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Abstract. This paper aims to provide an introduction to the p-adic numbers

and an overview of the dynamics of well-behaving rational maps over a p-adic

field, culminating in the analysis of an extended example. We only assume
familiarity of algebra and elementary number theory.
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1. Introduction

Like complex dynamics, the overarching goal in arithmetic dynamics is to an-
alyze and understand the iteration of self-maps but on a p-adic field such as Qp
rather than the complex plane C. Though there are many options of self-maps,
polynomial and rational maps are especially interesting since they are the sim-
plest kinds of maps. Properties of potential interest include whether an orbit
{z, f(z), f(f(z)), . . . } of a map f is finite over a given field and whether there
exist fixed points for a map f .

To introduce some notation, a point P is called periodic if fn(P ) = P for some
n ≥ 1. Moreover, a point P is called pre-periodic if fm(P ) is periodic for some
m ≥ 1, that is fm(P ) = fn(P ) for some n > m. Thus we can also ask what
do the sets Per(f) and PrePer(f) look like for f a polynomial or rational map.
In fact there is a conjecture of Morton-Silverman regarding the size of the set of
pre-periodic points of a polynomial f over a number field K, such as Q.

Conjecture 1.1 (Uniform Boundedness Conjecture (UBC)). Let K be a number
field and φ : PN (K) → PN (K) be any finite morphism of degree d. Then, the
number of pre-periodic points of φ over K is bounded by a constant:

#PrePer(φ,K) ≤ C(d,N,deg(K/Q))
1
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The Uniform Boundedness Conjecture has a few corollaries. One of which is
Mazur’s Theorem on torsion points of elliptic curves.

Theorem 1.2 (Mazur’s Theorem). For an elliptic curve E over a number field K,
the number of torsion points #(Etors(K)) is bounded by a constant C, independent
of the elliptic curve and dependent only on the number field K.

In order to understand dynamics of polynomials and rational maps on Q, we first
look to reduce to simpler objects, namely polynomials and rational maps on Qp.
In particular, we will be focused on good-reducing maps, i.e. maps that have the
same degree after reduction modulo p. In fact, we are able to classify the forms of
the period of a good-reducing rational map on Q. To do so, we will first introduce a
metric on P1(K), where K is a non-archimedean field, which will provide valuable
insight about the reduction process as well as dynamical properties of a map. We
then formalize reduction modulo p and present the resultant as a tool to determine
when a map has good reduction. Finally, we will discuss known results regarding
periodic points of good-reducing rational maps.

In order to discuss such dynamics, we will first provide a short review of the ter-
minology of periodic points. Then, to discuss such dynamics in a number theoretic
setting, we will, of course, need to introduce the p-adic numbers.

1.1. Brief Review of Periodic Points. Let K be a field with absolute value |·|
and let φ(z) ∈ K(z) be a rational map. Recall that α ∈ P1(K) has period n if n is
the smallest value of k such that φk(α) = α. Then we can define the multiplier of
φ

λα(φ) := (φn)′(α) =

n−1∏
k=0

φ′(φk(α))

The absolute value of λα(φ) somewhat characterizes the behavior of φ in a small
neighborhood around α. If |λα(φ)| < 1, α is called attracting ; in particular, if
λα(φ) = 0, α is called super-attracting. On the other hand, if |λα(φ)| > 1, α is
called repelling. Neutral periodic points, ones that have |λα(φ)| = 1, are split into
rationally neutral periodic points, whose multipliers are a root of unity, and those
whose multipliers are not a root of unity are called irrationally neutral periodic
points.

1.2. The p-adic Numbers. Just as the real numbers R is the completion of the
rational numbers Q with respect to the usual absolute value | · |, the p-adic numbers
Qp is the completion of the rational numbers with respect to the p-adic absolute
value | · |p. To discuss the p-adics, we first recall the definition of an absolute value:

Definition 1.3. An absolute value on a field K is a function | · | : K → R such
that for all x, y ∈ K

(a) |x| ≥ 0
(b) |x| = 0 iff x = 0
(c) |xy| = |x||y|
(d) |x+ y| ≤ |x|+ |y| (Triangle Inequality)

Example 1.4. The most familiar example of an absolute value is the usual absolute
value on Q, that is

|x| =

{
x if x ≥ 0

−x if x < 0
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Besides the usual absolute value on Q there are other absolute values, such as the
discrete absolute value, which is as follows:

|x| =

{
1 if x 6= 0

0 if x = 0

To define the p-adic absolute value, we must first define the p-adic valuation of
a rational number.

Definition 1.5. Let x ∈ Q be a rational number such that x = pn ab for some
coprime a, b ∈ Z and n ∈ Z≥0. Then the p-adic valuation of x, denoted vp(x), is n.
That is, vp(x) is the multiplicity of p in the numerator minus the multiplicity of p
in the denominator. Additionally, as convention, we take vp(0) =∞.

Note that the p-adic valuation is an example of a discrete valuation. That is, for
v : K× → R a valuation, v(K×) is a discrete subgroup of R. Moreover, its normal-
ized valuation (denoted ordv) is a constant multiple of v such that ordv(K

×) = Z.
We can see that the p-adic valuation vp : Q → Z ∪ {∞} has the following

properties for all x, y ∈ Q:

(a) vp(x) =∞ iff x = 0
(b) vp(xy) = vp(x) + vp(y)
(c) vp(x+ y) ≥ min{vp(x), vp(y)}

Definition 1.6. For x ∈ Q, we define the p-adic absolute value |x|p = p−vp(x).

Thus the following properties follow for all x, y ∈ Q:

(a) |x|p ≥ 0

(b) |x|p = 0 iff x = 0

(c) |xy|p = |x|p · |y|p
(d) |x+ y|p ≤ max{|x|p , |y|p}

Observe that these properties for |·|p are similar to those in Definition 1.3, with

the exception of (d). In fact, the p-adic absolute value is an example of a non-
archimedean absolute value, that is, an absolute value such that |x+ y| ≤ max{|x| , |y|}
(also called the ultrametric inequality), which is a stronger property than that of
the triangle inequality required for an absolute value (Definition 1.3). Now we will
prove the equality condition for the ultrametric inequality.

Proposition 1.7. Let | · |v be a non-archimedean absolute value on a field K with
α, β ∈ K. If |α|v 6= |β|v, then |α+ β|v = max{|α|v , |β|v}.
Proof. Without loss of generality, suppose |α|v > |β|v. First observe that from
(d) in Definition 1.6, we have that |α+ β|v ≤ max{|α|v , |β|v} = |α|v. To prove
opposing inequality, we note that since |α|v is strictly greater than |β|v, so we
have that |β|v < |α|v = |(α+ β)− β|v ≤ max{|α+ β|v , |β|v} = |α+ β|v. Thus,
|α|v ≤ |α+ β|v, as required. �

Moreover, a theorem by Ostrowski classifies absolute values on Q:

Theorem 1.8 (Ostrowski’s Theorem). Up to equivalence, the only non-trivial ab-
solute values on Q are the (usual) real absolute value |·|∞ and the p-adic absolute
value |·|p, for some prime p.

Now, analogous to the construction of the real numbers, we can construct the
p-adic numbers.
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Definition 1.9. The p-adic numbers Qp is defined as the completion of the rational
numbers Q with the respect to the p-adic absolute value |·|p.

Similarly to how any real number has a decimal expansion, we have the following
proposition for the p-adic numbers.

Proposition 1.10. Let x ∈ Qp be a p-adic number. Then x has a unique p-adic
expansion as

x =

∞∑
i=k

aip
i

where ai ∈ {0, 1, . . . , p− 1} and k ∈ Z possibly negative.

Since
∣∣pk∣∣

p
= 1

pk
and there are only finitely many negative k, the sequence {pk}

converges to 0 with respect to the p-adic absolute value. In particular, unlike the
real numbers, where we have examples such as 0.999 · · · = 1, each p-adic expansion
is unique.

2. Projective Space over a Non-Archimedean Field

From this section onward, we begin our inquiry about the dynamics of local
fields of well-behaving polynomials and rational functions over a field K with some
non-archimedean (v-adic) absolute value |·|v. Though the statements and proofs
will be done using |·|v, all of our examples will be using the p-adic absolute value
|·|p.

In this section, we introduce the v-adic chordal metric, which is analogous to the
usual chordal metric ρ∞ on P1(C):

ρ∞(P,Q) =
|P1Q2 − P2Q1|√

|P1|2 + |P2|2 ·
√
|Q1|2 + |Q2|2

,

where P = [P1, P2] and Q = [Q1, Q2] are points in P1(C).

Definition 2.1. For K a field with non-archimedean absolute value |·|v, the v-adic
chordal metric on P(K) is

ρv(P,Q) =
|P1Q2 − P2Q1|v

max{|P1|v , |P2|v} ·max{|Q1|v , |Q2|v}
,

where P = [P1, P2] and Q = [Q1, Q2] are points in P1(K).

The proof of the following proposition can be found on pages 45-47 of [3].

Proposition 2.2. The v-adic chordal metric is indeed ultrametric, i.e. it has the
following properties:

(a) 0 ≤ ρv(P,Q) ≤ 1
(b) ρv(P,Q) = 0 iff P = Q
(c) ρv(P,Q) = ρv(Q,P )
(d) ρv(P,R) ≤ max{ρv(P,Q), ρv(Q,R)}

The following fact that elements of PGL2(R) preserve v-adic chordal distance
will prove to be very useful in the next section.



WELL-BEHAVING DYNAMICS OVER Qp 5

Lemma 2.3. Let K be a field with non-archimedean absolute value |·|v and let
R = {α ∈ K : |α|v ≤ 1} be the ring of integers in K. Let f ∈ PGL2(R). I.e., let
f : P1(K)→ P1(K) be a linear fractional transformation of form

f([X,Y ]) =
aX + bY

cX + dY
= [aX + bY, cX + dY ]

with a, b, c, d ∈ R and ad− bc ∈ R× (that is |ad− bc|v = 1).
Then, ρv(f(P ), f(Q)) = ρv(P,Q) for all P,Q ∈ P1(K). That is, f preserves the

v-adic chordal distance.

Proof. Write each point P = [P1, P2] and Q = [Q1, Q2] so that Pi, Qi ∈ R and
at least one coordinate of each point in R×. Then max{|P1|v , |P2|v} = 1 and
max{|Q1|v , |Q2|v} = 1, so ρv(P,Q) = |P1Q2 − P2Q1|v. Algebraic manipulation
gives us

(ad− bc)P1 = d(aP1 + bP2)− b(cP1 + dP2)

−(ad− bc)P2 = c(aP1 + bP2)− a(cP1 + dP2)

and similarly for Q1 and Q2.
Since max{|P1|v , |P2|v} = 1 and |ad− bc|v = 1, it follows from the above equa-

tions that max{|aP1 + bP2|v , |cP1 + dP2|v} = 1, and similarly for Q. Using the fact
that |ad− bc|v = 1 again, it follows that

ρv(f(P ), f(Q)) = |(aP1 + bP2)(cQ1 + dQ2)− (aQ1 + bQ2)(cP1 + dP2)|v
= |(ad− bc)(P1Q2 − P2Q1)|v
= ρv(P,Q)

as required. �

3. Reduction Modulo p

When studying an object – in this case a rational map φ : P1 → P1 – it is often
useful to first analyze its reduction modulo a prime, then lift information about
its reduction back for global information. As we will see in the later examples,
information gathered from many reductions, each with a distinct prime, can allow
us to deduce the behavior of φ on Q.

To begin, we will use the following notation:

Definition 3.1. Let K be a field with normalized discrete valuation v : K× → Z
and |·|v = c−v(x) for some c > 1, a non-archimedean absolute value associated with
v. We also define the following sets:

R = {α ∈ K : v(α) ≥ 0} = {α ∈ K : |α|v ≤ 1} Ring of integers of K

p = {α ∈ K : v(α) > 0} = {α ∈ K : |α|v < 1} Maximal ideal of R

R× = {α ∈ K : v(α) = 0} = {α ∈ K : |α|v = 1} Group of units of R

k = R/p Residue field of R

We will also use ·̃ to denote reduction modulo p, i.e. the map R→ k.

First, how do we reduce points modulo p? Let P = [x0, x1, . . . , xN ] ∈ PN (K)
be a point such that there exist some xi 6∈ R. Thus we cannot reduce imme-
diately. But since P = [x0, x1, . . . , xN ] is homogeneous, we can rescale so that
P = [cx0, cx1, . . . , cxN ], where c ∈ K× is sufficiently divisible by p, so that cxi ∈ R
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for every 1 ≤ i ≤ N . However, c must not be overly divisible by p, otherwise cxi ∈ p
for every i and upon reduction modulo p, we would have [0, 0, . . . , 0] 6∈ PN (k).

But how do we formalize this? We want to ”clear the denominators” of xi as
efficiently as possible: Choose α ∈ K× such that

v(α) = min{v(x0), v(x1), . . . , v(xN )}.
For example, let α = xi of minimum valuation. Then, α−1xj ∈ R for 1 ≤ j ≤ N

and we have P = [α−1x0, α
−1x1, . . . , α

−1xN ], which can be reduced modulo p.
Since α = xi of minimal valuation, it follows that α−1xi is a unit and thus

α̃−1xi 6= 0. This allows us to make the following definition:

Definition 3.2. For a point P = [x0, x1, . . . , xN ] ∈ PN (K), the reduction of P
modulo p is

P̃ = [α̃−1x0, α̃−1x1, . . . , α̃−1xN ] ∈ PN (k)

where α is chosen as described above. Moreover, we say P is written in normalized
coordinates if

min{v(x0), v(x1), . . . , v(xN )} = 0.

In such a case, P̃ = [x̃0, x̃1, . . . , x̃N ].

Next we will show that this reduction of P using α is in fact well-defined.

Proposition 3.3. Let P = [x0, . . . , xN ] ∈ PN (K). Then the reduction P̃ is inde-
pendent of the choice of α such that v(α) = min{v(x0), v(x1), . . . , v(xN )}.
Proof. Suppose α, β ∈ K× such that

v(α) = min{v(x0), v(x1), . . . , v(xN )} = v(β)

Then v(α) = v(β) and αβ−1 ∈ R×. So,

[α̃−1x0, α̃−1x1, . . . , α̃−1xN ] = [α̃β−1α̃−1x0, α̃β−1α̃−1x1, . . . , α̃β−1α̃−1xN ]

= [β̃−1x0, β̃−1x1, . . . , β̃−1xN ].

That is, the reduction of P modulo p is well-defined. �

Example 3.4. Consider the point P =
[
11
30 ,

24
49 ,

23
135

]
∈ P2(Q). As examples, we

will consider its reduction modulo 5, 7 and 11.
Before we can reduce P modulo 5, we must first multiply each coordinate by 5

to ”clear the denominators”, this gives us

P =

[
5 · 11

30
, 5 · 24

49
, 5 · 23

135

]
=

[
11

6
,

5 · 24

49
,

23

27

]
.

Now that P is in normalized coordinates, we find that P̃ = [1, 0, 4] (mod 5).
If we want to reduce P modulo 7, this time, we must first multiply each coordi-

nate by 72 = 49 to ”clear the denominators”:

P =

[
49 · 11

30
, 49 · 24

49
, 49 · 23

135

]
=

[
11 · 49

30
,

24

1
,

23 · 49

135

]
.

Then, reducing modulo 7, P̃ = [0, 3, 0] (mod 7).
Lastly, we will reduce P modulo 11. Since each coordinate of P is a 11-adic

integer and not all coordinates reduce to 0 modulo 11, P is already in normalized

coordinates for this case. Thus, we can reduce immediately for P̃ = [0, 7, 4] (mod
11).
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The proof of the following lemma relating reduction modulo p to v-adic distance
can be found in page 50 of [3].

Lemma 3.5. Let points P,Q ∈ P1(K). Then

P̃ = Q̃ ⇐⇒ ρv(P,Q) < 1.

We will use the above lemma to show that linear fractional transformations
respect reduction modulo p.

Proposition 3.6. Let P,Q ∈ P1(K) and f ∈ PGL2(R). Then

P̃ = Q̃ ⇐⇒ f̃(P ) = f̃(Q).

Proof. The proof follows via the equivalences provided by Lemma 2.3 and Lemma
3.5:

P̃ = Q̃ ⇐⇒ ρv(P,Q) < 1

⇐⇒ ρv(f(P ), f(Q)) < 1

⇐⇒ f̃(P ) = f̃(Q)

�

One may ask how necessary is it that f is in PGL2(R), in which case consider
the following examples:

Examples 3.7. Take f =

(
8 1
2 9

)
so that f 6∈ PGL2(Z7). Let P = [9, 5] and

Q = [4, 10] in P1(Q7) so that P̃ = [2, 5] = Q̃ in P1(F7). But evaluating the
reduction of f at each of P and Q gives

f(P ) = [77, 63] = [11, 9] ≡ [2, 1] (mod 7)

f(Q) = [42, 98] = [3, 7] ≡ [1, 0] (mod 7).

Thus f̃(P ) 6= f̃(Q).

As a second example, let p > 2 be a prime. Take g =

(
p 0
0 1

)
. Again note that

g 6∈ PGL2(Zp). Let S = [1, p] and T = [1, 0] in P1(Qp) so that S̃ = [1, 0] = T̃ in
P1(Fp). Evaluating the reduction of f at each S and T gives us

f(S) = [p, p] = [1, 1]

f(T ) = [p, 0] = [1, 0],

and it is clear that f̃(S) 6= f̃(T ).
These two examples demonstrate the necessity of f ∈ PGL2(R) for Proposition

3.6.

The following proposition, compounded with Lemma 2.3, will allow us to change
coordinates from points P1, P2, P3 ∈ P1(K) with distinct reductions to 0, 1,∞ with-
out altering the underlying dynamics.

Proposition 3.8. Let P1, P2, P3 ∈ P1(K) be points with distinct reductions P̃1, P̃2, P̃3.
Then there exists a linear fractional transformation f ∈ PGL2(R) so that P1 7→ 0,
P2 7→ 1, P3 7→ ∞.
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Proof. Write each point Pi = [Xi, Yi] in normalized coordinates as per Definition
3.2. WLOG take v(X1) > v(Y1), otherwise apply the map Y

X ∈ PGL2(R) to each
Pi, reversing the coordinates. Since the coordinates for each point are normalized,
it follows that v(Y1) = 0, i.e. Y1 ∈ R×. Then apply the map Y1X−X1Y

Y ∈ PGL2(R)
to each Pi. Note that this map sets P1 = [0, 1].

By assumption, P̃3 6= P̃1 = [0, 1], so v(X3) = 0. So, apply the map X
Y3X−X3Y

∈
PGL2(R) to each Pi. Note that this map leaves P1 = [0, 1] and sets P3 = [1, 0].

Lastly, since our assumption gives us that P̃2 has distinct reduction from P̃1 =

[0, 1] and P̃3 = [1, 0], we must have v(X2) = v(Y2) = 0. Then apply the map Y2X
X2Y

∈
PGL2(R) to each Pi. Since this map fixes both P1 and P3 and sets P2 = [1, 1], the
composition of the above maps gives the required map in PGL2(R). �

With the previous statements, we have established how to reduce points modulo
p. We now ask how to reduce a rational map modulo p. To begin, let φ : P1(K)→
P1(K) be a rational map of degree d in the form

φ(X,Y ) = [F (X,Y ), G(X,Y )]

where F (X,Y ), G(X,Y ) ∈ K[X,Y ] are homogeneous polynomials of degree d.
Before we can define reduction of maps modulo p, we first define the normaliza-

tion of a rational map.

Definition 3.9. Let φ : P1(K)→ P1(K) be a rational map in the form φ(X,Y ) =
[F (X,Y ), G(X,Y )], where F,G ∈ K[X,Y ] are homogeneous polynomials. Then we
say the pair (F,G) is normalized, or φ is in normalized form if F,G ∈ R[X,Y ] and
at least one coefficient of F or G belongs to R× (recall notation from Definition
3.1). Equivalently (and analogously to point normalization), we say φ = [F,G] is
normalized if the polynomials

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY
d−1 + adY

d

G(X,Y ) = b0X
d + b1X

d−1Y + · · ·+ bd−1XY
d−1 + bdY

d

satisfy min{v(a0), . . . , v(ad), v(b0), . . . , v(bd)} = 0.

The rational map case is in fact completely analogous to the point case: By
clearing the denominators of each ai, bj , we can find c ∈ K× so that [cF, cG] is
normalized. Moreover, this value of c is unique up to multiplication by a unit.

Writing φ = [F,G] in normalized form, the reduction modulo p is defined in the
natural way.

Definition 3.10. Let φ = [F,G] be normalized with

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY
d−1 + adY

d

G(X,Y ) = b0X
d + b1X

d−1Y + · · ·+ bd−1XY
d−1 + bdY

d

Then, the reduction of φ modulo p is

φ̃(X,Y ) = [F̃ (X,Y ), G̃(X,Y )]

= [ã0X
d + · · ·+ ãdY

d, b̃0X
d + · · ·+ b̃dY

d].

That is, φ̃ is obtained by taking each coefficient ai, bj modulo p.
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Since at least one of ai, bj is a unit (due to Definition 3.9), at least one of F̃ or

G̃ is a non-zero homogeneous polynomial. So φ̃ : P1(K) → P1(K) is well-defined.
Moreover, analogously to Proposition 3.3, the reduction of a rational map is also
independent of the choice of polynomials F and G.

However, as we will see, the existence of φ̃ need not imply that φ̃ is well-behaving.

Example 3.11. Consider the rational map

ψ(X,Y ) = [pXd, Y d].

Note that deg(ψ) = d, but its reduction modulo p is ψ̃ = [0, Y d] = [0, 1]. But

ψ̃ = [0, 1] is a constant map and does not provide us any information to lift back
to study ψ.

4. Resultant

Although a rational map φ : P1(K)→ P1(K) is of form φ = [F (X,Y ), G(X,Y )],
where F and G share no common roots, upon reduction modulo p, they may acquire
common roots in the residue field R/p. To understand this phenomenon, we look
to develop a tool - called the resultant - that will help us determine the existence
of common roots, given the coefficients of F and G.

As a stepping stone toward our main proposition regarding the resultant, we
first prove the following equivalence.

Proposition 4.1. Let K be a field and A(X,Y ) and B(X,Y ) be homogeneous
polynomials of degrees n and m in K[X,Y ]. Then the following statements are
equivalent:

(i) A(X,Y ) and B(X,Y ) have a common zero in P1(K)
(ii) A(X,Y ) and B(X,Y ) have a common non-constant factor in the K[X,Y ]

(iii) There exists non-zero homogeneous polynomials C,D ∈ K[X,Y ] such that
A(X,Y ) ·C(X,Y ) = B(X,Y ) ·D(X,Y ) with deg(C) ≤ m−1 and deg(D) ≤
n− 1.

Note that here K denotes the algebraic closure of K.

Proof. Observe that (i) ⇐⇒ (ii) is immediate since the polynomial gcd(A,B) ∈
K[X,Y ] vanishes at precisely the common zeroes between A and B in P1(K).

It is also clear that (ii) =⇒ (iii). If there exists some common factor G, e.g.
gcd(A,B), such that G divides A and G divides B, then we can choose homogeneous
polynomials C and D so that A = G ·D and B = G ·C. Then A ·C = B ·D, that
is (iii).

Lastly, it suffices to show that (iii) =⇒ (i). Consider the equation A(X,Y ) ·
C(X,Y ) = B(X,Y ) · D(X,Y ) with deg(C) ≤ m − 1 and deg(D) ≤ n − 1. Upon
factoring both sides into linear factors in K[X,Y ], we find that A(X,Y ) has n linear
factors, while D(X,Y ) has at most n − 1 linear factors. By pigeonhole principle,
A(X,Y ) must have at least one linear factor (in K(X,Y )) in common with B(X,Y ).
Thus they must also share a common zero in P1(K). �

Now we introduce our main proposition on the resultant between two homoge-
neous polynomials, which extends the statements of Proposition 4.1.
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Proposition 4.2. Let K be a field and A(X,Y ) and B(X,Y ) be homogeneous
polynomials over K of the form

A(X,Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n

B(X,Y ) = b0X
m + b1X

m−1Y + · · ·+ bmY
m

so that deg(A) = n and deg(B) = m.
Then, there exists a polynomial, the resultant of A and B

Res (a0, . . . , an, b0, . . . , bm) ∈ Z[a0, . . . , an, b0, . . . , bm],

in the coefficients of A and B with the following properties:

(a) Res (A,B) = 0 ⇐⇒ A,B have common zero in P1(K)
(b) If a0b0 6= 0 and A and B are factored as

A(X,Y ) = a0

n∏
i=1

(X − αiY ) B(X,Y ) = b0

m∏
j=1

(X − βjY ),

then Res (A,B) = am0 b
n
0

n∏
i=1

m∏
j=1

(αi − βj).

(c) There exists FX , GX , FY , GY ∈ Z[a0, . . . , an, b0, . . . , bm][X,Y ] homogeneous
polynomials in X and Y of degrees m− 1 and n− 1, respectively such that

FX(X,Y ) ·A(X,Y ) +GX(X,Y ) ·B(X,Y ) = Res (A,B)Xm+n−1

FY (X,Y ) ·A(X,Y ) +GY (X,Y ) ·B(X,Y ) = Res (A,B)Y m+n−1

Observe that Y does not appear in the first equation and X does not appear
in the second equation.

(d) The resultant is equal to the (m+ n)× (m+ n) determinant

Res (A,B) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an 0 · · · · · · 0
0 a0 a1 · · · an 0 · · · 0

0
. . .

. . .
. . . · · ·

. . .
. . .

...
...

. . .
. . .

. . .
. . . · · ·

. . . 0
0 · · · · · · 0 a0 a1 · · · an
b0 b1 · · · · · · bm 0 · · · 0
...

. . .
. . . · · · · · ·

. . .
. . .

...
0 · · · b0 b1 · · · · · · bm 0
0 · · · 0 b0 b1 · · · · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Thus Res (A,B) is homogeneous of degree m in variables a0, . . . , an (coef-
ficients of A) and homogeneous of degree n in variables b0, . . . , bm (coeffi-
cients of B).

The proof of Proposition 4.2 follows from Proposition 4.1 and can be found on
pages 54-56 of [3].

Remark 4.3. We can see immediately that

˜Res (F,G) = Res
(
F̃ , G̃

)
.
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since the resultant Res (F,G) is a polynomial in the coefficients of F and G, which

when reduced, is exactly Res
(
F̃ , G̃

)
.

Now that we have established the resultant between two homogeneous polyno-
mials, we define the resultant of a rational map in the obvious way.

Definition 4.4. Let K be a field with non-archimedean absolute value |·|v and let
φ : P1(K)→ P1(K) be a rational map. Writing φ = [F,G] with normalized homo-
geneous polynomials F,G ∈ R[X,Y ], the resultant of φ is Res (φ) := Res (F,G).

Remark 4.5. If deg(φ) = d, then Res (φ) is well-defined up to multiplication by
α2d, for α ∈ R×, since [F,G] = [uF, uG] for u ∈ R×.

It turns out that the resultant of φ provides an upper bound for the expansion
of φ with respect to ρv. In fact, a rational map is always Lipschitz with respect to
ρv.

Theorem 4.6. Let K be a field with non-archimedean absolute value |·|v and φ :
P1(K)→ P1(K) be a rational map. Then,

ρv(φ(P ), φ(Q)) ≤ 1

|Res (φ)|2v
· ρv(P,Q)

for all P,Q ∈ P1(K).

Proof. Let φ = [F (X,Y ), G(X,Y )] be written in normalized form with deg(F ) =
deg(G) = d. Proposition 4.2(c) tells us that there exist homogeneous polynomials
FX , GX , FY , GY ∈ R[X,Y ] such that

FX(X,Y ) ·A(X,Y ) +GX(X,Y ) ·B(X,Y ) = Res (A,B)X2d−1(4.7)

FY (X,Y ) ·A(X,Y ) +GY (X,Y ) ·B(X,Y ) = Res (A,B)Y 2d−1(4.8)

Let P = [x, y] be a point in P1(K) in normalized form. Setting [X,Y ] = [x, y]
and applying the ultrametric inequality to the equation 4.7:∣∣Res (φ)x2d−1

∣∣
v

= |FX(x, y) · F (x, y) +GX(x, y) ·G(x, y)|v
≤ max{|FX(x, y) · F (x, y)|v , |GX(x, y), G(x, y)|v}
≤ max{|FX(x, y)|v , |GX(x, y)|v} ·max{|F (x, y)|v , |G(x, y)|v}

Since FX and GX have integer coefficients and x and y also belong to R, it follows
that |FX(x, y)|v , |GX(x, y)|v ≤ 1 and thus∣∣Res (φ)x2d−1

∣∣
v
≤ max{|F (x, y)|v , |G(x, y)|v}.

By applying the same steps to Equation 4.8, we find an analogous inequality for y∣∣Res (φ) y2d−1
∣∣
v
≤ max{|F (x, y)|v , |G(x, y)|v}.

Since P is normalized (i.e. max{|x|v , |y|v} = 1, we have

(4.9) |Res (φ)|v ≤ max{|F (x, y)|v , |G(x, y)|v}.

which gives us a bound on how divisible the pair F and G are by high powers of p.
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Now let P = [P1, P2] and S = [S1, S2] be points of P1(K) in normalized form, so
ρv(P, S) = |P1S2 − P2S1|v. Then,

ρv(φ(P ), φ(S)) =
|F (P1, P2) ·G(S1, S2)− F (S1, S2) ·G(P1, P2)|v

max{|F (P1, P2)|v , |G(P1, P2)|v} ·max{|F (S1, S2)|v , |G(S1, S2)|v}

≤
|F (P1, P2) ·G(S1, S2)− F (S1, S2) ·G(P1, P2)|v

|Res (φ)|2v
by applying Equation 4.9.

Lastly, observe that, by induction, F (P1, P2) ·G(S1, S2)− F (S1, S2) ·G(P1, P2)
vanishes if P1S2 = P2S1. This implies that P1S2 − P2S1 divides the polynomial
F (P1, P2) ·G(S1, S2)− F (S1, S2) ·G(P1, P2) in R[P1, P2, S1, S2], so

F (P1, P2) ·G(S1, S2)− F (S1, S2) ·G(P1, P2) = (P1S2 − P2S1) ·H(P1, P2, S1, S2)

for some polynomial H(P1, P2, S1, S2) ∈ R[P1, P2, S1, S2]. So,

ρv(φ(P ), φ(S)) ≤
|(P1S2 − P2S1) ·H(P1, P2, S1, S2)|v

|Res (φ)|2v

≤
|P1S2 − P2S2|v
|Res (φ)|2v

=
ρv(P, S)

|Res (φ)|2v
,

that is, φ is Lipschitz with respect to the v-adic chordal metric. �

We also have the immediate corollary that a rational map φ is non-expanding if
Res (φ) ∈ R×.

Corollary 4.10. Let K be a field with non-archimedean absolute value |·|v and
φ : P1(K)→ P1(K) be a rational map. If Res (φ) is a unit, then φ is non-expanding,
i.e.

ρv(φ(P ), φ(Q)) ≤ ρv(P,Q)

As we will see in the next section, the non-expandingness of a rational map φ is
a characterizing property of well-behaving rational maps, that is, maps with “good
reduction”.

5. Good Reduction

Recall that in Example 3.11, we saw a poor-behaving rational map. In particular,

we saw that deg(ψ) 6= deg(ψ̃). In this section, we examine rational maps that
maintain the same degree through reduction.

Theorem 5.1. Let φ : P1(K) → P1(K) be a rational map in normalized form as
φ = [F,G]. Then the following are equivalent:

(a) deg(φ) = deg(φ̃)

(b) F̃ (X,Y ) = 0 = G̃(X,Y ) have no solutions [α, β] ∈ P1(k) (recall that k =
R/p and k is the algebraic closure of k)

(c) Res (φ) ∈ R×

(d) Res
(
F̃ , G̃

)
6= 0

A rational map φ satisfying these properties is said to have good reduction (mod-
ulo p).
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Proof. Observe that (b) ⇐⇒ (c) ⇐⇒ (d) follows immediately from Proposition
4.2 and Remark 4.3. To complete the proof, it suffices to show that (a) ⇐⇒ (b).
Note that

deg(φ̃) = deg(φ)− C

where C is the number of roots (counted according to multiplicity) that F̃ and

G̃ have in common, which are erased by the reduction. In particular, deg(φ) =

deg(φ̃) ⇐⇒ F̃ , G̃ share no common roots. �

Recall that Corollary 4.10 required that Res (φ) ∈ R×. By Theorem 5.1, we now
have the following (equivalent) formulation.

Corollary 5.2. Let K be a field with non-archimedean absolute value |·|v and
φ : P1(K)→ P1(K) be a rational map of good reduction. Then φ is non-expanding,
i.e.

ρv(φ(P ), φ(Q)) ≤ ρv(P,Q)

Next we consider some of the expected “good” properties of rational maps with
good reduction.

Theorem 5.3. Let K be a field and φ, ψ : P1(K) → P1(K) be rational maps with
good reduction. Then

(a) φ̃(P ) = φ̃(P̃ ) for any point P ∈ P1(K)

(b) φ ◦ ψ has good reduction and φ̃ ◦ ψ = φ̃ ◦ ψ̃
The proof of this theorem can be found on page 59-60 of [3]. It is reasonable

to ask whether if good reduction of a composition implies good reduction of the
individual maps. However, this is not the case as we can find φ and ψ such that φ◦ψ
has good reduction but the maps alone have bad reduction, even after applying an
element of PGL2(R).

As we wrap up our discussion of maps with good reduction themselves, we can
begin our discussion of periodic points in maps of good reduction. To start off, we
give the following fairly intuitive statement regarding where the reduction sends
(pre-)periodic points.

Corollary 5.4. Let K be a field and φ : P1(K)→ P1(K) a rational map with good
reduction. Then

Per(φ)→ Per(φ̃) PrePer(φ)→ PrePer(φ̃),

that is, ·̃ sends periodic points in φ to periodic points in φ̃ and similarly for pre-
periodic points.

Moreover, if P ∈ Per(φ) has period n and P̃ ∈ Per(φ̃) has period m, then m
divides n.

Proof. Let P be periodic with period n, i.e. P = φn(P ). Theorem 5.3 says that

P̃ = φ̃n(P ) = φ̃n(P̃ ), that is P̃ is periodic.

Now suppose P̃ has period m < n, then n = mk+ r, for some 0 ≤ r < m. Then

P̃ = φ̃n(P̃ ) = φ̃r ◦ φ̃m ◦ φ̃m ◦ · · · ◦ φ̃m(P̃ )︸ ︷︷ ︸
k times

= φ̃r(P̃ )

Since φ̃r(P̃ ) = P̃ and r < m, it follows that r = 0. Thus, m divides n and

Per(φ)→ Per(φ̃). The pre-periodic case follows via a similar argument. �
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6. Periodic Points and Good Reduction

In preparation for this section and the next section, we will define some frequently
used quantities.

Definition 6.1. For K a field with non-archimedean absolute value |·|v and φ :
P1(K) → P1(K) a rational map, define the following quantities for P ∈ P1(K) a
periodic point:

n = period of P for φ

m = period of P̃ for φ̃

r = order of λφ̃(P̃ ) =
(
φ̃
)′

(P̃ ) in the multiplicative group K×

As convention, take r =∞ if λφ̃(P̃ )n 6= 1 for all n

p = char(k), recall that k = R/p

In the previous section, Corollary 5.4 tells us that the period of a reduced periodic

point for φ̃, m, divides the period of the periodic point for φ, n. But is there more
we can say about the relationship between the two periods? The following theorem
combines results of Li, Morton-Silverman, Narkiewicz, Pezda, and Zieve, to give us
the possible forms n = mk can take on.

Theorem 6.2. Let K be a local field with non-archimedean absolute value |·|v. Let
φ : P1(K) → P1(K) a rational map with good reduction and deg(φ) = d ≥ 2. Let
P ∈ P1(K) be a periodic point of φ with quantities defined in Definition 6.1. Then,
n has one of the following forms

n =


m

mr

mrpe, for some e ∈ Z+

Proof. In this proof, we will be using the notation introduced in Definition 6.1

Recall from Theorem 5.3 that φ̃i(Q) = φ̃i(Q̃) for all points Q ∈ P1(K) and all
i ≥ 0. Also recall that Corollary 5.4 tells us that m divides n.

First we replace φ by φm and let m = 1, which reduces to the case where P̃ is

a fixed point of φ̃. Moreover, observe that λφ̃(P̃ ) = φ̃′(φ̃) = φ̃′(P ). If P is a fixed

point of φ, i.e. φ(P ) = P , then n = m and we are done.
Now suppose that φ(P ) 6= P . Proposition 3.8 tells us that there exists f ∈

PGL2(R) such that f([0, 1]) = P . WLOG we assume that P = [0, 1]; otherwise,
replace P by f−1(P ) = [0, 1] and φ by φf = f−1 ◦ φ ◦ f .

Dehomogenizing z = X
Y , we write

φ(z) =
ad + ad−1z + · · ·+ a1d

d−1 + a0z
d

bd + bd−1z + · · ·+ b1dd−1 + b0zd

where the coefficients a0, . . . , ad, b0, . . . , bd ∈ R and at least one coefficient belongs

to R×. Since our point P = [0, 1] is a fixed point of φ̃ and phi has good reduction,
it follows that φ(0) = ad

bd
≡ 0 (mod p). Thus, ad ∈ p and bd ∈ R× and thus has an

inverse. Multiplying the numerator and denominator by b−1d 6= 0, we can write φ
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in the following form (Note that the coefficients may have changed)

φ(z) =
ad + ad−1z + · · ·+ a1d

d−1 + a0z
d

1 + bd−1z + · · ·+ b1dd−1 + b0zd
.

Consider the first few terms of the Taylor expansion of φ(z) around z = 0.

φ(z) = µ+ λz +
A(z)

1 + zB(z)
z2

where A(z), B(z) ∈ R[z], λ = φ′(0) and µ = ad ∈ p.
By induction, we see that

φi(0) ≡ µ(1 + λ+ λ2 + · · ·+ λi−1) (mod µ2)

since the evaluation at 0 and taking the expression modulo µ2 eliminates the cross-
terms. In particular, since φn(0) = 0 and µ = ad ∈ p, it follows that

1 + λ+ λ2 + · · ·+ λn−1 ≡ 0 (mod p)

Now we have two cases remaining. Recall that r is the order of λφ̃(P̃ ) in k× and

observe that

λφ̃(P̃ ) = 1 ⇐⇒ r = 1.

First, we consider the case of r ≥ 2, or equivalently, that λ 6≡ 1 (mod p). Then
λn ≡ 1 (mod p), which implies that r divides n. If n = r, we are done. Otherwise
replace φ with φr and n with n

r . Then, again, we have φ in the form

φ(z) = µ+ λz +
A(z)

1 + zB(z)
z2

possibly with different values of µ, λ,A(z) and B(z).
This replacement of φ with φr and n with n

r results in the second case, where
r = 1, or equivalently λ ≡ 1 (mod p). Recalling that

φn(0) = 0

µ = φ(0) = 0 (mod p)

λ = φ′(0) ≡ 1 (mod p)

and assuming that φ(0) 6= 0, it follows that

n ≡ 1 + λ+ λ2 + · · ·+ λd−1 ≡ 0 (mod p)

which implies that p divides n. Finally replace φ with φp and n with n
p . If we have

achieved φ(0) = 0 then we are done, otherwise, inductively repeat the replacing
process until n = 1 and we can write n = mrpe, for some e ≥ 1. �

Recall that Corollary 4.10 tells us that maps with good reduction are non-
expanding. This fact also allows us to conclude that all the periodic points of
such well-behaving maps are also non-repelling.

Corollary 6.3. Let K be a field and φ : P1(K)→ P1(K) a rational map with good
reduction. Then every periodic point of φ is non-repelling.

Proof. Since φ has good reduction, it follows from Theorem 5.3 that φn also has
good reduction. Let P be a periodic point of period n. Proposition 3.8 allows us
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to change coordinates so that P = [0, 1]. Then writing φn in normalized form, that
is F,G ∈ R[z]

φn(z) =
F (z)

G(z)
=
a1z + a2z

2 + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd
.

Since φn has good reduction, by Theorem 5.1, z = 0 cannot be a common root of

F̃ and G̃, so b0 must belong to R×. Then it follows that

λp(φ) = (φn)′(0) =
a1
b0
∈ R

which implies that |λp(φ)|v ≤ 1. So, P is a non-repelling periodic point. �

As we will see in greater detail in the next section, Theorem 6.2 is very powerful
and will allow us to characterize the periods of periodic points depending on their
leading coefficients in P1(Q).

Next we look to find a bound on the set of periodic points of φ over K, Per(φ,K).

Corollary 6.4. Let K be a number field and φ : P1(K)→ P1(K) a rational map.
Let p and q be primes of K that φ has good reduction on and char(kp) 6= char(kq),
that is the characteristic of the residue fields are distinct. Then the period n of any
periodic point of φ satisfies

n ≤ (N2p− 1)(N2q− 1)

where N denotes the norm.
Moreover, this tells us that the set Per(φ,K) of K-rational periodic points is

finite.

We leave the details of the proof to be read on page 66 of [3].
Lastly we consider a theorem specific to Qp and which provides insight on a

specific case of Theorem 6.2.

Theorem 6.5. Let p ≥ 5 be a prime and let K = Qp. Let φ : P1(K) → P1(K)
be a rational map with good reduction and P ∈ P1(K) be a periodic point such that

φ̃(P̃ ) = P̃ , that is P̃ is a fixed point for φ̃, and φ̃′(P̃ ) = 1.
Then φ(P ) = P , that is P is also a fixed point for φ.

Observe that in the variables in 6.1, the above theorem states that is that m =
r = 1 implies that n = 1 and e = 0. The proof of this theorem can be found on
pages 67-69 of [3] and uses a similar argument to the proof of Theorem 6.2 via a
Taylor expansion of φ.

7. Extended Example of φ(z) = [az2 + bz + c, z2]

In this final section, we examine the rational map

φ(z) =
az2 + bz + c

z2

with a, b, c ∈ Z. Suppose that P ∈ P1(Q) is a periodic point of φ of period n.
In particular, we want to determine the possible values n can take under various
conditions. Note that we can also write φ in the form of a polynomial:

φ

(
1

z

)
= cz2 + bz + a
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First we examine the case where gcd(c, 6), i.e. φ has good reduction for Z2 and
Z3. Theorem 6.2 tells us that the period for φ has form n = mrpe. We denote

the period of P̃ for φ̃2 as m2 and the order of λφ̃2
(P̃ ) in F2 as r2. We use similar

notation for the Z3 case.
In the Z2 case we see that P1(F2) has a total of 3 points, namely [0, 1], [1, 1],∞

(we include ∞ since φ is a rational map). Thus 1 ≤ m2 ≤ 3. Moreover, since
k× = F×2 has only one element, it follows that r2 = 1 and n = 3s ·2e2 , where e2 ≥ 0
and s ≤ 1.

In the Z3 case we perform a similar analysis: Since P1(F3) has 4 points, namely
[0, 1], [1, 1], [2, 1],∞, it follows that 1 ≤ m3 ≤ 4. Noting that F×3 has two elements,
we find that r3 ≤ 2, so n = 2t · 3e3 for t ≤ 3 and e3 ≥ 0.

Combining the results from the two cases, we conclude that n = 2t · 3s, where
s ≤ 1 and t ≤ 3, so n ∈ {1, 2, 3, 4, 6, 8, 12, 24}. But are all of these combinations
actually possible?

It turns out that the only possible values of n are 1, 2, and 3. But why are the
other options not feasible? Observe that if n = 8, we would require that m3 = 4
and r3 = 2. But suppose that m3 = 4. Observe that in (mod 3), we have the
following mappings:

φ̃3(∞) = ã

φ̃3(0) =∞

φ̃3(1) = ã+ b̃+ c̃

φ̃3(2) = ã− b̃+ c̃

We determine the mappings φ̃3(1) and φ̃3(2) by noting that z2 ≡ 1 (mod 3) for

z = 1 or 2 by Fermat’s Little Theorem. In order of an φ̃ to achieve m3 = 4, we
must have that

0 7→ ∞ 7→ ã 7→ φ̃(ã) 7→ 0

This leaves ã with two options: 1 or 2. If ã = 1, then we require that φ̃(1) =

1 + b̃+ c̃ ≡ 2 and φ̃(2) = 0. This gives us the pairs

(̃b, c̃) =

{
(0, 1) but φ̃3(2) = 1− 0 + 1 = 2 6≡ 0

(2, 2) but φ̃3(2) = 1− 2 + 2 = 1 6≡ 0

If instead, ã = 2, then we require that φ̃(2) = 2− b̃+ c̃ ≡ 1 and φ̃(1) = 0. This
gives us the pairs

(̃b, c̃) =

{
(0, 2) but φ̃3(1) = 2 + 0 + 2 = 1 6≡ 0

(2, 1) but φ̃3(1) = 2 + 2 + 1 = 2 6≡ 0

Thus m3 = 4 does not occur.
In order to show that n 6= 4, 6, 12, 24, we note that all of these require m3 = 2.

With the assistance of some computer code, one can see that m3 = 2 implies that

r =∞, or equivalently, (φ̃23)′(P̃ ) = 0.
Now, we will provide some examples of φ for the remaining viable values of

n = 1, 2, 3. For n = 1, consider

φ(z) =
z2 + z − 1

z2
z = 1
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so that φ(1) = 1. Next, for n = 2, observe that

φ(z) =
z2 − z − 1

z2
z = 1

which maps 1 to −1 and back to 1. Lastly, for n = 3, take

φ(z) =
z2 − 1

z2
z = 1

which produces the mapping 1 7→ 0 7→ ∞ 7→ 1.
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