RECIPROCITY LAWS

NANCY XU

ABSTRACT. This paper surveys four of the early reciprocity laws. We start
with a discussion of quadratic reciprocity, which we will prove using the split-
ting of primes in algebraic number fields. We then introduce Gauss and Jacobi
sums before using them to prove cubic, biquadratic, and Eisenstein reciprocity.
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1. INTRODUCTION

For distinct primes p, ¢, reciprocity laws turn the question of whether ¢ is an nth
power modulo p into the question of whether p is an nth power modulo ¢, hence
the name "reciprocity.” The case n = 2 is quadratic reciprocity. The cases n = 3
and n = 4 are cubic and biquadratic reciprocity, respectively, where we move from
the familiar Z to Z[(3] or Z[i]. The Eisenstein reciprocity covers the case n = [ for
an odd prime ! in the cyclotomic field Z[¢].

Quadratc reciprocity can be used to solve the problem of whether a prime can
be expressed in the form x? + ny?, where z,y € Z and n is a fixed integer. In
particular, if 22 + ny? = 0 (mod p) and (z,y) = 1, then 22 = —ny? (mod p), so n
must be a square modulo p. Conversely, if n is a square modulo p then p|(z2 +ny?).
When n = 1,2, 3, if p|(22 + ny?) for x,y relatively prime, then p can be written as
p = x2 4+ ny? , thus in these cases of n quadratic reciprocity provides a complete
characterization of primes expressable as z? + ny?. Reciprocity laws also have
applications in cryptography; for example, biquadratic reciprocity can be used to
identify the encrypted message in the Rabin public-key cryptosystem.

We begin with the discussion of quadratic reciprocity in Section 2, where we first
introduce prime splitting in number fields before proceeding to a proof. We then
proceed to establishing preliminaries for higher reciprocity with a brief introduction
of characters, Gauss sums, and Jacobi sums in Section 3, before diving into cubic,
biquadratic, and Eisenstein reciprocity in Sections 4, 5, and 6, respectively.
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For this paper, we will assume basic knowledge of abstract algebra and Galois
Theory.

2. QUADRATIC RECIPROCITY

To formulate quadratic reciprocity we will introduce the Legendre symbol, an
indicator function whose output is determined by whether the input integer is a
square modulo a prime p. While quadratic reciprocity has many equivalent for-
mulations, its symmetry is the most apparent when presented using the Legendre
symbol.

Definition 2.1. For a,p € Z, p a prime, define the Legendre symbol as

1 if a is a square modulo p and p 1 a

a
<> = —1 if a is not a square modulo p
p .

0 if pla.
Proposition 2.2. Let a,b,p € Z, where p is a prime. We have the following
properties:

(1) (BEuler’s Criterion) a"= = (%) (mod p).
@) () =G
(3) If a="b (mod p), then (2) = (2).

p p

Proof. (2) and (3) are clear from definition, so we will only prove (1).

Let v be a generator of Fp, o = * (mod p), and x = 4" (mod p) for positive
integers a,n. Then 22 = o (mod p) is solvable if and only if 2n = a (mod p — 1) is
solvable, where the latter is true when 2|a, as (2,p — 1) = 2. Since 7 is a generator,
“ = 1 (mod p). O

this condition holds if and only if ~

Proposition 2.2 (2) is a particularly nice property, since using quadratic reci-
procity it is possible to determine when an arbitrary integer is a square modulo p
by decomposing it into primes and using this multiplicative property. The law of
quadratic reciprocity is as follows:

Theorem 2.3. For odd primes p,q € Z,

(-

Moreover, we have the following supplements:
o (First Supplement) (_71) = (—1)1%1.
o (Second Supplement) (%) =(-1)

p2—1
8

The first supplement follows directly from Proposition 2.2 (1). We will present a
proof of the second supplement using prime splitting; it is not the simplest known
proof but motivates some of the ideas in higher reciprocity laws. Our strategy is as
follows: In Section 2.1, we will show that Q[px], where px = (—1)177_1]9, is the unique
quadratic subfield of Q[(,]. Section 2.2 shows that a prime ¢ splits completely in an
intermediate field if and only if this field contains the decomposition field, and we
will show that Q[p«] satisfies this property in Section 2.4. Section 2.3 shows that ¢
splits completely in Q[px] if and only if p* is a square modulo ¢, and finally Section
2.4 will show that ¢ is a square modulo p if and only if ¢ splits completely in Q[p]
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and tie together the pieces from the previous sections. Relevant terminology will
be defined in the next few sections.

2.1. Quadratic Subfield. In this section, we will determine the unique quadratic
subfield of Q[(,] by computing the discriminant of the pth roots of unity using
norms. Consider a number field K/Q of degree n with o1, ...,0, as the n embed-
dings of K € C.

Definition 2.4. The norm of an element o € K is given by
N(a) = o1(a)oz(a) . ..on(a).
Definition 2.5. For any n-tuple aj,...,a, € K, the discriminant of aq, ..., a, is
given by
Alay, ... apn) = |oi(a;) %

i.e. the square of the determinant of the matrix with o;(c;) in the ith row and jth
column.

As defined, the discriminant is quite difficult to calculate, but interpreting it as
the norm of a polynomial can simplify computations.

Proposition 2.6. For a ring Q[a], let f be the monic irreducible polynomial for «

over Q and ay,...,a, be the conjugates of a. Then
Al,a,...,a" 1) = H (as — ap)? = £N(f' (),
1<r<s<n

where the + sign holds if and only if n = 0,1 (mod 4).

Proof. Let o; be the automorphism such that o;(a) = «;, where 1 < i < n. To
show the first equality, we have

loi(a)| = loi(a)’| = |a]],

where |o]| is a Vandermonde determinant. Thus

2
|ag|2 = H (s —ar) | = H (o5 — ar)2~
1<r<s<n 1<r<s<n
Now
n(n—1
ALa,...a” ) = ()" [ (ar - a),
1<r<s<n
SO (—1)% =1lifand only if n = 0,1 (mod 4). Since f’ has rational coefficients,
it follows that
N(f'(@) = [T or(f' (@) = T F(or(@)) = ] /' (ar).
r=1 r=1 r=1

Since f(x) = [[,(# — @), for each r, we have f'(a;) =[], (@ — ;), which shows
the second equality. (I

Proposition 2.7. Let p € Z be a prime, and define px = (71);%1]0. Then /px €
QI¢p)-
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Proof. We will first apply Proposition 2.6 to compute A(1,(p, ... ,Cgfz) in Q[¢,].

The irreducible polynomial of ¢, is given by f(z) =1+ 2 + ...+ 27!, which
can be rewritten as 2? — 1 = (v — 1)f(z). We differentiate the equation to get
prP~t = f(z)+(z—1)f'(z), and substituting x = ¢, gives us f'(¢,) = p/ (¢ (¢ —1)).
We take the norm to get

/ o N(p)
NG = FomG -1

Since Q[¢,] is a Galois extension over Q, the embeddings of Q[(,] into C are precisely
the elements in the Galois group of Q[(,] over Q. We have

N(p)=p""
p—l . p(p—1)
NG =][¢=¢6 = =1
=1

NG~ 1) = NN - 6) = (-1~ [T -¢) =

Then N(f/(¢,)) = £pP~2, where the + sign holds if and only if p = 1 (mod 4)
by Proposition 2.6. From the definition of the discriminant, its square root must be
in Q[¢,], which we find to be \/£pP~2 = p"T \/p¥, 50 \/DF € QI[¢p] as desired. O

Corollary 2.8. The unique quadratic subfield of Q[(p] is Q[/p*].

Proof. The Galois group G of Q[(,] over Q is cyclic of order p—1, so it has a unique
subgroup of order 2. By the Main Theorem of Galois Theory, there exists a unique
quadratic subfield of Q[(,], which by Proposition 2.7 is Q[,/p*]. |

2.2. Prime Splitting. Prime elements often do not remain irreducible in a larger
ring; for example, while 2 is prime in Z, it splits in Z[i] as 2 = (1 4+ 4)(1 — 4).
Splitting becomes complicated in rings that are not unique factorization domains,
thus we will instead work with prime ideals instead of prime elements, since prime
ideals can be decomposed uniquely in Dedekind domains.

We begin by establishing notation for this subsection. Let K, L be field ex-
tensions of Q such that K C L. For an arbitrary field F', let Op be the ring of
integers associated to F. Let P C Ok and @ C Oy, be prime ideals in their respec-
tive number rings. The goal of this section is to determine the fields K’ such that
K C K’ C L in which every prime ideal P C Ok splits completely in K'.

Definition 2.9. A prime P C Ok splits completely in O if and only if P splits
into [L : K| distinct primes.

We do so by showing that every prime in O splits completely in what we will
call the decomposition field, and that all intermediate fields satisfying this property
contain this field. Before we proceed, it is important to establish some preliminary
definitions to describe a prime decomposition:

Definition 2.10. @ lies over P, or P lies under Q, if Q|POy. Equivalently,
P C @Q, or alternatively Q N Ok = P.

Every prime @@ C Op, lies over a unique prime P C Ok, and the argument goes
as follows: for a nonzero o € Q, there exists an a; € O such that o™ +aja™ ' +
...+ a;, =0, where we can assume that a,, # 0 since we’re working in the field L,
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S0 am € QN Ok and Q N Ok is nonempty. Since 1 ¢ Q, it follows that Q@ N Ok is
prime.

Definition 2.11. The ramification index e is the unique nonnegative integer such
that P C Q¢ and P ¢ Q°T!, denoted as e(Q|P).

In other words, if we decompose P C O in Op as P = Q{'Q5* ... Qy°, then
Q1,Q2,...,Qq lie over P and have ramification indices e1, es,. .., eq4, respectively.

The containment of Ok in Of, induces a ring homomorphism Ox — Op/Q
with kernel Ox N Q = P, thus Ok /P embeds in O /Q, and O /Q is a finite field
extension of Ok /P.

Definition 2.12. The degree of the field extension f of Or/Q over Ok /P is the
inertial degree of @ over P, denoted as f(Q|P).

One useful property regarding ramification degrees and inertial fields is that
they are multiplicative in towers, i.e. if P C Q C U are prime ideals in the ring of
integers of the field extension F' C L C K, then

e(UlP) = e(U|Q)e(Q|P)
fUIP) = f(UIQ)f(QIP).

The next two Propositions will relate the ramification index, inertial degree, and
the degree of the extension K C L for when the extension L/K is Galois.

Proposition 2.13. Let Q,Q" C Op be prime ideals lying over the prime ideal
P C Ok. Then o(Q) = Q' for some 0 € G(L/K).

Proof. See Section 3, Theorem 23 of Marcus [5]. O

In other words, the Galois group of L/K permutes the prime ideals lying over
P transitively.

Proposition 2.14. Let n = [L : K|, and write PO, = Q7' Q% ...Qy°, where
Qi € Or is a prime ideal for 1 <i < g and Q; = Q5 if and only if i = j. Then
e1=e =...=¢5and fr = fo =... = fq. Let e and f denote these common

values. Then gef = n.

Proof. See Section 3 of Marcus [5] or Section 12.3, Theorem 3’ of Ireland and Rosen
[3]. O

Proposition 2.14 is particularly useful in characterizing primes when n is small,
as we will see in Sections 4 and 5. For now, if we want to show that every prime
splits completely in an intermediate field K’, it is enough for us to prove that
[K:K'|=gande=f=1.

For groups H, G, we write H C G if H is an arbitrary subgroup of G and H <G
if H is a normal subgroup of G.

Definition 2.15. Let G be the Galois group of L/ K, and suppose that @ lies over
P. The decomposition group D C G is given by D = D(Q|P) = {c € G: 0@ = Q}.
The fixed field Lp of of D is called the decomposition field.

It follows that D = G(L/Lp). It can also be checked that D is indeed a subgroup
of G.
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Proposition 2.16. Let g be the number of distinct prime ideals in the decomposi-
tion of P in Or. Let Qp € D(Q|P) be a prime ideal over P. Then [Lp : K| =g
and e(Qp|P) = f(Qp|P) = 1.

Proof. We know from Galois Theory that [Lp : K] = [G : D], so it is enough to
compute the latter. Every left coset 0D, 0 € G, sends @ to 0@. We know that
oD = 7D if and only if 0Q = 7Q, for any o,7 € G, so there exists a bijection
between the set of left cosets 0D and set of primes 0@Q). But by Proposition 2.13,
primes of the form o@Q) are precisely those lying over P, hence there are g of them
and [Lp : K] =g.

To show e(Qp|P) = f(Qp|P) = 1, notice that @ is the only prime in S lying
over P, since primes lying over P are permuted transitively by D = G(L/Lp).
By Proposition 2.14, we have [L : Lp] = e(Q|Qp)f(Q|Q@p). Our previous results
shows that [Lp : K] = g, hence again by Proposition 2.14, it follows that [L : Lp] =
e(QIP)F(QIP). But e(QIQp) < e(QIP) and £(QIQp) < F(QIP). so0 e(QIQp) =
e(Q|P) and f(Q|Qp) = f(Q|P). Since ramification indices and inertial degrees are
multiplicative in towers, we get e(Qp|P) = f(Qp|P) = 1, as desired. O

Corollary 2.17. If D« G, P splits into g distinct primes in Op,,,.

Proof. Since D is a normal subgroup of G, Lp/K is a Galois extension, so the
primes lying over P are transitive. Thus from proposition 2.16, it follows that for
any P’ C Lp lying over P, we have e(P’|P) = f(P'|P) = 1. Since [Lp : K] =g, it
follows again from Proposition 2.14 that P splits into g distinct primes in Lp. O

Proposition 2.18. Let P’ C Ok be a prime lying over P. Then Lp is the largest
intermediate field K' such that e(P'|P) = f(P'|P) = 1.

ALK T K

Proof. Suppose that K’ is the fixed field of some H C G. We know L is a Ga-
lois extension of K’, thus the decomposition group of @ over P’ C K is given
by D(Q|P’) = D n H. Therefore, from Galois Theory it follows that LpK’
is the decomposition field for @ over P. By Theorem 2.16 and the multiplica-
tivity of the degree of field extensions, we get [L : Lp] = e(Q|P)f(Q|P) and
[L: LpK'] = e(Q|P")f(Q|P"). But by multiplicativity e(Q|P")e(P’|P) = e(Q|P)
and f(Q|P")f(P'|P) = f(Q|P), so since e(P'|P) = f(P'|P) = 1, we have [L :
Lpl=[L:LpK']. Thus [LpK': Lp]=1and K' C Lp, as desired. O

Corollary 2.19. Let K’ be a field such that K C K' C L. If D <G, then P splits
completely in K if and only if K' C Lp.

Proof. First, by Proposition 2.14, P splits completely in K’ if and only if e(P’|P) =
f(P’|P) =1 for a prime P’ C Ok lying over P. Thus Proposition 2.18 tell us that
K' C Lp if P splits completely in K’, and conversely if K’ C Lp, Corollary 2.17
tells us that P splits completely in K. ([
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2.3. Prime Splitting in Quadratic Fields. Our next task is to show that a
prime ¢ splits completely in Q[p«] if and only if it is a square modulo p. To
determine the decomposition of prime ideals in quadratic fields, first notice that by
Proposition 2.14 there are only three ways a prime can decompose in a quadratic
field; since gef = 2, either (e, f,g) = (2,1,1), (1,1,2) or (1,2,1). The prime
splits completely only in the second case. For this subsection, let K = Q[\/&] be a
quadratic field with d € Z square-free.

Proposition 2.20. Let p € Z be an odd prime. The splitting behavior of p in K
is as follows:

(1) If ptd and d is a square modulo p, then (p) = PP’, where P # P’.

(2) If ptd and d is not a square modulo p, then (p) = P.

(3) If pld, then (p) = P2.
Here P and P’ are prime ideals in Ok .

Proof. For (1), suppose that p { d and a®> = d (mod p) for some a € F,. We
have (p,a + Vd)(¢q,a — Vd) = (p)(p,a + Vd,a —Vd, (a®> — d)/p), where the latter
ideal contains 2a = (a 4+ v/d) + (a — v/d) and p, which are relatively prime, so
Ok = (p,a+Vd,a —d,(a*> —d)/p). Let P = (p,a+/d) and P’ = (p,a — /d).
If P=P’, then 2a,p € P and P = Ok, so P # P'.

For (2), suppose that p { d and d is not a square modulo p, and let P C Ok be
a prime ideal lying over p. If f(P|p) = 1, then F, = Ok /P, so there exists some
a € F, such that a = v/d (mod p). But then a?> = d (mod p), which contradicts
our assumption, so f(P|p) =2 and P is the only prime lying over p.

For (3), suppose that p|d. Then (p,Vd)? = (p?,pVd,d) = (p)(p, (d/p)Vd). We
know p and d/p are relatively prime since d is square-free, so O = (p, (d/p)Vd).
Setting P = (p,V/d)? gives us what we want. O

The prime decomposition of p = 2 can be found in a similar manner.

Proposition 2.21. Suppose p = 2.
(1) If m =1 (mod 8), then (2) = PP’, where P # P’.
(2) If m =5 (mod 8), then (2) = P.
(3) If m =3 (mod 4), Then (2) = P?.
Proof. The same argument as in Proposition 2.20 shows that
o If m=1 (mod 8), then (2) = (2, /%) (2, 1=/™).
e If m =3 (mod 4), then (2) = (2,1 + /m)?.

This will show (1) and (3). For (2), if we suppose the contrary, then as in
Proposition 2.20 there exists an integer a € Z such that a = (1++/m)/2 (mod P).
But since (1+4+/m)/2 satisfies 22 — 2+ (1—d)/4, it follows that a®>—a+(1—d)/4 =0
(mod 2). However, 2|(a® — a) for all a € Z, so it follows that (1 —d)/4 =0 (mod 2)
and d =1 (mod 8), giving us a contradiction. O

2.4. Proof. We are now ready to assemble the proof of quadratic reciprocity. Be-
fore we do so, we need one more result concerning the splitting behavior in cyclo-
tomic fields.

Proposition 2.22. Let p,m € Z be such that p is a prime and and pt m. Let f
be the order of p modulo m. Then (p) = P1P,... Py in Oqc,)» where the P;s are
distinct prime ideals with f(P;|P) = f and g = ¢(m)/ f.
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Proof. See Section 13.2, Theorem 2 of Ireland and Rosen [3]. O

Let F; C Q[¢p] be the unique subfield of degree d over Q for each divisor d of
p — 1. The next proposition will use Proposition 2.22 to relate prime splitting and
being a square modulo p.

Proposition 2.23. Let p,q € Z be odd primes such that p # q. For a divisor d of
p—1, q is a dth power modulo p if and only if q splits completely in Fy.

Proof. By Proposition 2.22, ¢ splits into ¢ distinct primes in Q[(,], where each
prime has order f = (p—1)/r, where f is the order of ¢ in ). Let v € )\ generate
the field. Then the dth powers {fyd,fde, e ,'ydpil} form the unique subgroup of
order (p — 1)/d. Since f is the order of ¢, we know that ¢ is a dth power modulo
p if and only f|(p — 1)/d, which is true if and only if Fy C F,.. We know that the
decomposition field has degree r over Q and F, is the only such field, thus F;. is
the decomposition field. By Corollary 2.19, the condition Fy C F, is equivalent to
q splitting completely in Fy. O

All that is left of the proof is tying together the results established thus far.

Proof. Proposition 2.23 tells us that (%) = 1 if and only if ¢ splits completely in
F,, which we found to be Q[,/p*] in Corollary 2.8. By Proposition 2.20, ¢ splits
completely in Q[,/p*] if and only if (%) =1, thus

1

()-(E)- (L)) -2 (0)
desired (2) (73):(—1)%%;,

The same argument and Proposition 2.21 proves the second supplement. [

3. GAUSS AND JACOBI SUMS

To prove the cubic, biquadratic, and Eisenstein reciprocity laws, it is necessary
to introduce Gauss and Jacobi sums as well as their essential properties. These
sums are defined in terms of characters.

Definition 3.1. A multiplicative character on Fy is amap x : F — C* satisfying
x(a)x(b) = x(ab) for all a,b € F.

Let a € F;;. The multiplicative character satisfies the following properties:
(1) x(1) = 1.
(2) x(a)is a (p — 1)th root of unity.
(3) x(a™") =x(a)™! = x(a).

The Legendre symbol is an example of a multiplicative character, and so are
its analogs for higher reciprocity laws. Another example is the trivial character
€(a) = 1 for all a € F’. It is sometimes useful to extend the definition of x to all
of F,, by letting €(0) = 0 and x(0) =1 for all x # e.

The following will be useful in proving certain properties of Gauss and Jacobi
sums.
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Proposition 3.2. Let x be a character on F,. Then

qu):{o e

e, p if x =e€.

Proof. If x = ¢, then €(t) = 1 for all ¢ € F, so the sum equals p. Otherwise, fix an

a € F)'. Then
x(@) Y x(t) =" x(at) = > x(t),

teF, teF, teF,
since multiplication by a permutes the elements in F,. Since x(a) # 1, it follows

that >, e X(t) = 0. O

We will now introduce Gauss and Jacobi sums.

Definition 3.3. Let x be a character on F,. The Gauss sum on F, belonging to
X is defined as g,(x) = Zte]Fp X(t)@gt.

For simplicity of notation, let g1(x) = g(x). For a € F,’ and x a nontrivial
character on F,, we have:

X(@)ga () = x(a) Y x(®¢ = > x(at)' = g(x),
teF, teF,
which gives us the identity g,(x) = x(a=1)g(x).
Proposition 3.4. Let x # € be a character on F,. Then |g(x)|* = p.

Proof. The strategy is to compute Eae]Fp 9a(X)ga(x) in two different ways.

First, if a # 0 we can write go(x) = x(a™")g(x) and ga(x) = x(a71)g(x) =
x(a)g(x), so taking the sum over F, gives us

D 90900 = > x(@)x(aHg(x)g(x) = (0 — g(x)9(x),

a€lF, a€lF,

since x(a)x(a™') =1 for a # 0 and x(0)x(0) = 0.
Next, using the definition of Gauss sums, we have

> 9900 =D D x@xWEGEU = > x(@)x() > GV (%)

a€lF, a€lF, z,yel, z,y€f, a€lF,

When x # y, the inner expression sums over all pth roots of unity, which equals
zero since ZieFP G = (¢F —1)/(¢p —1) = 0. When z = y, the inner expression

sums to p. We know that x(z)x(z) =1 if  # 0 and x(0)x(0) = 0, so (x) reduces

to
> x(@)x(@)p = (p— p.
z€F),
Equating the two expressions gives us |g(x)|* = p. O

There is also a nice relationship between g(x) and g(X):
900 =Y x(0)¢, " = x(=1) Y x(=0)¢, " = x(=1)g(x),
teF, tek,

so the result from Proposition 3.4 can also be expressed as

9(x)9(X) = x(=1)p.
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The Jacobi sum is very similar to the Gauss sum and the two sums are very
much related, as we’ll see in the next proposition. We will primarily use Jacobi
sums to decompose certain Gauss sums into primes.

Definition 3.5. For characters x, A of Fp,, the Jacobi sum is defined to be J(x, A) =
> wry=1 X(@)A(y).

Proposition 3.6. Let x, A be nontrivial characters of Fy, such that xA # €. Then
JO6A) = g00)g(N)/g(xA).

Proof. Note that

9009 = [ S x@)¢ | | D 2w
z€lF, yeF,
= Z X(@)A(y) Y
z,yclF,
=> ( > x(fﬂ)A(y)> G
teF, \z+y=t

Since x, A are characters, xA must also be a character. If ¢ = 0, by Proposition
3.2 we have

> x@Ay) = > x@A(=2) = A(=1) Y x(@)A(z) =0.
z+y=0 z€F, z€F,

If t # 0, let 2/, be such that x = tz’ and y = ¢y, so the condition z +y = ¢
becomes =’ + 3y’ = 1. Then

Doox@Ay) = D x(t)Aty') = x(BABT(x, V),

T+y=t z'+y' =1
SO
g()g(N) =D XM (x: N = T(x Mgxeh),
teF,
as desired. O

4. CuBIC RECIPROCITY

Cubic reciprocity answers the question of when a prime is a perfect cube mod-
ulo another prime. Similar to in quadratic reciprocity, we will formulate cubic
reciprocity in terms of the cubic residue character, which will best display the un-
derlying symmetry. We will see that the cubic residue character is either 0 or a
third root of unity, so it makes sense for us to work in Z[(3] instead of Z for cubic
reciprocity.

Our first step is to determine the prime elements in Z[(3]. Every prime in Z[(s]
lies over a unique prime in Z, so the primes in Z[(3] can be completely characterized
using Proposition 2.22:

Proposition 4.1. Let p € Z be a rational prime.

(1) If p=1 (mod 3), then p = n7, where w is prime in Z[(3].
(2) If p =2 (mod 3), then p is prime in Z[(3].
(3) If p=3, then p = —(3(1 — (3)%, where 1 — (3 is prime in Z[(3].
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Let m € Z[{3] be a prime such that N7 # 3. For any « relatively prime to 7, the

analog of Fermat’s Little Theorem states that «™™~1 = 1 (mod 7). The residue
classes of 1, (3, (2 are distinct modulo 7 and ™5 is a third root of unity, thus
there must be a unique m modulo 3 such that a5 = ¢§ (mod ).

Definition 4.2. If N« # 3, the cubic residue character of a modulo 7 is given by
(1) (&), =0if 7|o.

T

(2) (&), = ¢§* where m is the unique integer modulo 3 such that aET = (m

(mod ), if 7t .
The cubic residue character is also a multiplicative character, and it satisfies
similar properties to the Legendre symbol:

Proposition 4.3. For w,«a € Z[(3] where 7 is prime,
(1) (%)3 =1 if and only if 2° = a (mod 7) is solvable, i.e. if and only if « is
a cubic residue.
aBy _ (o) (B
(2) ()= (3)3(3)s-
(3) If « = B (mod ), then (%)3 = (2)3

Proof. (2) and (3) are clear from definition, and the proof of (1) is similar to that
of Proposition 2.2, but instead we work in [Z[(3]/7Z][(3].

As before, the multiplicative property will allow us to determine whether any
« € Z[(3] is a perfect cubic modulo a prime, since we can factor « into primes and
use multiplicativity. O

Every element in Z[(3] has 6 associates, including itself, so it is enough to deter-
mine the reciprocity law for one of its associates and the units in Z3. We will state
cubic reciprocity for one such associate — which we will designate primary — and
the units will be taken care of in the supplementary laws. See Section 9.3, Theorem
1 of Ireland and Rosen [3] for the supplements.

Definition 4.4. A prime 7 € Z[(3] is primary if 7 =2 (mod 3).

Proposition 4.5. Let Nm =p =1 (mod 3). Then exactly one of the associates of
T 1S primary.

Proof. Write m = a + b(3. We will first prove existence. The associates of 7 are
a+b<—37 _b—’_(a’_b)g?)v (b_a)_a<3v _a‘_bC37 b+(b_a)g3a (a_b)+a<3'

Since p = a? — ab+b*> =1 (mod 3), either 31 a or 31b. Thus the first term of
either the first or second associate is not divisible by 3, so suppose 3 t a. Similarly,
from the first and fourth associates, we can further assume that a = 2 (mod 3).
Now 1 =4—2b+b% (mod 3), so b(b—2) =0 (mod 3). If 3|b, the a+b(3 is primary,
and if b= 2 (mod 3), then b+ (b — a)(3 is primary.

To prove uniqueness, suppose that a + b(s is primary. It is clear from taking
congruences modulo 3 that no other associate is primary. O

We are now in a position to state the law of cubic reciprocity.

Theorem 4.6 (Cubic Reciprocity). Let w1, ma € Z[i] be primary primes with
N7y, N7y # 3 and Nmwy # N7y, Then

(),- (),
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For simplicity of notation, let x» = (=), for the remainder of this section. Let
m € Z[(3] be a complex prime. Then N7 = p = 1 (mod 3) for an odd rational
prime p. We know Z[(3]/7Z[(3] is a finite field of characteristic p, so Z[(3]/7Z[(s]
is isomorphic to IF,. Then we can consider x. as a character on F,, which allows
us to work with G(x,) and J(xx, Xx)-

The proof will proceed as follows: We will first find the prime factorization of
9(xx)? in Z[(3] by writing it in terms of a Jacobi sum, which is easier to compute.
We will then separate into cases based on whether 7,7 are complex or rational
primes, but the general procedure will be to deduce reciprocity by rewriting a Gauss
sum in two different ways.

The following propositions will lead us to the prime factorization of g(x)3.

Proposition 4.7. Let x be the cubic residue character, where w is primary. Then
9(xx)? = pJ (X, Xr)-

Proof. Proposition 3.6 tells us that
90xx)* = 9(x)9(x2) I (s Xr) = 9(xn )9 () I (X, X )

Using Proposition 3.4 and observing that y.(—1) = x((=1)%) = 1, we get g(xx)® =
pJ (X, Xr)-

Ol

Proposition 4.8. Let x. be as before. Then J(xr, Xr) = 7.

Proof. Proposition 3.4 and Proposition 3.6 tells us that J(xux, Xx)J (Xx, Xx) = D,
where we recall that Nm=p =1 (mod 3) and p is a rational prime. Thus J(xx, Xr)
is a prime in Z[(3] with norm p. Reducing modulo 3 gives us:
3

Z Xw(t)(;’t Z Xr(t C3t (mod 3).

tel, teF,
Since x, is cubic, we have x(0) = 0 and x(¢)3 = 1 for t # 0, so DteF, X ()2 =
—1. Then

pJ(Xﬂ'?Xﬂ') - g(X'n’) = - (mOd 3)»
and since p =1 (mod 3), we have J(xr, Xx) = —14+0-(3 (mod 3). Thus J(xx, Xx)
is in fact a primary prime.
Let J(Xr, Xx) = 7. We know p = 77 = 7'7, so either 7|7’ or 7|7, and since

the primes are primary, either 7 = 7’ or m = 7. We want to show the former. We
have

T xn) = Y xeOxa(1 =) = > "5 (1-)"F  (mod 7)

teF, teF,

by definition. The coefficients in the polynomial are of the form a )’ ccF, c* for

some a and (p—1)/3 <k <2(p—1)/3, so if v is a generator of F, the sum reduces
as

(r—Dk _q
_ ’Lk? Y _
aegch ag 0% ﬁzo (mod p),
since (k,p — 1) = 1. Thus J(Xme) =0 (mod 7) and 7 = 7/, as desired. O

Corollary 4.9. With definitions as above, we have g(x,)> = 727 = pr.

Proof. This follows directly from Propositions 4.7 and 4.8. (]
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We can now present the proof of cubic reciprocity.

Proof. We will consider three cases: if w1, mo are both rational primes, one is rational
and one is complex, and both are complex.

Case 1. Suppose that m; = ¢ and my = p, where p, ¢ are rational primes. We
need a few preliminary results:

(1) er(a) = Xﬂ'(a)2 = Xﬂ(a2)'

(2) Xr(@) = x=(@).
(3) xp(n) =1if n is a rational integer relatively prime to p.

For (1), xx() equals 1,(3, or (3, and in each case its square is equal to its
conjugate. For (2), by definition we have

Nm—1

a 5 =xp(a) (mod ),

and taking the conjugate gives us

T = X=(a) (mod 7).

Since Nm = N7, we have xz(@) = xr(a) (mod 7), thus x#(@) = xx (). To show
(3), we have from (1) and (2) that

Xp(n) = Xp(n) = Xp(n)27
s0 xp(n) = 1. From (3), xq(p), Xp(q) = 1, s0 X4(p) = xp(q) trivially.

Case 2. Suppose that m = ¢ = 2 (mod 3) is a rational prime and 75 is a
complex prime with norm p =1 (mod 3). Raising both side of g(xr,) = p7 to the
(¢*> — 1)/3th power and reducing modulo ¢ gives us

-1

Q(Xfra)qz_l = (pma) 3 = xq4(pm2) (mod q).
But x4(p) =1 by Case 1, so

90)T = Xq(m2)g(xn,)  (mod g).

Expanding g()(,rz)q2 using the definition of Gauss sums gives us

q2

I = [ 0| = xm Tt (mod g).

tel, tel,

Since ¢> =1 (mod 3) and x,, is a cubic residue, the expression simplifies as

90m)® = X2 (Xma) = X (0 2)9(Xm) = X (@)9(xry)  (mod g).

Putting everything together, we have Xr,(¢)9(Xr,) = Xq(72)9(Xr,) (mod q), so
multiplying both sides by g(¥,.) and then by p~! gives us xx, () = x4(m2) (mod g),
so it follows that x,(¢) = xq(7).

Case 3. Suppose that 71, 73 are complex primes with N7, = p; and Nmy = po
such that pi,p2 = 1 (mod 3). From g(x=,)® = pi71, raising both sides to the
(Nmy—1)/3 = (pa — 1)/3th power, taking the congruence modulo 7o, and applying
the same argument as in the second case gives us

X1 (P3) = X (P1701).
Similarly, raising both sides of g(xr,)®> = p2ma to the (p1 — 1)/3th power and
reducing modulo 7 gives us

Xmo (p%) = Xm1 (pQﬂ-Q)'
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It follows from Case 1 (2) that x=, (p3) = Xx, (p2). Then

so it follows that x, (72) = X, (71). O

5. BIQUADRATIC RECIPROCITY

Biquadratic reciprocity addresses the question of when an element is a perfect
fourth power modulo another element relatively prime to it. The major distinction
between this and the previous two reciprocity laws is that it is no longer stated
for primes, but for elements that are relatively prime, thus new notation is needed.
However, much of the proof techniques will be similar to in cubic reciprocity, hence
some details in this section will be omitted. The biquadratic residue character will
either be 0 or a fourth root of unity, hence we will work in Z[¢]. We can characterize
the primes in Z[i] by decomposing primes in Z using Proposition 2.22.

Proposition 5.1. Let p € Z be a rational prime.
(1) If p=1 (mod 4), then p = 77, where 7 is prime in Z[i].
(2) If p=3 (mod 4), then p is prime in Z[i].
(3) If p=2, then p = —i(1 +1i)? where (1 +1i) is prime in Z[i].

For any prime 7 € Z[i] such that N7 # 2, we know that the residue classes of
1,—1,4,—i are distinct modulo 7, so as before there exists a unique j; modulo 4
such that a¥7™=1/% =4/ (mod 7).

Definition 5.2. Let m € Z[i] be an irreducible element such that N7 # 2. The
biquadratic (or quartic) residue character of a over 7 is given by

(1) (%)4 =0 if 7.
(2) (&), =1/, where o =4 (mod ) for a unique j modulo 4, when 7 { «.
The biquadratic residue character satisfies the same properties as listed in Propo-
sition 4.3, with the modification in (1) that (%) , = lif and only if a is a perfect
fourth power in Z[i]. The proof proceeds in a similar manner.
We can extend Definition 5.2 so that the residue character is defined for any pair

of relatively prime elements:

Definition 5.3. For a nonunit o € Z[i] such that (1 + i) { «, write a = [], A,
where J; is irreducible. Let 8 € Z[i] be such that 3 is relatively prime to «. Define

(£, -1,

This symbol is well-defined since (2), = (%), if (7) = ().
Like in the cubic case, it is convenient to introduce the notion of ”primary.”
However, here primary elements in Z[i] need not be prime.

Definition 5.4. A nonunit « € Z[i] is primary if « = 1 (mod (1 +)?3).
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Proposition 5.5. A nonunit « € Z[i] is primary iff either a = 1 (mod 4),b =0
(mod 4), or a =3 (mod 4).

Proof. See Section 9.7, Lemma 6 of Ireland and Rosen [3]. O

Proposition 5.6. For a nonunit o € Z[i] such that (1+1) { o, there exists a unique
unit u such that ua is primary.

Proof. See Section 9.7, Lemma 7 of Ireland and Rosen [3]. O

It can be shown that a primary element can be written as the product of primary
irreducibles. Observe that for the biquadratic case, it is no longer necessary for a
primary element to be prime in Z[i]; in fact biquadratic reciprocity will be stated
for two relatively prime elements rather than two primes.

We will first prove a supplemental case that will be useful in the proof of bi-
quadratic reciprocity.

Proposition 5.7. Given n € Z such that n = 1 (mod 4), we have xn(i) =

n—1

(—1)%,

Proof. If n=p =1 (mod 4) for p a positive prime, then p = 77 for an irreducible

and . . . » »
()= ().(), -6 =

If n = —q for an odd prime ¢ =3 (mod 4), then
(’) Lt (5 = (-1)7F .
4

An arbitrary n can be written as a product of primes of the form p and —¢, so
it is enough to show that for n = st we have (n —1)/4 = (s —1)/4+ (t —1)/4
(mod 2), since the general case will follow by induction. This can be shown by
doing casework on whether s,¢ are congruent to 1 or 5 (mod 8). O

We will now state biquadratic reciprocity.

Theorem 5.8 (Biquadratic Reciprocity). Let A\, be relatively prime primary el-

ements of Z[i]. Then
<)‘> - (”) (—1)5F
/4 A

For simplicity of notation, let x, = (;) , for the remainder of the section. As in
the cubic case, let m € Z[i] be a complex primary irreducible so that Nm =p =1
(mod 4). Since Z[i]/nZ[i] ~ F,, we can consider x, as a biquadratic character on
Fp,. The structure of the proof will be similar to in cubic reciprocity: we will first
find the prime factorization of g(x.)%, then prove special cases of the theorem to
build up to the general case.

Proposition 5.9. For p =1 (mod 4) an odd prime, g(x=)* = pJ(Xp, Xp)?. Also,
we have —Xx(—1)J(Xr, Xx) = T, s0 consequently g(xr)* = m37.

Proof. See Section 9.9 of Ireland and Rosen [3]. O

We will begin the proof by considering special cases. When A, 7 are rational
integers, the case is similar to in cubic reciprocity.
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Proposition 5.10. Let a,a € Z be such that « # 0, a is an odd nonunit, and o
and a are relatively prime. Then xq(a) = 1.

Proof. Without loss of generality, suppose a > 0 and write a = IIp;Ilg;, where
Di,q; are primes such that p; = 1 (mod 4) and ¢; = 3 (mod 4). It follows from
definition that for 7, € Z[i] where 7 is irreducible with N7 # 2 and 7 t «, we
have xr(a) = xz(@). Therefore, if p; = 77 for an irreducible element 7, we have

Xa(Pi) = Xa(T)Xa(T) = Xa(7)Xa(m) = 1.
On the other hand, since N¢; = qf,

qf*l

Xa(Qi) =a 4

q;+1

= (%) =1 (mod q);.

From multiplicativity it follows that x,(a) = 1. O

From the preceding proposition, if A = a, 7 = « for relatively prime nonunits
a,a € Z, we have trivially that x,(a) = xo(@) = 1. This settles the case of when
A, m are relatively prime rational integers.

We will now consider the case of when one element is complex and the other a
rational integer, starting with when A, 7 are irreducibles.

Proposition 5.11. For an odd prime q € Z, Xﬁ((—l)%lq) = Xq(m).

Proof. First, notice that what we have is indeed a special case of biquadratic reci-
procity since (—1)%q is primary for any odd prime ¢ € Z. We can consider sepa-
rately when ¢ = 1 or 3 (mod 4), but in both cases the strategy is to write g(x, )"
(resp. g(xx)?"3) in two different ways, one by using the definition of Gauss sums
to simplify g(x,)?, and the other by raising g(x)* = 737 to the (¢ + 1)/4th (resp.
(g+3)/4th) power. Details can be found in Section 9.9 of Ireland and Rosen [3]. O

The previous result can be generalized as follows:

Proposition 5.12. Let a € Z be such that a = 1 (mod 4) and let A\ € Z[i] be
primary, where X is relatively prime to a. Then xqo(\) = xa(a).

Proof. By assumption a is primary, so we can write it as a product of primary primes
Pi,--->Pn and ¢i,...,qm, where p; =1 (mod 4) and ¢; =3 (mod 4), for 1 <i<n
and 1 < j <m. Since a = 1 (mod 4), it follows that ¢ = p1...pp(—q1) ... (—Gm)-
Applying Proposition 5.11 gives us

Xa(A) = pri(k) quj(k) = xa(pi)xa(—g;) = xa(a).

O

For the next case, suppose that @ = a + bi and A = ¢ + di are primary and
relatively prime.
Proposition 5.13. If (a,b) = 1, (¢,d) = 1, then x»(A\) = xa(m)(=1)“T “=.
Proof. From the hypothesis, we have (a,7) = (b,7) = (¢,\) = (d, A). From ci =d
(mod M), multiplying both sides by b and simplifying gives us ¢ = ac+bd (mod A),
so (ac+bd,\) = (ac+bd,7) =1 and

xale)xa(m) = xalac+bd). (1)
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Similarly, a\ = ac + bd (mod ), so

X (@)X (A) = Xx(ac+bd). (2)

Multiplying the conjugate of (2) by (1) gives us:

xa(e)xa(a)xa(m)xx(A) = xam(ac + bd),

or

XA (M) xx(A) = xa(e)xw(a)xaw(ac + bd).
Suppose first that c¢,a, and ac + bd are nonunits. For each odd integer n, let
e(n) = (—1)%1. Then e(n)n =1 (mod 4) is primary, so working in terms of e(n)n
and using Proposition 5.12 gives us:

XA(T) XA (A) = XC(X)Xa(Tr)Xac-i-bd()‘f)'
From Proposition 5.10, it follows that

Xe(A) = Xe(e = di) = xc(—di) = xe(i)

Xa(m™) = Xa(a + bi) = Xa(bi) = Xa(i)

Xac+bd(TA) = Xactval(ad — bc)i) = Xactpa(i)-
Thus

X)\(W>X7r()‘> = X(ac—&-bd)ac(i)
_ (_1> (ac+bi)acfl
a—1 c—1

:(71)2'2.

We get the first equality from Proposition 5.7, and the second can be shown using
Proposition 5.5 and casework.

When a, ¢, or ac+ bd equals +1, we have x.(£1) = x+1(7) = 1, and a similar
strategy as the one illustrated will suffice. ([

Most of the work has already been done, and to prove the general case of bi-
quadratic reciprocity, all that is left is to put together the special cases.

Proof. Write m = m(a + bi) and A = n(c + di), where (a,b) = (¢,d) = 1 and
m=n=1 (mod 4), so a + bi and ¢+ di are primary. It follows from Proposition
5.11 that xr(n) = xn(m) and xx(m) = xm(A), and from Proposition 5.10 that
Xm(n) = xn(m) =1. Thus

Xa(m) = xa(m)xa(a + bi)
= Xm(A)Xn(a + bi)Xctai(a + bi)
( a—1 c—1

= Xm (M) Xa-+bi () Xarbi(c + di)(=1) 7 =
= XTrO‘ (
= XTrO‘ (

where the last equality follows from m =n =1 (mod 4). O

a—1 c—1

) 2 2
Nr—1 NA—1

) 1 1

)(—1
)(—1

)
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6. EISENSTEIN RECIPROCITY

Eisenstein’s reciprocity generalizes some of the previous reciprocity laws for
perfect odd powers. We will work in the ring of integers of the cyclotomic field
K = Q[¢m], denoted Ok. To take advantage of unique prime factorization, we will
consider prime ideals rather than prime elements in K, so it is necessary for us to
extend the notion of a norm to ideals.

Definition 6.1. For an ideal A C O, we define the norm of A, N(A), to be the
number of elements in Ok /A.

The norm is well-defined since Ok /A is always finite, and it can be checked
that the norm is multiplicative (see Section 14.1, Proposition 14.1.1 of Ireland and
Rosen [3] for details).

Proposition 6.2. Let K/Q be a Galois extension with G its Galois group. Then

[ o(4) = (V).

oeG

Proof. See Section 14.1, Propositon 14.1.2 of Ireland and Rosen [3]. O

Let P C Ok be a prime ideal not containing m, and let ¢ = N(P) = |Ok/P|.
For simplicity, for any w € O, we will denote as w its coset in O /P.
We know 2™ — 1 = Z?;Bl(x — (%), so dividing both sides by x — 1 gives us
m—1
l4+z+.. . +am = H(x—(fn)
i=1
Let z = 1. Then m = Hyi_ll(l — (), so reducing modulo Ok /P gives us m =
17 (1 =¢i,). We know 7 # 0, so it follows that C,, # 1 for 1 < i < m — 1.
Therefore Z:n = Zﬁn if and only if i = j for 0 < 4,5 < m — 1, so the cosets of
L, ¢my - - -, ¢ 1 are distinct in O/ P. From the analog of Fermat’s Little Theorem,
we have a¢~1 =1 (mod P) for a € Ok, a ¢ P, so

m—1

(oz%1 —¢')=0 (mod P).
=0

1=

Since P is prime it follows that there exists a unique ¢ modulo m such that o =
¢, (mod P).

Definition 6.3. For a € Ok and P a prime ideal such that m ¢ P, define the mth
power residue symbol, (%)m, as:

(1) (§),, =0ifaeP.
(2) (%)m = (!, where i is the unique integer modulo m such that « M=

(mod P), if a ¢ P.

The power residue symbol generalizes the quadratic, cubic, and quartic residue
characters and satisfies the same properties, specifically those listed in Proposition
4.3 with the modification in (1) that (%)m = 1if and only if 2™ = « (mod P) is
solvable in Ok.

As in the quartic case, we can extend this definition to an arbitrary ideal:
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Definition 6.4. Let A C Ok be an ideal