conditioning on this event, as βk > 0, the α-capacity of

B1[0,∞) ∩ Γ[γ] ∩
k−1⋂
i=1

Γ[βi]

is positive for any positive α < βk. One checks that log ϵ−1 < ϵ−α for all sufficiently small
ϵ, hence the set in the above display also has positive capacity with respect to the potential
kernel in the plane. By Kakutani’s theorem, it is therefore nonpolar for the independent
Brownian motion {B2(t) | t ≥ 0}, i.e.,

P
{
B1[0,∞) ∩B2[0,∞) ∩ Γ[γ] ∩

k−1⋂
i=1

Γ[βi] 6= ∅
}
> 0.

Repeating the above argument k times yields

P
{ k⋂

i=1

Bi[0,∞) ∩ Γ[γ] 6= ∅
}
> 0,

under the condition that the event in (5.6) holds. Finally, by part (i) of Hawkes’s theorem,

P
{ k⋂

i=1

Bi[0,∞)
}
≥ γ

}
> 0.

Using Lemma 5.5, this probability must in fact be one. Taking the limit γ ↑ 2 concludes
the proof. □

5.2. Multiple Points of Brownian Motion. Given the discussion in section 4, one nat-
urally expects an analog of Theorem 5.1 for self-intersections. A point x ∈ Rd is said to
have multiplicity k or to be a k-multiple point for a Brownian motion {B(t) | t ≥ 0} in
Rd if there exist distinct times t1, . . . , tk, such that x = B(t1) = . . . = B(tk). Now that we
want to divide a Brownian path into k sections for k ≥ 3, we cannot simply translate the
intersection behavior of these sections into that of independent Brownian motions started
at the same point, as we did in the proof of Theorem 4.3. Hence we need the following
version of Brownian motion with nonrandom ending point.

Definition 5.7. For x, y ∈ Rd, let {B(t) | t ≥ 0} be a d-dimensional Brownian motion
started in x. A d-dimensional Brownian bridge with start in x and end in y is the process
given by

X(t) = B(t)− t
(
B(1)− y), 0 ≤ t ≤ 1.

In other words, for 0 ≤ t ≤ 1, the distribution of X(t) is the conditional distribution of
B(t) given B(1). It can be checked that for any 0 < t < 1, the distribution of a Brownian
bridge run up to time t is mutually absolutely continuous with that of the corresponding
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Brownian motion run up to time t; see for example Exercise 1.5 in [1]. Then, the following
statements for Brownian bridges are immediate.

Corollary 5.8 (Corollary of Theorem 5.1). Let {X1(t) | 0 ≤ t ≤ 1}, . . . , {Xk(t) | 0 ≤ t ≤ 1}
be k independent Brownian bridges with arbitary starting and ending points. Then,

� for d = 3 and k = 3, almost surely, three independent Brownian bridges in R3 have
empty intersection, except for possible common starting and ending points.

� for d = 2 and any integer k ≥ 2, with positive probability, k independent Brownian
bridges in R2 have an intersection other than possible common starting and ending
points.

Now, we are ready to refine the result of Theorem 4.3 when d ≤ 3.

Theorem 5.9. Almost surely,
� for d = 3, a Brownian path in R3 has no triple point.
� for d = 2 and any integer k ≥ 2, a Brownian path in R2 has points of multiplicity

at least k.

Proof. For d = 3, it suffices to show that for any rationals 0 < q1 < q2 < q3 and ϵ <
(q3 − q2) ∧ (q2 − q1), there almost surely exist no times ti ∈ (qi, qi + ϵ) such that B(t1) =
B(t2) = B(t3). Conditioning on the values of the Brownian motion at times qi and qi + ϵ,
we get three independent Brownian bridges

Xi(t) = B(qi + t)−B(qi), for 0 ≤ t ≤ ϵ and i = 1, 2, 3.

By Corollary 5.8, X1, X2 and X3 almost surely have empty intersection. Nonexistence of
triple point follows by taking expectation over the values of the Brownian motion at times
qi and qi + ϵ.

For d = 2, as the corresponding statement in Corollary 5.8 only holds with positive
probability, we again resort to Blumenthal’s zero-one law. Consider any δ > 0, rationals
0 < q1 < · · · < qk < qk+1 = δ, and ϵ > 0 with qi + ϵ < qi+1 for i = 1, . . . , k. Conditioning
on the values of the Brownian motion at times qi and qi + ϵ, we get k Brownian bridges

Xi(t) = B(qi + t)−B(qi), for 0 ≤ t ≤ ϵ and i = 1, . . . , k,

which intersect with positive probability. Taking an expectation, we infer that with positive
probability, Brownian motion run up to time δ has a k-multiple point. By scaling invariance,
this probability is the same for all δ > 0. Therefore,

P
{

for all δ > 0,∃ 0 < t1 < . . . < tk < δ such that B(t1) = · · · = B(tk)
}

= lim
δ↓0

P
{
∃ 0 < t1 < . . . < tk < δ such that B(t1) = · · · = B(tk)

}
> 0.

By Blumenthal’s zero-one law, this probability must be one. This shows that a Brownian
motion in the plane almost surely has a k-multiple point. □

We end this paper by stating an intriguing result. The interested reader may read
section 9.3 of [1] for details.

Theorem 5.10. Almost surely, a Brownian motion in the plane has a point of uncountable
multiplicity. ■
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