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Abstract. In this expository paper, we shall study the joint probability dis-

tribution of the eigenvalues of Gaussian Unitary Ensemble (GUE) random
matrices, an important object in the theory of random matrix, from a point

process perspective. We won’t discuss the Wigner’s semicircular law, but we

will occasionally use that result. We shall assume that the reader is familiar
with measure theoretic probability. Our approach is based on a combination

of references [1] and [3].
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1. A Brief Introduction to Point Process

We will present some essential general definitions and concepts regarding point
processes in this section. We will build our study of GUE matrices within this
abstract framework.

Definition 1.1. (Random Point Process)
A random point process on a measurable space X is a random sum

∑
i∈I δXi

of Dirac masses. We restrict X to be a locally compact, complete and separable
metric space. For instance, X can be a subset of Rd. We endow X with its Borel
σ−field B(X).

The central object of this paper, the eigenvalues of the Gaussian unitary ensem-
ble, is a random point process.

Definition 1.2. (Locally Finite Atomic Measure)
A locally finite atomic measure on X is a positive measure µ : B(X) →

N∪{∞} which takes integer values and for any compact subset K, µ(K) <∞. We
denote M(X) to be the set of atomic measures on X. It then follows that µ can be
written as

∑
i∈I δxi for a countable index set I.
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We endow M(X) with the smallest σ−field which makes the maps µ→ µ(B), B ∈
B(X) measurable.Thus, we can consider a random point process on X as a mea-
surable map from the probability space to to M(X). From this perspective, µ(B)
is a random variable that is integer-valued.

Example 1.3. Suppose that µ : B(X) → R t {+∞} is a locally finite positive
Borel measure on X. A Poisson point process with intensity µ on X is a ran-
dom point process Pν such that, for any family (Ba)a∈A of disjoint Borel subsets
of X, (Pµ (Ba))a∈A is a family of independent Poisson variables with parameters
µ (Ba). Any locally finite positive Borel measure on X gives rise to a Poisson point
process, which is unique in law in M atom(X).

Suppose M is a random point process from (Ω, F,P) → M(X) on a locally
compact polish space, then we can define, for i ≥ 1, some random variables
Xi : (Ω, F,P) → X ∪ {a} such that Xi = a iff M(X) ≤ ∞ and i > M(X). Fur-

thermore, we have M =
∑M(X)
i=1 δXi .

These random variables enable us to defineMn :=
∑
i1 6=...6=in,1≤ia≤M(X) δXi1 ,...,Xin .

Remark 1.4. For explicit computations of Mn, see [2].

Definition 1.5. (Factorial Moment Measure)
The nth factorial moment measure of M is the positive Borel measure µnM on

Xn defined by µnM (
∏n
i=1Bi) := E[Mn(

∏n
i=1Bi)].

Here we present a calculation based on [1], and there are more calculations in
[2].

Example 1.6. Suppose we have a Poisson point process P on X with intensity µ,
and some disjoint locally compact subsets B1, . . . , Bn in X. We can construct the
restriction of the Poisson point process P to B =

⋃n
a=1Ba in the following manner.

First, we take a Poisson random variable N with parameter µ(B), then we set

P|B =

N∑
i=1

δXi

where the Xi ’s are independent random variables in B with law µ(·)
µ(B) , and are

independent of N . We then have:

µ↓nP (B1 ×B2 × · · · ×Bn) = E

 ∑
i1 6=i1 6=···6=in

(
n∏
a=1

1Xia∈Ba

) =

(
n∏
a=1

µ (Ba)

µ(B)

)
E
[
N↓n

]
=

n∏
a=1

µ (Ba)

By additivity, we conclude that µ↓nP = µ⊗n. This identity encodes the independence
of the restrictions of the Poisson point process P to disjoint subsets.

Definition 1.7. (Correlation Functions)
Suppose we have a random point process M on a locally compact polish space X,

then there exists a reference Radon measure (locally finite Borel positive measure)
λ on X such that the factorial moment measure µnM is absolutely continuous with

respect to λ⊗n for all n ≥ 1. We call pn(x1, . . . , xn) =
d(µnM )
dλ⊗n (x1, . . . , xn) the

correlation function of the random point process. The derivative here is the
Radon-Nikodym derivative.
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Remark 1.8. The existence of correlation functions in the above setting is guar-
anteed by the Radon-Nikodym theorem.

Definition 1.9. (Simple Point Process)
A point process χ is simple if P (∃x : X({x}) > 1) = 0.

Definition 1.10. (Determinantal Point Process)
A simple random point process χ is said to be a determinantal point process

if its correlation functions pn(x1, . . . , xn) = det(K(xi, xj)1≤i,j≤n) for all n with
some adequate kernel K which does not depend on n.

We will show later in this paper that the eigenvalues of the GUE matrices form
a determinantal point process.

2. The Joint Distribution of the Eigenvalues of GUE Matrix

In this section, we will introduce what a GUE random matrix is and investigate
their joint probability distribution. Their joint distribution is crucial in proving
that they form a determinantal point process.

Definition 2.1. (Gaussian Unitary Ensemble Matrix)
We consider a random matrix in the following form.
(HN )ii = NR(0, 1

N ), (HN )ij = (HN )ji = NR(0, 1
2N ) + iNR(0, 1

2N ).

Let VN be the space of N ×N Hermitian matrices endowed with the Lebesgue
measure dHN . Then the distribution µHN of a Gaussian Unitary Ensemble
(abbreviated as GUE) matrix HN is an absolutely continuous probability measure
on Vn which can be written as
µHN = 1

ZN,GUE,1
e−

N
2 trH2 ∏

1≤i≤N dHi,i

∏
1≤i<j≤N dRe (Hi,j) d Im (Hi,j) , with ZN,GUE,1 =√

2NπN2

NN2 .

Theorem 2.2. (Joint Distribution of the Point Process of Eigenvalues of
a GUE Matrix)

The ordered random sequence (XN,1 ≤ . . . ≤ XN,N ) of eigenvalues of a GUE
matrix MN forms a random point process on R and admits the following density
function in the Weyl chamber Rn≥ with respect to Lebesgue measure:

1xN,1≤···≤xN,N
ZN,GUE,2

e−
N
2

∑N
i=1(xN,i)

2 ∏
1≤i<j≤N |xN,i − xN,j |

2∏
1≤i≤N dxN,i in which ZN,GUE,2 =

(2π)
N
2 N−

N2

2 (N − 1)!(N − 2)! · · · 1!

For simplicity, we denote λ1 ≤ . . . ≤ λN as the N eigenvalues corresponding to
xN,1 ≤ · · · ≤ xN,N .

Suppose X ∈ MN , then by Schur decomposition, we have X = UDU∗ with D
being a diagonal matrix with real entries (note that the eigenvalues of Hermitian
matrices are real), and U is an orthogonal matrix.

We fix some notations first. Set MN to be the set of Gaussian unitary en-
semble matrices. Let UN be the set of all orthogonal matrices. We say that

U ∈ U
(2)
N is normalized if every diagonal entry of U is strictly positive real.

We say that U ∈ U
(2)
N is good if it is normalized and every entry of U is nonzero.

The collection of good matrices is denoted U
(2),g
N . Finally, we call that D ∈ DN

is distinct if its entries are all distinct, denoting by Dd
N the collection of dis-

tinct matrices, and by Dao
N the subset of matrices with decreasing entries, that
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is Ddo
N =

{
D ∈ Dd

N : Di,i > Di+1,i+1

}
. We use H

(2),dg
N to denote the subset of

H (2) consisting of those matrices that possess a decomposition X = UDU∗ where

D ∈ Dd
N and U ∈ U

(2),g
N .

Let P 2
N be the the law on VN given by µHN .

The key idea behind the proof is that the map (U,D)→ UDU∗ is injective and
its complement is of Lebesgue measure zero. Then we essentially need a change of
variable formula.

There are several lemmas regarding the sets and matrices we have defined.Eventually,
we need to show that the complement is of Lebesgue measure zero.

Lemma 2.3. MN \Md,g
N has null Lebesgue measure. Further, the map (De

N , U
g
N )→

Md,g
N given by (D,U)→ UDU∗ is bijective. The same map from (Dd

N , U
g
N )→Md,g

N

given by (D,U)→ UDU∗ is N ! to one.

Proof. In order to prove the first part of the lemma, we note that for any nonvan-
ishing polynomial function p of the entries of X, the set {X : p(X) = 0} is closed
and has zero Lebesgue measure (this fact can be checked by applying Fubini’s The-
orem). So it is enough to exhibit a nonvanishing polynomial p with p(X) = 0 if

X ∈ H
(2)
N \H

(2),dg
N . Toward this end, we will show that for such X, either X

has some multiple eigenvalue, or, for some k,X and the matrix X(k) obtained by
erasing the k th row and column of X possess a common eigenvalue.

Given any N by N matrix H, for i, j = 1, . . . , N let H(i,j) be the N − 1 by
N − 1 matrix obtained by deleting the i th column and j th row of H, and write
H(k) for H(k,k). We begin by proving that if X = UDU∗ with D ∈ Dd

N , and

X and X(k) do not have eigenvalues in common for any k = 1, 2, . . . , N , then all
entries of U are nonzero. Indeed, let λ be an eigenvalue of X, set A = X − λI,

and define Aadj as the N by N matrix with Aadj
i,j = (−1)i+j det

(
A(i,j)

)
. Using the

identity AAadj = det(A)I one concludes that AAadj = 0. Since the eigenvalues
of X are assumed distinct, the null space of A has dimension 1 , and hence all
columns of Aadj are scalar multiple of some vector vλ, which is then an eigenvector

of X corresponding to the eigenvalue λ. Since vλ(i) = Aadj
i,i = det

(
X(i) − λI

)
6= 0

by assumption, it follows that all entries of vλ are nonzero. On the other hand,
each column of U is a nonzero scalar multiple of some vλ, leading to the conclusion
that all entries of U do not vanish. Note that the resultant of the characteristic
polynomials of X and X(k), which can be written as a polynomial in the entries of
X and X(k), and hence as a polynomial P1 in the entries of X, vanishes if and only
if X and X(k) have a common eigenvalue. Further, the discriminant of X, which is
a polynomial P2 in the entries of X, vanishes if and only if not all eigenvalues of X
are distinct. Taking p(X) = P1(X)P2(X), we obtain a nonzero polynomial p with

p(X) = 0 if X ∈ H
(2)
N \H

(2),dg
N . The second part of the lemma is immediate since

the eigenspace corresponding to each eigenvalue is of dimension 1, the eigenvectors
are fixed by the normalization condition. The multiplicity arises from the possible
permutations of the order of the eigenvalues.

�

Lemma 2.4. The map T : UvgN → R
N(N−1)

2 defined by T (U) = (
U1,2

U1,1
. . .

U1,N

U1,1
. . .

UN,N−1

UN−1,N−1
)

is injective with smooth inverse. The set (T (UvgN ))c has Lebesgue measure zero.

Proof. We begin with the first part. The proof is by an inductive construction.

Clearly, U−21,1 = 1 +
∑N
j=2 |U1,j |2 / |U1,1|2. So suppose that Ui,j are given for 1 ≤
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i ≤ i0 and 1 ≤ j ≤ N. Let vi = (Ui,1, . . . , Ui,i0) , i = 1, . . . , i0. We can then solve
the equation

v1
v2
...
vi0

Z = −


U1,i0+1 +

∑N
i=i0+2 U1,i

(
Ui0+1,i

Ui0+1,i0+1

)∗
U2,i0+1 +

∑N
i=i0+2 U2,i

(
Ui0+1,i

Ui0+1,i0+1

)∗
...

Ui0,i0+1 +
∑N
i=i0+2 Ui0,i

(
Ui0+1,i

Ui0+1,i0+1

)∗


The very good condition on U ensures that the vector Z is uniquely determined by
this equation, and one then sets

U−2i0+1,i0+1 = 1 +

i0∑
k=1

|Zk|2 +

N∑
i=i0+2

∣∣∣∣ Ui0+1,i

Ui0+1,i0+1

∣∣∣∣2
and

Ui0+1,j = Z∗jUi0+1,i0+1, for 1 ≤ j ≤ i0.
All entries Ui0+1,j with j > i0 + 1 are then determined by T (U) This completes the
proof of the first part.

To see the second part, let Z
(2)
N be the space of matrices whose columns are or-

thogonal, whose diagonal entries all equal to 1 , and all of whose minors have

nonvanishing determinants. Define the action of T on Z
(2)
N as before. Then,

T
(
U

(2),vg
N

)
= T

(
Z

(2)
N

)
. Applying the previous constructions, we immediately

obtain a polynomial type condition for a point in RN(N−1) to not belong to the set
T
(
Z 2
N

)
.

�

Lemma 2.5. The Lebesgue measure of MN \Mvg
N is zero.

Proof. We identify a subset of H
(2),vg
N which we will prove to be of full Lebesgue

measure. We say that a matrix D ∈ Dd
N is strongly distinct if for any integer

r = 1, 2, . . . , N − 1 and subsets I, J of {1, 2, . . . , N},
I = {i1 < · · · < ir} , J = {j1 < · · · < jr}

with I 6= J , it holds that
∏
i∈I Di,i 6=

∏
i∈J Di,i. We consider the subset H

(2),sdg
N

of H
(2), vg
N consisting of those matrices X = UDU∗ with D strongly distinct and

U ∈ U
(2),vg
N Given a positive integer r and subsets I, J as above, put(

r∧
X

)
IJ

:= detrµ,v=1Xiµ,jv

thus defining a square matrix ΛrX with rows and columns indexed by r-element
subsets of {1, . . . , N}. If we replace each entry of X by its complex conjugate,
we replace each entry of ΛrX by its complex conjugate. If we replace X by its
transpose, we replace ∧rX by its transpose. Given another N by N matrix Y
with complex entries, by the Cauchy-Binet Theorem (see lemma 2.2 in [1]), we

have Λr(XY ) = (ΛrX) (ΛrY ). Thus, if U ∈ U
(β)
N then

∧r
U ∈ U

(2)
crN

where

crN = N !/(N − r)!r!. We thus obtain that if X = UDU∗ then ∧rX can be decom-
posed as ∧rX = (ΛrU) (

∧r
D) (ΛrU∗). In particular, if D is not strongly distinct
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then, for some r,ΛrX does not possess all eigenvalues distinct. Similarly, if D is

strongly distinct but U /∈ U
(2), vg
N , then some entry of ΛrU vanishes. Repeating

the argument presented in the proof of the first part of lemma 2.3, we conclude

that the Lebesgue measure of H
(2)
N \H

(2),sdg
N vanishes. This completes the proof

of the lemma.
�

Now we can derive the joint distribution based on these lemmas. Let T be as
defined in previous lemmas.

Proof. (Proof of Theorem 2.2): Define map T̂ : T
(
U

(2),vg
N

)
× RN → HN (2).

We also have λ ∈ RN and z ∈ T
(
U

(2),vg
N

)
D ∈ DN with Di,i = λi and T̂ (z, λ) =

T−1(z)DT−1(z)∗ By Lemma 2.4, T̂ is smooth, whereas by Lemma 2.3, it is N !-
to-1 on a set of full Lebesgue measure and is locally one-to-one on a set of full
Lebesgue measure. Letting JT̂ denote the Jacobian of T̂ , we note that JT̂ (z, λ) is
a homogeneous polynomial in λ of degree (at most) N(N−1), with coefficients that

are functions of z (since derivatives of T̂ (z, λ) with respect to the λ-variables do not
depend on λ, while derivatives with respect to the z variables are linear in λ ). Note

next that T̂ fails to be locally one-to-one when λi = λj for some i 6= j. In particular,

it follows by the implicit function theorem that JT̂ vanishes at such points. Hence,
∆(λ) =

∏
i<j (λj − λi) is a factor of JT̂ . In fact, we have that ∆(λ)2 divides

JT̂ . Since ∆(λ) is a polynomial of degree N(N − 1)/2, it follows that JT̂ (z, λ) =
g(z)∆(λ)2 for some (continuous, hence measurable) function g. By Lemma 2.5, we
conclude that for any function f that depends only on the eigenvalues of X, Writing
for brevity W = T−1(z), we have T̂ = WDW ∗, and W ∗W = I. Using the notation

dT̂ for the matrix of differentials of T̂ , we have dT̂ = (dW )DW ∗ + W (dD)W ∗+
WD (dW ∗) . Using the relation d (W ∗W ) = (dW ∗)W + W ∗(dW ) = 0, we deduce
that

W ∗(dT̂ )W = W ∗(dW )D −DW ∗(dW ) + (dD)

Therefore, when λi = λj for some i 6= j, a complex entry (above the diagonal) of

W ∗(dT̂ )W vanishes. This implies that, when λi = λj , there exists two real linear re-

lations between the on-and-above diagonal entries of dT̂ , which implies in turn that
(λi − λj)2 must divide JT̂ . From here, we can deduce the joint distribution. Since

∆(λ) is a polynomial of degree N(N − 1)/2, it follows that JT̂ (z, λ) = g(z)∆(λ)2

for some (continuous, hence measurable) function g. By Lemma 2.5, we conclude
that for any function f that depends only on the eigenvalues of X, it holds that

N !

∫
f(H)dP 2

N =

∫
|g(z)|dz

∫
f(λ)|∆(λ)|2

N∏
i=1

e−λ
2
i /2dλi.

Moving N ! to the right hand side, we obtain the density of the eigenvalues.
Up to the normalization constant

(∫
|g(z)|dz

)
/N !, we have proven the theorem.

The normalization constant can be explicitly computed to be 1
ZN,GUE,2

. See sec-

tion 3.1 in [4].
�

To get rid of the indicator variable in the fraction, we shall consider the un-
ordered random sequence of eigenvalues (xN,1, . . . , xN,N ) with joint distribution
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1
N ! ×

1xN,N≥...≥xN,1
ZN,GUE,2

e−
λ2

2 |∆N (λ)|2
∏
dxN,i ∈ RN = 1

ZN,GUE
e−

λ2

2 |∆N (λ)|2
∏
dxN,i

for ZN,GUE = N !ZN,GUE,2.

This unordered random sequence yields a random point processMN =
∑N
i=1 δxN,i

which is called the Gaussian unitary ensemble (GUE) point process. We shall
prove that this random point process is determinantal.

Theorem 2.6. (GUE point process is determinantal)
The eigenvalues of a random matrix HN of the GUE form a determinantal point

process associated to the kernels KN (x, y) =
∑N−1
i=0 φN,i(x)φN,i(y), where the φN,i

are the orthonormal polynomials for the scaled normal law λ = λN = NR(0, 1
N ).

Explicitly, we have φN,i(x) = Hi(
√
Nx)√
i!

in which Hi(x) = (−1)ie
x2

2
di

dxi (e
−x2
2 ) which

we call the N th Hermite polynomial.

To show this theorem, we need to establish some general criterions.
Suppose φj , ψi are real valued, and we setAi,j =< ψi|φj >L2(X,λ)=

∫
X
ψi(x)φj(x)λ(dx).

IfA as a matrix is invertible, then we can define a kernelKN (x, y) =
∑

1≤i,j≤N ψi(x)A−1i,j φj(y).

By scaling, we can assume det(A) = 1.
The following general theorem holds.

Theorem 2.7. (Determinantal point process associated to a finite rank
reproducing kernel)

Let (φi, ψi)1≤iN be a family of real valued functions in L2(X,λ) such that det(A) =
1. Then the kernel KN is a reproducing kernel, that is,∫

X
KN (x, x)λ(dx) = N,

∫
X
KN (x, y)KN (y, z)λ(dy) = KN (x, z).

If the random variables x1, . . . , xN has a joint distribution of 1
N ! det(φi(xj))1≤i,j≤N det(ψi(xj))1≤i,j≤N

and an associated random point process MN =
∑N
i=1 δxi . Then the random point

process MN is determinantal on (X,λ) with kernel KN .

Proof. The proof of the above theorem can be found in Theorem 2.3 in [1].
�

Now we return back to our specific question.
When we take φi = ψi to be the ith normalized orthogonal polynomials for a

probability measure λ, we can redefine the kernel KN (x, y) =
∑N−1
i=0 φi(x)φi(y).

A particular example is the GUE point process in which we take λN = NR(0, 1
N ).

Proof. (of Theorem 2.6)
First take λ = N(0, 1).
We first show that the φN,i(x) are orthonormal.
Since each Hi(x) is a monic polynomial with degree i, we can integrate against

Hi(x) with each xj to see that
∫
RHi(x)xjλ(dx) = 0 which concludes that, by

linearity of integration, Hi and Hj are orthogonal.
A straightforward integration shows that

∫
R(Hi(x))2λ(dx) = i!.

Hence, Hi(x)√
i!

are orthonormal with respect to N(0, 1).

Hence, φN,i(x) are orthonormal with respect to N(0, 1
N ).

To apply the above general theorem, we also need to verify that 1
N ! det(φi(xj))1≤i,j≤N det(ψi(xj))1≤i,j≤N

is the joint distribution of the unordered random sequence of eigenvalues derived

previously. The verification can be done by plugging in λN (dxi) = ie−2i2x2i√
2π

dxi.

Therefore the product of these measures amounts to 1
ZN,GUE

e
−N
2

∑N
i=1 x

2
i
∏

1≤i≤N dxi.
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Note also that ∆(x) = det((xN,i)
N−j)1≤i,j≤N and normalization doesn’t affect de-

terminant, we have det((φN,i(xj)))
2 =

∏
1≤i<j≤N |xi − xj |2. Hence, all conditions

of the general theorem are met, so the GUE point process is indeed determinantal.
�

3. Spacings and Convergence of the Eigenvalues of GUE Matrix

In this section, we shall mainly follow [3] in giving some explicit results regarding
the spacings of eigenvalues. We will prove the first theorem regarding the bulk
distribution of the eigenvalues in this section, but we will only prove some partial
results regarding the last two theorems in the next section with slightly different
settings. For complete proofs of the last two theorems, see Theorem 3.1.2 and
Theorem 3.1.4 in Chapter 3 of [3].

We suppose λ1 ≤ . . . ≤ λn are n eigenvalues of a random GUE matrix.
From the Wigner’s semicircular law, we can roughly infer that the n eigenvalues

of the GUE matrix are spread out on an interval of width roughly equal to 4
√
n

and hence the spacing between adjacent eigenvalues is expected to be of order 1√
n
.

We will elaborate on the relevant results.

Theorem 3.1. (Gaubin-Mehta)
For any compact set A ⊂ R,

limn→∞ P [
√
nλ1, . . . ,

√
nλN 6∈ A] = 1+

∑∞
k=1

(−1)k
k!

∫
A
. . .
∫
A

detki,j=1Ks(xi, xj)
∏k
j=1 dxj

where

Ks(x, y) =

{
1
π if x = y
1
π
sin(x−y)
x−y if x 6= y.

Theorem 3.2. (Jimbo-Miwa-Mori-Sato)
limn→∞ P [

√
nλ1, . . . ,

√
nλn 6∈ (−t2 ,

t
2 )] = 1− F (t)

in which 1 − F (t) = e
∫ t
0
σ(x)
x dx and σ is the solution of the differential equation

(tσ′′)2 + 4(tσ′−σ)(tσ′−σ+ (σ′)2) = 0 so that σ = − t
π −

t2

π2 − t3

π3 +O(t4) as t→ 0.
Furthermore, F (t) is a probability distribution function.

The above two theorems give us descriptions about the bulk of the eigenval-
ues, and the following theorems will give us descriptions about the edge of the
eigenvalues.

Theorem 3.3. limP [n
2
3 ( λn√

n
−2) ≤ t] = 1+

∑∞
k=1

(−1)k
k!

∫∞
t
. . .
∫∞
t

detki,j=1A(xi, xj)
∏k
j=1 dxj =:

F2(t) in which A is the Airy kernel and F2(t) = e−
∫∞
t

(x−t)q(x)2dx where q satisfies
q′′ = tq+ 2q3, q(t) ∼ Ai(t) as t→∞. We call the function F2(t) the Tracy-Widom
distribution.

The following lemma is useful for proving the above theorems.

Lemma 3.4. For square integrable functions f1, . . . , fn and g1, . . . , gn on the real
line, we have

1
n!

∫
. . .
∫

detni,j=1(
∑n
k=1 fk(xi)gk(xj))

∏
dxi = detni,j=1

∫
fi(x)gj(x)dx

By orthogonality relation and the above lemma, we have
∫

detni,j=1K
N (λi, λj)

∏n
i=1 dλi =

n!.
Kn(x, y) =

∑n−1
k=0 ψk(x)ψk(y) =

√
nψn(x)ψn−1(y)−ψn−1(x)ψn(y)

x−y .
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Set Sn(x, y) = 1√
n
Kn( x√

n
, y√

n
).

The proof of this theorem can be found in [1], lemma 2.2 (Cauchy-Binet formula).
The following convergence of kernels holds.

Lemma 3.5. limn→∞ Sn(x, y) = 1
π
sin(x−y)
x−y uniformly on each bounded subset of

the (x, y) plane.

For a complete proof of the above lemma, see page 117, lemma 3.5.1 in [3]. We
will prove a slightly different version of this lemma in the next section.

Now we are ready to prove the statement about the bulk distribution.
Recall that the φn,i are orthogonal and that the GUE is determinantal.

Proof. (of Theorem 3.1)
Since pn(λ) the joint distribution of the eigenvalues is det(Kn(xi, xj)1≤i<j≤n),

and {φi} are orthogonal, we have

P (λi ∈ A∀i) =
n−1
det
i,j=1

∫
A

φi(x)φj(x)dx

=
n−1
det
i,j=1

(δi,j −
∫
Ac
ψi(x)ψj(x)dx)

= 1 +

n∑
k=1

(−1)k
∑

0≤v1≤...≤vk≤n−1

k

det
i,j=1

(

∫
Ac
ψvi(x)ψvj (x)dx)(by expansion of the determinant)

= 1 +

∞∑
k=1

(−1)k

k!

∫
Ac
. . .

∫
Ac

k

det
i,j=1

Kn(xi, xj)

k∏
i=1

dxi(by lemma 3.4)

Then applying Lemma 3.5, we obtain,

P [
√
nλ1, . . . ,

√
nλn 6∈ A] = 1 +

∞∑
k=1

(−1)k

k!

∫
√
n−1A

. . .

∫
√
n−1A

k

det
i,j=1

Kn(xi, xj)

k∏
i=1

dxi

= 1 +

∞∑
k=1

(−1)k

k!

∫
A

. . .

∫
A

k

det
i,j=1

Sn(xi, xj)

k∏
i=1

dxi

The
√
n
−1

disappears in the last equality because Sn(xi, xj) = 1√
n
Kn( x√

n
, y√

n
).

�

4. Convergence of Determinantal Point Process and Other
Generalities

Motivated by our previous discussion on the point process of the eigenvalues of
GUE, we now discuss some generalities of determinantal point process and apply
these relevant results back to GUE.

Definition 4.1. (Locally Uniform Convergence)
Let X be a topological space. Let M be a metric space. Let 〈fn〉 be a sequence

of mappings fn : X → M . Then fn converges locally uniformly to f : X → M if
every point of X has a neighborhood on which fn converges uniformly to f .
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Definition 4.2. (Convergence of Determinantal Point Process)
Consider a locally compact, complete, and separable metric space X, and a

sequence of random point processes (MN ), N ∈ N on X. We say that MN converges
to a random point process M if the law of MN as a random element of M(X)
converges to to the law of M. By definition of the σ-field on M(X), this means that
for any family of measurable subsets B1, . . . , Bn ⊂ X, we have the convergence in
law (MN (B1), . . . ,MN (Bn))→N→∞ (M(B1), . . . ,M(Bk)).

Theorem 4.3. (Convergence of General Determinantal Point Process)
Suppose that M is a determinantal point process on (X,λ) with locally bounded

Hermitian kernel K(x, y), and that (MN )N∈N is a sequence of determinantal point
processes with Hermitian kernels KN (x, y). If KN (x, y) → K(x, y) locally uni-
formly, then MN →M as N goes to infinity.

Proof. Suppose that the random point processes MN and M are determinantal,
with Hermitian kernels KN and K with respect to a common reference measure λ
on X. We assume that K(x, y) is locally bounded, and that KN (x, y) → K(x, y)
locally uniformly in x and y. Then, the correlation functions also converge locally
uniformly, and therefore, the joint moments of the vectors (MN (B1), . . . ,MN (Bn))
converge. As these moments determine the random point processes MN and M ,
the above theorem is true.

�

Fix a point x0 ∈ (−2, 2). By Wigner’s theorem (see section 2.1 in [3]), in a

small interval (x0 − ε, x0 + ε), we expect to see N × 2ε ×
√

4−(x0)
2

2π eigenvalues of
a random Hermitian matrix HN of the GUE. Therefore, the distance between two
consecutive eigenvalues in this interval is expected to be of order

2π√
4− (x0)

2
N

= O

(
1

N

)
.

We denote xN,1 ≥ xN,2 ≥ · · · ≥ xN,N as the N eigenvalues of HN . The previous
estimate leads one to introduce the following scaling of eigenvalues:

yN,i =
N

√
4− (x0)

2

2π
(xN,i − x0) .

and we set M local ,x0

N =
∑N
i=1 δyN,i which is a random point process. This renor-

malised random point process is expected to have points spaced by a distance of
order 1. It contains information about the behavior of the eigenvalues of HN in the
neighborhood of a parameter x0 in the bulk of the spectrum, that is to say with
−2 < x0 < 2. We have

M local ,x0

N (B) = MN

x0 +
2πB

N

√
4− (x0)

2


By this equality, we can infer that M local, x0

N is also a determinantal point process
. If KN is the Hermite kernel defined previously and

K̄N (a, b) =

√
N

2π
e−

N(a2+b2)
4 KN (a, b)
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is the corresponding kernel with respect to the Lebesgue measure, then M local ,x0

N

has for kernel

K local, x0

N (x, y) =
2π

N

√
4− (x0)

2
K̄N

x0 +
2πx

N

√
4− (x0)

2
, x0 +

2πy

N

√
4− (x0)

2


with respect to the Lebesgue measure. We denote a and b the two arguments of
K̄N in the above.

Now we shall determine the limit of this kernel as N goes to infinity. By the
Christoffel-Darboux formula (see section 2.4 in [1] or the relevant wikipedia page),

KN (a, b) =
kN−1
kN

φN,N (a)φN,N−1(b)− φN,N−1(a)φN,N (b)

a− b

=
1√

N !(N − 1)!

HN (
√
Na)HN−1(

√
Nb)−HN−1(

√
Na)HN (

√
Nb)

a− b
;

K̄N (a, b) =
1

(N − 1)!

e−
N(a2+b2)

4

√
2π

HN (
√
Na)HN−1(

√
Nb)−HN−1(

√
Na)HN (

√
Nb)

a− b
.

If c = 2 cosφc, then we have seen in the previous deductions that

(
N

2π

) 1
4

e−
Nc2

4
HN (
√
Nc)√

N !
=

1√
π sinφc

cos

(
N

(
sin 2φc

2
− φc

)
+
φc
2
− π

4

)
1N−1 ;(

N

2π

) 1
4

e−
Nc2

4
HN−1(

√
Nc)√

(N − 1)!
=

1√
π sinφc

cos

(
N

(
sin 2φc

2
− φc

)
+

3φc
2
− π

4

)
1N−1

where 1N−1 = 1+O
(
N−1

)
. These estimates are uniform when c stays in a compact

interval of (−2, 2). They are well behaved if we take c equal to a or b. Further,
define φ = arccos x0

2 , φa = arccos a2 and φb = arccos b2 . Given an angle φc, we can
write

αc = N

(
sin 2φc

2
− φc

)
+
φc
2
− π

4
.

and we obtain,

K local, x0

N (x, y) =
1N−1 cos (αa) cos (αb + φb)− 1N−1 cos (αa + φa) cos (αb)

N sinφ
√

sinφa sinφb(a− b)
.

Notice that the angles φ, φa and φb all differ by a O
(

1
N

)
, where the constant in the

O(·) only depends on x0, x and y. Indeed, we have

φa = φ− πx

2N sin2 φ
+O

(
1

N2

)
; φb = φ− πy

2N
(
sin2 φ

) +O

(
1

N2

)
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This enables us to greatly simply the calculations.

K local ,x0

N (x, y) =
1N−1 cos (αa) cos (αb + φb)− 1N−1 cos (αa + φa) cos (αb)

N sin2 φ(a− b)

=
cos (αa) cos (αb + φb)− cos (αa + φa) cos (αb)

π(sinφ)(x− y)
+O

(
1

N

)
=

cos (αa − αb − φb)− cos (φa + αa − αb)
2π(sinφ)(x− y)

+O

(
1

N

)

=
sin
(
αa − αb + φa−φb

2

)
sin
(
φa+φb

2

)
π(sinφ)(x− y)

+O

(
1

N

)

=
sin
(
N
(

sin 2φa
2 − sin 2φb

2 + φb − φa
))

π(x− y)
+O

(
1

N

)
This is due to trignometric identities cos s cos t = cos(s+t)+cos(s−t)

2 and cos s −
cos t = −2 sin

(
s+t
2

)
sin
(
s−t
2

)
. Finally, we have

sin 2φa
2

− sin 2φb
2

+ φb − φa = cos (φa + φb) sin (φa − φb) + φb − φa

= (cos (φa + φb)− 1) (φa − φb) +O

(
1

N2

)
= 2 sin2

(
φa + φb

2

)
(φb − φa) +O

(
1

N2

)
= 2 sin2 φ (φb − φa) +O

(
1

N2

)
=
π(x− y)

N
+O

(
1

N2

)
so we conclude that locally uniformly in x and y,K local ,x0

N (x, y)→ sin(π(x−y))
π(x−y) . We

have thus established by Theorem 4.3 the following convergence of kernels:

Theorem 4.4. (Gaudin-Mehta). For any parameter x0 in the bulk of the spec-

trum, as N goes to infinity, the rescaled local random point process M local, x0

N con-
verges towards the determinantal point process M whose kernel is the sine kernel

Ksine(x, y) =
sinπ(x− y)

π(x− y)

the reference measure being the Lebesgue measure on R.

The above convergence is for the bulk distribution, and we can do a similar
analysis for the edge distribution, that is to say in the neighborhood of x0 = 2 or
−2. By symmetry, it suffices to look at the right-side edge. If x = 2 − t with t
sufficiently small, then the density of eigenvalues at x is of order

√
t, so we can

expect to see

O

(
N

∫ t

0

√
udu

)
= O

(
Nt3/2

)
eigenvalues in the interval (2− t, 2). Since we want to see a O(1) number of eigen-

values, we should choose t = O
(
N−

2
3

)
so that ( 3

2 )(−23 ) = −1. We can expect the
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spacing of eigenvalues in the neighborhood of x0 = 2 to be of order N−
2
3 (instead

of N−1 in the bulk of the spectrum). We therefore rescale the eigenvalues of a
matrix HN of the GUE as follows, as we have rescaled the bulk distribution: we

set zi = N
2
3 (xN,i − 2) and M edge

N =
∑N
i=1 δzi In other words,

M edge
N (B) = MN

(
2 +N−

2
3B
)

The rescaled random point process M edge
N is a determinantal point process on R

with the following kernel:

Kedge
N (t, u) =

1

N
2
3

K̄N

(
2 +

u

N
2
3

, 2 +
u

N
2
3

)

=
e−

N(x2+y2)
4

√
2π(N − 1)!

HN (
√
Nx)HN−1(

√
Ny)−HN−1(

√
Nx)HN (

√
Ny)

t− u

where x = 2 + tN−
2
3 , y = 2 + uN−

2
3 and the reference measure is the Lebesgue

measure on R.
Define

ψN (x) =

(
1

2π

) 1
4

e−
x2

4
HN (x)√
N !

These normalised oscillator wave-functions form an orthonormal basis of L 2(R, dx),
and they satisfy the following differential equation:

ψ′N (x) = −x
2
ψN (x) +

(
1

2π

) 1
4

e−
x2

4
NHN−1(x)√

N !
= −x

2
ψN (x) +

√
NψN−1(x)

Therefore,

e−
N(x2+y2)

4

√
2π(N − 1)!

HN (
√
Nx)HN−1(

√
Ny)−HN−1(

√
Nx)HN (

√
Ny)

x− y

=
ψN (
√
Nx)

(
ψ′N (
√
Ny) +

√
Ny
2 ψN (

√
Ny)

)
− ψN (

√
Ny)

(
ψ′N (
√
Nx) +

√
Nx
2 ψN (

√
Ny)

)
x− y

=
ψN (
√
Nx)ψ′N (

√
Ny)− ψN (

√
Ny)ψ′N (

√
Nx)

x− y
−
√
N

2
ψN (
√
Nx)ψN (

√
Ny)

Now we perform an asymptotic study on HN (
√
Nx) and ψN (

√
Nx) when x is very

close to 2. We fix x = 2 + tN−
2
3 , where t is real. We have

N
1
4ψN (

√
Nx) =

(
N

2π

) 1
4

e−
Nx2

4
HN (
√
Nx)√
N !

=

(
N

2π

) 1
4
√
N !

2iπN
N
2

∮
e
N
(
zx− x24 −

z2

2 −log z
)
dz

z

=

√
N1N−1/3

2iπ

∮
e
N

1
3 t(z−1)+N

(
− 3

2+2z− z22 −log z
)
dz

z

where 1N−1/3 = 1 + O
(
N−

1
3

)
. The function f(z) = 2z − z2

2 − log z has a unique

critical point at z = 1. This can be verified by taking derivative:

f ′(z) = 2− z − 1

z
= 0 =⇒ z = 1.
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We have f ′′(1) = 0, so in a neighborhood of the critical point, if z = 1 + N−
1
3 y,

then

p(z,N) = N
1
3 t(z − 1) +N

(
−3

2
+ 2z − z2

2
− log z

)
= −ty − y3

3
+ o

(
y3
)
.

In this expansion, in order to make the term −y
3

3 decrease rapidly, we need to take

arg(y) ∈
{

0, 2π3 ,−
2π
3

}
. Recall that for x < 2, the contour chosen for the saddle

point analysis was the unit circle.
For x ' 2, we shall deform this contour.
Around 1 , we take the union of the two segments

z = 1 +N−
1
3 e±

2iπ
3 u, 0 ≤ u ≤ Nε

with 1
9 < ε < 1

6 .
We join the endpoints of these two segments by the circle with center 0 and

radius

rN =
∣∣∣1 +Nε− 1

3 e
2iπ
3

∣∣∣ =

√
1−Nε− 1

3 +N2ε− 2
3 = 1− 1

2
Nε− 1

3 +O
(
N2ε− 2

3

)
.

We denote γ1 and γ2 the two parts of this new contour. On the second part γ2,
writing z = rNeiψ, we have

Re

(
−3

2
+ 2z − z2

2
− log z

)
= − (1− rN cosψ)

2
+

(rN )
2 − 1

2
− log rN

so this quantity decreases with ψ ∈ (0, π) and is always smaller than its value at

z = 1 + e
2iπ
3 Nε− 1

3 , which is

−2Nε− 1
3 +N2ε− 2

3 − 2 log
(

1−Nε− 1
3 +N2ε− 2

3

)
4

= −N
3ε−1

3
+ o

(
N3ε−1) .

Therefore,

log

(
1

2π

∮
γ2

∣∣∣ep(z,N)
∣∣∣ dz
z

)
≤ 2|t|N1/3 − N3ε

3
+ o

(
N3ε

)
= −N

3ε

3
+ o

(
N3ε

)
since ε > 1

9 . This implies that the contribution to the contour integral of γ2
decreases as exp

(
−CN3ε

)
, so it will be negligible. On the other hand, a change of

variables formula gives us∮
γ1

ep(z,N) dz

z
= 1Nε−1/3N−

1
3

∫
ζ

ety−
y3

3 dy

where the path of integration on the right-hand side is the union of the two half-lines

R+e
2iπ
3 and R+e−

2iπ
3 . So, if x = 2 + tN−

2
3 , then

N
1
4ψN (

√
Nx) = N

1
6

(
1

2iπ

∫
ζ

ety−
y3

3 dy

)
+O

(
Nε− 1

6

)
.

The remainder is by construction a o(1), and on the other hand, the path integral
is the so-called Airy function Ai(t). (See also chapter 3 in [3].) This function
satisfies the differential equation Ai′′(t) − tAi(t) = 0 (Such differential equation
is mentioned in section 3, Theorem 3.3,see also chapter 3 in [3]). It can also be

redefined as the real semi-convergent integral Ai(t) = 1
π

∫∞
0

cos
(
ty + y3

3

)
dy, and

its Fourier transform is

Âi(ξ) = e
(iξ)3

3
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We have proved above that

N
1
12ψN

(
2N

1
2 + tN−

1
6

)
→N→∞ Ai(t)

This estimate can be made locally uniform in t, and it can be considered as a
result of convergence of holomorphic functions of the variable t by complex analysis.
Denote the left-hand side of the asymptotic formula above by θN (t). We have on
the one hand

Kedge
N (t, u) =

ψN (
√
Nx)ψ′N (

√
Ny)− ψN (

√
Ny)ψ′N (

√
Nx)

t− u
− 1

2N
1
6

ψN (
√
Nx)ψN (

√
Ny)

=
θN (t)θ′N (u)− θN (u)θ′N (t)

t− u
− 1

2N
1
3

θN (t)θN (u)

and on the other hand, θN and all its derivatives converge locally uniformly on the
complex plane towards the Airy function and its derivatives. We have therefore
established the following result (see also Theorem 3.3 in section 3):

Theorem 4.5. (Airy kernel). As N goes to infinity, the rescaled local random

point process Medge
N converges towards the determinantal point process whose kernel

is the Airy kernel

KAiry (t, u) =
Ai(t) Ai′(u)−Ai′(t) Ai(u)

t− u
,

These convergence results prove partially Theorem 3.2 and Theorem 3.3 in a
slightly different context. We can see from our proof the power of the theory of
point process in studying the distribution of eigenvalues of random matrices.

Acknowledgments

I am grateful for my mentor Xuan Wu’s help and mentorship. I also thank
Professor May for organizing the REU. I also benefited a lot from Professor Lawler’s
and other participants’ talks.

References
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