
UNDERSTANDING GENERALIZED GROUP SIEVING

THROUGH λ-RINGS

ETHAN WILLIAMS

Abstract. The cyclic sieving phenomenon occurs when a combinatorial poly-

nomial gives meaningful combinatorial values when evaluated at roots of unity.
This paper will examine the phenomenon through a lens of both combinatorics

and group representations. Then this paper will generalize the phenomenon to

any group and consider the utility of a λ-ring to understand the phenomenon.
Finally, this paper will consider which groups succeed and fail at producing

interesting occurrences of sieving phenomena.
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1. Introduction: A Curious Polynomial Phenomenon

In this paper, we will examine a phenomenon where polynomials capture infor-
mation about group actions. We will start with one of the simplest cases: choosing
corners of an m-gon and considering how rotations to the m-gon permute these
choices. For the case of m = 6, Figures 1 and 2 show all possible choices of 2 and
3 corners as segments and triangles respectively.

For the case of 2 corners, the first two rows of Figure 1 show how we can rotate
some pairs of points 6 times to get 6 unique pairs. However, the final 3 segments in
the bottom row do not form a full set of 6 because after 3 rotations these segments
repeat. Of the fifteen elements in the set of pairs of corners of a hexagon, two are
fixed by a 180 degree rotation.

Like with the first case, for the case of 3 corners shown in Figure 2, the first
three rows show how we can rotate some triangles 6 times to get 6 unique triangles,
while the final 2 triangles in the bottom row do not form a full set of 6 because
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Figure 1. The 15 line segments joining corners of a hexagon
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Figure 2. The 20 triangles joining corners of a hexagon

after 2 rotations these triangles repeat. Of the twenty elements in the set of sets of
three corners of a hexagon, two are fixed by a 120 degree rotation.

For the general case of choosing n corners of an m-gon, there are
(
m
n

)
elements

in the set. Most combinations produce m unique choices as we rotate by 1/m-th of
a circle, but some repeat before a full rotation has been made. Calculating this is a
combinatorial problem. For a configuration to have symmetry by a 1/k rotation, k

must divide both m and n. If k does, then
(
m/k
n/k

)
configurations will have symmetry

by a 1/k-th rotation. Reassuringly, all
(
m
n

)
configurations are fixed by a full rotation

when k = 1.
Let’s use this method for the example of a dodecagon. For choosing 0 or 12

corners, there is one configuration which has all symmetries. For choosing 1, 5, 7,
or 11 corners, we are able to rotate a set 12 times to get 12 unique configurations
because these numbers are coprime to 12. For 2 or 10 corners, most combinations
will be unique for each of 12 rotations, but there will be the

(
6
1

)
= 6 opposite pairs

of points which are not unique by a 1/2 rotation. For 3 or 9 points, there are(
4
1

)
= 4 equilateral triangles which are not unique by a 1/3 rotation. For 4 or 8

points, the
(
3
1

)
= 3 squares are not unique by a 1/4 rotation but also any pair of

opposite pairs, of which there are
(
6
2

)
= 15, is not unique by a 1/2 rotation. Finally,

for 6 points, we have the 2 regular hexagons fixed by a 1/6 rotation, the
(
4
2

)
= 6



UNDERSTANDING GENERALIZED GROUP SIEVING THROUGH λ-RINGS 3

Number of Corners 0◦ 30◦ 60◦ 90◦ 120◦ 180◦

0, 12 1 1 1 1 1 1

1, 11 12 0 0 0 0 0

2, 10 66 0 0 0 0 6

3, 9 220 0 0 0 4 0

4, 8 495 0 0 3 0 15

5, 7 792 0 0 0 0 0

6 924 0 2 0 6 20

Table 1. Subsets of n corners of a dodecagon fixed by rotation.
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Figure 3. Top: Configurations of 1, 2, and 3 segments with 1/2
turn symmetry. Middle: Configurations of 1 and 2 triangles with
1/3 turn symmetry. Bottom: Configurations of a square or a
hexagon with 1/4 and 1/6 turn symmetry.

pairs of equilateral triangles fixed by a 1/3 rotation, and the
(
6
3

)
= 20 sets of three

pairs of opposite points fixed by a 1/2 rotation. These values are summarized in
Table 1 above and diagrams of each described configuration are shown in Figure 3
above.

Now that we understand the pattern in this process, we are ready to investigate
the polynomials which capture information about this process. We have used the
binomial coefficients many times to calculate the fixed configurations, so it may
not be too surprising to learn that our polynomials of interest are the q-binomial
coefficients.

1.1. The q-Binomial Coefficients. The q-binomial coefficients are a series of
polynomials with important combinatorial significance. One of their most common
applications is counting the number of n-dimensional subspaces of Fmq when q is
a prime power. We will investigate these polynomials to discover some of the
connections ourselves.
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Definition 1.1. The q-bracket of an integer n ≥ 0, denoted [n]q, is defined as

[n]q := 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

The q-factorial of an integer n ≥ 0, denoted [n]q!, is defined as

[n]q! := [n]q · [n− 1]q · · · [2]q · [1]q.

The q-binomial coefficient for 0 ≤ n ≤ m, denoted

[
m
n

]
q

, is defined as

[
m
n

]
q

:=
[m]q!

[n]q![m− n]q!
.

At q = 1, the q-bracket [n]q evaluates to n. Thus, at q = 1, the q-factorial

[n]q! evaluates to n! and the q-binomial coefficient

[
m
n

]
q

evaluates to the binomial

coefficient
(
m
n

)
. This shows why these functions are named as such. The q-bracket

is a polynomial in q and the q-factorial is a product of q-brackets, so it must be a
polynomial as well.

Lemma 1.2. For all 0 ≤ n ≤ m, we have the identity[
m
n

]
q

=

[
m− 1
n

]
q

+ qm−n
[
m− 1
n− 1

]
q

.

Proof. Starting from the right side[
m− 1
n

]
q

+ qm−n
[
m− 1
n− 1

]
q

=
[m− 1]q!

[n]q![m− n− 1]q!
+

qm−n[m− 1]q!

[n− 1]q![m− n]q!

=
[m− 1]q!

[n− 1]q![m− n− 1]q!

(
1

[n]q
+

qm−n

[m− n]q

)
=

[m− 1]q!

[n− 1]q![m− n− 1]q!

(
qm−n[n]q + [m− n]q

[m− n]q[n]q

)
.

If we look at just the second numerator,

qm−n[n]q + [m− n]q = qm−n(qn−1 + · · ·+ q + 1) + (qm−n−1 + · · ·+ q + 1)

= qm−1 + · · ·+ qm−n + qm−n−1 + · · ·+ q + 1 = [m]q.

Thus, returning to our first string of equalities we get[
m− 1
n

]
q

+ qm−n
[
m− 1
n− 1

]
q

=
[m− 1]q!

[n− 1]q![m− n− 1]q!

(
[m]q

[m− n]q[n]q

)

=
[m]q!

[n]q![m− n]q!
=

[
m
n

]
q

.

�

Proposition 1.3. The q-binomial coefficient is always a polynomial with nonneg-
ative integer coefficients.
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Proof. Using the definition of the q-binomial coefficient,

[
m
0

]
q

=

[
m
m

]
q

= 1 for all

m. For an arbitrary coefficient

[
m
n

]
q

, we can repeatedly apply Lemma 1.2 until we

hit the case of n = 0 or m = n for all terms which gives

[
m
n

]
q

as a sum of powers of

q. Thus, we see the q-binomial coefficient is always a polynomial with nonnegative
integer coefficients. �

Using the definition of the q-binomial coefficient, we can see that any zero of[
m
n

]
q

must be a root of unity and any primitive root of unity, denoted ωm, is a zero

if 0 < n < m. The mth roots of unity which are not primitive are not guaranteed
to be zeros, so we may wonder what the polynomial evaluates to at these values.

Summarized in Table 2 below are the results of evaluating

[
12
n

]
q

for different values

of n and q. From Proposition 1.3, these are rational polynomials so we need only
evaluate at a single primitive root of unity for each divisor of 12.

Unexpectedly, the result of evaluating at each root of unity gives an integer. In
fact, these are the same numbers that appeared in the columns of Table 1. We
might now recall that the mth roots of unity under multiplication are isomorphic
to Cm. If we let the copy of C12 ⊂ C act on the set of size n subsets of corners

of a dodecagon, the number of fixed configurations is equal to

[
12
n

]
q

evaluated at

the complex number representing each element of C12. The same fact is true for
m = 6, though not computed here.

Strangely, it seems our combinatorial formula counts something meaningful when
we input values beyond the domain of what it intends to represent. While we have
not proven that this pattern will hold for all cases, we have managed to stumble
upon an instance of the cyclic sieving phenomenon. This case is not special, but
rather the tip of the iceberg for simpler polynomials counting something when
evaluated at roots of unity.

q = ω2
12 q = ω3

12 q = ω4
12 q = ω6

12 q = ω12
12

n = 0, 12 1 1 1 1 1

n = 1, 11 0 0 0 0 12

n = 2, 10 0 0 0 6 66

n = 3, 9 0 0 4 0 220

n = 4, 8 0 3 0 15 1495

n = 5, 7 0 0 0 0 792

n = 6 2 0 6 20 924

Table 2. Evaluating

[
12
n

]
q

at 12th roots of unity for m = 12.
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2. Cyclic Sieving

Now that we have identified one example, we can define the cyclic sieving phe-
nomenon in full. It occurs when we have a polynomial evaluated at roots of unity
giving meaningful information about the action of a cyclic group on some set.

Definition 2.1. Let Cn be a finite cyclic group of order n generated by c ∈ Cn
which acts on a finite set X and let X(q) be a polynomial with integer coefficients.
The triple (X,X(q), Cn) exhibits the cyclic sieving phenomenon or CSP if X(ωdn)
is the number of elements of X which are fixed by the action cd for all 0 ≤ d < n.

It is not clear from this formulation how common a phenomenon like this might
be. In fact, we will show at the end of Section 3 that for any Cn-action on some
set X, there is some polynomial X(q) which completes the cyclic sieving triple
(X,X(q), Cn). However, these polynomials are not guaranteed to be interesting on
their own. The phenomenon becomes interesting when the polynomials in question
are well known outside of their ability to exhibit CSP. Proofs of the three examples
below are given in [9].

Example 2.2. From the previous section, let X be size n subsets of corners of an

m-gon, let C = Cm act on this set by rotation, and let X(q) =

[
m
n

]
q

. The triple

(X,X(q), C) exhibits the cyclic sieving phenomenon.
An equivalent formulation of this example is that X is the size n subsets of

{0, 1, ...,m− 1} and the group action of cd is adding d to each element and taking
the remainder mod m.

Example 2.3. Let X be size n multisets on {0, 1, ...,m−1}, let C = Cm acting on

this set by addition mod m, and let X(q) =

[
m+ n− 1

n

]
q

. The triple (X,X(q), C)

exhibits the cyclic sieving phenomenon. We note that this formula is reminiscent
of the formula for calculating the number of size n multisets of {0, 1, ...,m − 1}:(
m+n−1

n

)
.

Example 2.4. Let X be the triangulations of an n-gon with C = Cn acting on

this set by rotation. Let X(q) = 1
[n−1]q

[
2n− 4
n− 2

]
q

. The triple (X,X(q), C) exhibits

the cyclic sieving phenomenon. Again, this formula bears similarity to the formula
for the Catalan numbers which count the number of triangulations of an n-gon:
1

n−1
(
2n−4
n−2

)
.

Now that we have seen a few examples, we will prove the phenomenon for one
of these cases: Example 2.3. While this proof is only for this specific case, it serves
as a template for future understanding in Section 5. We will take advantage of
symmetric powers of a vector space. Let c ∈ Cm act on Symn(Cm) by permuting
some basis set x1, ..., xm of Cm cyclically and acting on a symmetric product by
c · xi1xi2 · · ·xin = xc·i1xc·i2 · · ·xc·in . For example, if m = 5 and n = 3, the basis
vector x1x3x5 is sent to x2x4x1 by c. This action is linear.

Proposition 2.5. Using the construction above, the trace of the linear map induced
from c ∈ Cm is the number of basis vectors of xi1 · · ·xin ∈ Symn(Cm) which are
fixed by this action.
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Proof. The c action sends a basis vector xi1 · · ·xin to xi1+1 · · ·xin+1 where xm+1 =
x1. After rearranging, we see that this is another basis vector. Thus, the c action
is a permutation matrix. Along its diagonal, this matrix has a 1 if a basis vector is
sent to itself and a zero otherwise. Thus, we see that the trace of the map induced
by this action is number of basis vectors fixed by the c action. �

Proposition 2.6. Using the construction above, let c ∈ Cm be a generator. The

action induced by cd is also given by hn(1, ωdm, ω
2d
m , ..., ω

(m−1)d
m ) where

hn(x1, ..., xm) =
∑

1≤i1≤i2≤···≤in≤m

xi1xi2 · · ·xin

Proof. The characteristic polynomial of c acting on Cm is xm − 1, so there must
be an eigenbasis y0, ..., ym−1 with eigenvalues 1, ωm, ..., ω

m−1
m . Because cd is just

repeated application of the c action, the same eigenbasis is still an eigenbasis of

cd with eigenvalues 1, ωdm, ..., ω
(m−1)d
m . We can form a basis of Symn(Cm) using

the yi to form products. The cd action on the basis vector yi1 · · · yin sends it to
ωi1dm yi1 · · ·ωindm yin = (ωi1dm · · ·ωindm )yi1 · · · yin , so ωi1dm · · ·ωindm is an eigenvalue for
any combination of 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m. The trace of the cd action is the

sum of all the eigenvalues, which we can see is hn(1, ωdm, ω
2d
m , ..., ω

(m−1)d
m ). �

Lemma 2.7. Using the polynomials described in Proposition 2.6, we have an iden-
tity

hn(1, q, ..., qm−1) =

[
m+ n− 1

n

]
q

.

Proof. We prove this by induction on m and n with our two base cases being

m = 1 and n = 0. First, if m = 1, hn(1) = 1n = 1 and

[
n
n

]
q

= 1. If in-

stead n = 0, h0(1, q, ..., qm−1) = 1 because it is the single empty product and[
m
0

]
q

= 1. Now suppose the identity holds for all combinations of n ≤ N and

m < M . The polynomial hn(1, q, ..., qm−1) can be split into two groups, those that
do not have a qm−1 in their product and those that do. We can write the former

as hn(1, q, ..., qm−2) =

[
m+ n− 2

n

]
q

and the latter as qm−1hn−1(1, q, ..., qm−1) =

qm−1
[
m+ n− 2
n− 1

]
q

. This gives

hn(1, q, ..., qm−1) =

[
m+ n− 2

n

]
q

+ qm−1
[
m+ n− 2
n− 1

]
q

=

[
(m+ n− 1)− 1

n

]
q

+ q(m+n−1)−n
[
(m+ n− 1)− 1

n− 1

]
q

.

Applying Lemma 1.2, we get

hn(1, q, ..., qm−1) =

[
m+ n− 1

n

]
q

.

�
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Proposition 2.8. Let X be size n multisets on {0, 1, ...,m − 1}, C = Cm acting

on this set by addition mod m, and X(q) =

[
m+ n− 1

n

]
q

. The triple (X,X(q), C)

exhibits the cyclic sieving phenomenon.

Proof. Multisets index the basis set of Symn(Cm), so by the construction presented
the Cm action on Symn(Cm) is the same as the Cm action on X. The trace is an
invariant, so Propositions 2.5 and 2.6 show that the number of elements in X fixed

by cd ∈ Cm is given by hn(1, ωdm, ω
2d
m , ..., ω

(m−1)d
m ). By Lemma 2.7, this is equal to[

m+ n− 1
n

]
q

evaluated at q = ωdm. �

As a final note, the cyclic sieving phenomenon serves to explain a different phe-
nomenon that was identified: the q = −1 phenomenon [10]. Stembridge noticed
that often evaluating combinatorial formulae at q = −1 gives the number of fixed
points of many involutions. An involution is a map that is its own inverse, so the
process of applying an involution is a C2 action and −1 is the second root of unity.
Thus, we see that the cyclic sieving phenomenon is just a generalization of the
q = −1 phenomenon.

3. Representation Theory and the Representation Ring

In the proof of Proposition 2.8, we made use of realizing Cm as linear transfor-
mations of the vector space Symn(Cn). Mapping groups into linear transformations
is the premise of representation theory. By utilizing some tools from this theory we
can better understand what is occurring in the cyclic sieving phenomena.

Definition 3.1. Let G be a group and let V be a vector space over C. A group
representation of G, shortened to a G-rep, is a group homomorphism ρ mapping G
to GL(V). When there is no confusion about ρ, the representation is also sometimes
referred to by just the vector space V . For the rest of this paper, we will assume
V is a finite-dimensional vector space and that G is a finite group.

In our proof of Proposition 2.8, we have made use of two Cm-reps. The first
is the representation Cm where we permuted the basis vectors cyclically and the
second is the more complicated representation Symn(Cm).

Definition 3.2.

(1) Given a representation ρ : G → GL(V), a subspace W ⊂ V is invariant
under G if for all w ∈W and g ∈ G, ρ(g)w ∈W .

(2) A representation ρ : G → GL(V) is irreducible if the only subspaces of V
invariant under G are V and {0}.

(3) Two G-reps V and W with maps ρV and ρW are isomorphic if there is
a vector space isomorphism φ : V → W which also satisfies φ(ρV (g)v) =
ρW (g)φ(v) for all g ∈ G and v ∈ V

Using our above examples, the representation Cm is not irreducible because
the subspace generated by x1 + x2 + · · ·+ xm is fixed by all members of Cm. The
representation ρ : Cm → C given by mapping a generator of Cm to ωm is irreducible
because there are no subspaces besides C and {0}.

We will make use of many facts about representations in this paper which will
be stated in Propositions 3.3, 3.5, and 3.6. Proofs of these propositions are not
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particularly illuminating for the purposes of this paper and thus these propositions
will be stated without proof. A treatment of group representations which proves
all of these propositions can be found in the first two chapters of [3].

Proposition 3.3.

(1) Up to isomorphism, there are only finitely many irreducible representations
of a group G.

(2) Every non-irreducible representation of G is isomorphic to a direct sum of
irreducible representations.

(3) The choice of representations in the direct sum is unique up to rearranging.

This proposition gives some clarity on why we choose the word irreducible: all
other representations can be broken down into a direct sum of ineducable repre-
sentations which can’t be broken down any further. Additionally, each irreducible
representation in the decomposition of V can be identified with a G-invariant sub-
space of V for which the restricted linear action on the subspace is isomorphic to
the irreducible representation.

Definition 3.4. A class function on a group G is a function f : G → C which is
constant on each conjugacy class of G. If G has n conjugacy classes, then the class
functions form an n-dimensional vector space.

The character of a representation ρ, χρ : G→ C, is the function χ(g) := Tr(ρ(g)).
Traces of similar matrices are equal, so the character is a class function.

Proposition 3.5.

(1) The characters of the irreducible representations form a basis for the vector
space of class functions on G.

(2) Two G-representations with the same character are isomorphic.
(3) Let V1, ..., Vn be all irreducible representations of some group G. The fol-

lowing equation holds:

|G| =
n∑
i=1

deg(Vi)
2.

Proposition 3.6.

(1) The character of the direct sum of two representations is the sum of their
characters.

(2) The tensor product of two G-reps V and W with maps ρV and ρW , writ-
ten V ⊗W , is a G-rep on the tensor product of the vector spaces V and
W with ρV⊗W (g)(v ⊗ w) = (ρV (g)v) ⊗ (ρW (g)w). The character of this
representation is the product of the characters of V and W .

(3) For G-reps U , V , and W , the identity U ⊗ (V ⊕W ) ' (U ⊗ V )⊕ (U ⊗W )
holds.

(4) For any group G, the trivial representation Vtriv is the one-dimensional
G-representation where all members of G map to 1. For any G-rep W ,
Vtriv ⊗W 'W .

Both direct sums and tensor products are commutative and associative opera-
tions on isomorphism classes of representations of some G. From Proposition 3.6,
tensor products distribute over direct sums. This fact suggests a possible ring
structure. Direct sums do not have additive inverses, so only a semiring can be
constructed with the trivial representation as 1. The conditions of a semiring are
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shown by Proposition 3.6 as well as the commutativity and associativity of the
operations.

This semiring can be extended to a ring by letting N act on members of the semir-
ing by repeated addition, forming an N-semimodule, and taking a tensor product
as N-semimodules with the integers. Informally, this process adds an object as the
additive inverse for each element in our semiring to make a ring. We call this ring
the representation ring of G. Because the character commutes with the addition
and multiplication operations in the representation ring, we can think of elements
in the representation ring as polynomials in the characters of G.
Cm has m conjugacy classes because the group is abelian, so there are m irre-

ducible representations forming a basis due to Proposition 3.5. Let c ∈ Cm be a
generator. We construct representations over the one-dimensional vector space C
by sending c to all m powers of ωm. The character at c is that power of ωm, so we
have identified all the irreducible representations of Cm. Certainly this set gener-
ates the representation ring, but we can do even better. Using the representation
that sends c to ωm, we take the tensor product of this representation with itself to
get the other representations. Thus, we see that the representation ring of Cm is
generated by a single representation, denoted Vm, that embeds Cm into C.

Definition 3.7. Let G be a group acting on a set X. The permutation G-
representation of X is the |X|-dimensional vector space with a basis {vx|x ∈ X}
and where each g ∈ G acts on vx by sending it to vgx. The representation will be
denoted VX when the group is clear.

The matrix associated to each member g ∈ G in a permutation representation
is a permutation matrix with a single 1 in each row and column. The character of
a permutation representation evaluated at each g is the number of elements of X
which are fixed by g. The vector that is the sum of all basis vectors is fixed by any
action. Thus, if |X| > 1, the permutation representation is not irreducible.

Some examples of permutation representations are summarized in Table 3 below
for C6 and generator c. The first representation V6 is our generating representation
of C6 described above. The next two are the permutation C6-representations where
X is the set of segments in a hexagon from Figure 1 and Y is the set of triangles in
a hexagon from Figure 2 with C6 acting by rotation. As we expect, the character
evaluated at an element is the number of elements which are fixed by its action.

The values in this table are also given by the cyclic sieving phenomenon: we

can evaluate the sieving polynomials X(q) =

[
6
2

]
q

and Y (q) =

[
6
3

]
q

at appropriate

sixth roots of unity. Looking at the table, the root of unity we desire is exactly the

Representation V χV (1) χV (c) χV (c2) χV (c3) χV (c4) χV (c5)

V6 1 ω6 ω2
6 ω3

6 ω4
6 ω5

6

VX 15 0 0 3 0 0

VY 20 0 2 0 2 0

Table 3. Characters for three reps of C6.
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character of V6. Thus, we know that for any g ∈ C6, X(χV6
(g)) and Y (χV6

(g)) give
the number of fixed hexagons in the associated group action.

We have seen in Proposition 3.6 that characters distribute over addition and mul-
tiplication in the representation ring, so the above equivalences become χX(V6) =
χVX

and χY (V6) = χVY
. The character uniquely determines a representation, so

we must have X(V6) = VX and Y (V6) = VY in the representation ring. Our cyclic
sieving polynomials not only make sense evaluated at roots of unity, but show a
relationship between a generating representation of C6 and the permutation C6-
representations of two sets.

This process is not unique to C6. The same process done for any cyclic sieving
triple (X,X(q), Cm) yieldsX(Vm) = VX , an isomorphism in the representation ring.
This shows that a cyclic sieving polynomial must exist for any cyclic group action
because the polynomial is just a decomposition of the permutation representation
into irreducible components. We can also use this isomorphism to motivate what
sieving looks like over other types of groups.

4. Sieving Over Any Group

From our construction in the previous paragraph, we have seen that cyclic sieving
is equivalent to an isomorphism of representations in the representation ring of a
cyclic group. Using this construction, we see how we might generalize the sieving
phenomenon to an arbitrary finite group.

Definition 4.1. Let G be a finite group which acts on some finite set X, let
V1, ..., Vn beG-reps which generate the representation ring ofG, and letX(q1, ..., qn) ∈
Z[q1, ..., qn] be a polynomial. The quadruple (X,X(q1, ..., qn), {V1, ..., Vn}, G) ex-
hibits G-sieving if X(V1, ..., Vn) is equal to the permutation G-representation of X
in the representation ring of G.

Equivalently, the quadruple (X,X(q1, ..., qn), {V1, ..., Vn}, G) exhibits G-sieving
if X(χV1 , ..., χVn) : G→ C evaluated at any element g ∈ G is equal to the number
of elements of X which are fixed by the action by g.

We may now wonder what these polynomials look like for groups beyond that
of a cyclic group. In several of our examples for CSP, we use the cyclic action on
polygons. This suggests that a natural next option might be the dihedral group
which also acts on polygons by rotations and reflections. As we will see, the dihedral
groups have an easy to understand representation ring.

Definition 4.2. A dihedral group Dn is the group generated by two elements r
and s with the additional relations rn = s2 = 1 and rs = sr−1. This group has 2n
elements and can be realized as the rotation and reflection symmetries of an n-gon.

Proposition 4.3. Let n be odd. The irreducible representations of Dn are generated
by

Vtriv : r 7→ 1 and s 7→ 1,

Vsign : r 7→ 1 and s 7→ −1,

and Vi : r 7→
[
ωin 0
0 ω−in

]
and s 7→

[
0 1
1 0

]
for 1 ≤ i ≤ n− 1

2
.

Proof. The character of each representation is distinct, so each representation is
unique. The eigenvectors of the two matrices described for each V1 are distinct, so
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we must have that all representations are irreducible. Using the sum in Proposition
3.5, we see this must be all representations. �

Using the notation above, we notice that Vsign ⊗ Vsign = Vtriv and Vi = V ⊗i1 ,
so we generate the representation ring using just Vsign and V1. Conveniently, this
means that we construct polynomials in two variables which exhibit the dihedral
sieving phenomenon. For the case of even n, we run into two new issues. First, there
are two additional one-dimensional representations which make the representation
ring harder to generate. Second, the two ways we might choose to have s act
on a polygon – a reflection that fixes opposite corners or through opposite edges
fixing no corners – give different results for numbers of fixed points so we have two
different polynomials depending on this choice. With odd n, the natural action on
the polygon results in the same polynomials no matter which line of reflection we
choose.

Definition 4.4. The generalized Fibonacci polynomials are a sequence of polyno-
mials in s and t defined as

{0}s,t = 0,

{1}s,t = 1,

{n+ 2}s,t = s{n+ 1}s,t + t{n}s,t.

Like with the q-brackets, we define a factorial operation as

{n}s,t! = {n− 1}s,t · · · {2}s,t{1}s,t.

Finally, the Fibonacci coefficients are a set of polynomials defined as{
m
n

}
s,t

=
{m}s,t!

{n}s,t!{m− n}s,t!
.

Using these polynomials, we list a few examples of dihedral sieving which are
proven in [6].

Example 4.5. Let X be the set of size n subsets of corners of an m-gon with m

odd. Let G = Dm act on this set naturally. Let X(s, t) =

{
m
n

}
s,t

. The quadruple

(X,X(s, t), {Vsign, V1}, G) exhibits the dihedral sieving phenomenon.

Example 4.6. Let X be size n multisets on {1, ...,m} with m odd, G = Gm acting

on this set by natural dihedral permutation, and X(s, t) =

{
m+ n− 1

n

}
s,t

. The

quadruple (X,X(s, t), {Vsign, V1}, G) exhibits the dihedral sieving phenomenon.

We might notice that these two formulae are extremely similar to the cyclic
sieving phenomena on the same set X with the q-binomial coefficients swapped
for Fibonacci coefficients. This similarity suggests that there is some underlying
connection between these groups and their respective polynomial structures. As we
will soon find out, this is a side effect of a λ-ring structure on both representation
rings.
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5. λ-Rings

Before we define what a λ-ring is, we must define a few polynomials that are
used in the construction.

Definition 5.1. The jth elementary symmetric polynomial in the k variables
x1, ..., xk, denoted by ej,k, is given by

ej,k =
∑

1≤i1<i2<···<ij≤k

xi1xi2 · · ·xij .

We now define for all natural n and m the polynomial Pn,m to be the unique
polynomial in nm variables such that Pn,m(e1,nm, ..., enm,nm) is equal to the coef-
ficient on the tn term of the expression∏

1≤i1<i2<···<im≤nm

(1 + xi1xi2 · · ·xikt).

Let ej,k be as constructed above and fj,k be the same polynomials but over different
variables y1, ..., yk. We now define for all natural n the polynomial Pn to be the
unique polynomial in 2n variables such that Pn(e1,n, ..., en,n, f1,n, ..., fn,n) is equal
to the coefficient on the tn term of the expression

n∏
i,j=1

(1 + xiyjt).

The existence and uniqueness of these polynomials is guaranteed by the funda-
mental theorem of symmetric polynomials. It states that every symmetric polyno-
mial can be uniquely written as a polynomial in the elementary polynomials and is
Corollary 31 of Section 14.6 of [1]. Using these polynomials, we define the λ-ring
structure.

Definition 5.2. A λ-ring is a commutative ring X with 1 equipped with a sequence
of unary functions λn : X → X which satisfy all of the following for all x, y ∈ X
and n,m ∈ N:

• λ0(x) = 1
• λ1(x) = x
• λn(1) = 0 if n ≥ 2
• λn(x+ y) =

∑n
i=0 λ

i(x)λx−i(x)
• λn(xy) = Pn(λ1(x), λ2(x), ..., λn(x), λ1(y), ..., λn(y))
• λn(λm(x)) = Pn,m(λ1(x), ..., λmn(x))

Example 5.3. Let X = Z be the ring integers and let

λn(x) =

(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!

be the binomial coefficient defined on all integers x. Then X is a λ-ring.

Example 5.4. Let X be the representation ring for any finite group G and let
λn(V ) be the nth exterior power of the representation V with g acting on each
component in the product. Then X is a λ-ring [11].

Example 5.5. Let X be the ring Z[q] and define λn : Z[q]→ Z[q] by its action on

additive generators λn(1 + q+ q2 + · · ·+ qm) =

[
m+ n− 1

n

]
q

. Equipped with these

λn, X is a λ-ring.
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We might notice that the second and third examples are two parts of our story
of cyclic sieving. It turns out that taking the character is a λ-ring homomorphism:
the character commutes with the λ-operations in each λ-ring. Because we are
able to describe the permutation ring of subsets using λ-operations and can easily
map from a single generator of one λ-ring to the other, it is easy to construct the
polynomials by using the known λ-operations in the polynomial ring.

For the other examples, we are often able to describe other operations, such
as exterior powers, using these λ-operations. This is why we end up seeing the
q-binomial coefficients frequently in formulae for cyclic sieving which make use of
lots of symmetry: the underlying λ-operation of q-binomial coefficients is the same.

The λ-ring structure is also why we see similarities in several formulae in both
cyclic and dihedral sieving. While the polynomial ring is more complex, the Fi-
bonacci polynomials are serving as a λ-operation on the associated ring. Going
forward, we will use this strategy of identifying the λ-ring structures in each ring
and mapping between the simplest cases in order to build up our sieving polyno-
mials.

6. Representations of the Symmetric Group

Now that we have seen how sieving works with two simple cases of cyclic and di-
hedral groups, another type of group to consider is the symmetric group. To do this,
we need to first investigate Young tableaux and their connection to representations
of the symmetric group.

Definition 6.1. Let π = (n1, ..., nk) be a partition of n (where n1 ≥ n2 ≥ · · · ≥ nk
and n1 + · · · + nk = n). A Young diagram is an arrangement of n squares into
k rows where the ith row has ni squares and the leftmost square in each row are
aligned vertically. See Figure 4 for a visual example of these Young diagrams. A
Young tableau is a Young diagram with the numbers 1, ..., n each placed exactly one
to a box. A Young tabloid for a given partition is an equivalence class of all Young
tableaux which have the same numbers in each row. A Young tabloid is drawn
without vertical bars. An example of both Young tableaux and Young tabloids are
shown in Figure 5.

For a given tableau t, we use {t} to denote the coresponding tabloid. The
symmetric group Sn acts on the set 1, ..., n by permutation. This action extends
to the set of Young tableaux or tabloids for a given partition by permuting the

Figure 4. The 5 Young diagrams corresponding to partitions of
4. Top: (4) and (3, 1). Bottom: (2, 2), (2, 1, 1), and (1, 1, 1, 1).
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3 5 1

4 2

6

1 5 3

2 4

6

1 3 5

2 4

6

Figure 5. Two Young tableau (left) of the partition (3,2,1) which
are in the same equivalence class of the Young tabloid (right)

numbers in each box. With this action, a member of Sn which only permutes
numbers within the row they start in fixes the given tabloid. If {t} is a tabloid and
σ ∈ Sn is a group element, we use {σt} to denote this action. We also use x{t} to
refer to the basis vector corresponding to {t} in the permutation representation of
tabloids.

Definition 6.2. The column group of a tableau t, denoted Ct, is the subgroup of
Sn which fixes which column each number is in. As tabloids are tableaux which
differ by row permutations, each member of the column group of t sends {t} to a
unique tabloid.

For the first tableau in Figure 5, the column group is 〈(3, 4), (3, 6), (2, 5)〉 ⊂ S6.

Definition 6.3. For a given tableau t, its polytabloid et is the vector in the per-
mutation representation of tabloids given by∑

σ∈Cn

sign(σ){σt}.

For each partition π of n, the subspace of the permutation representation of
tabloids corresponding to that partition spanned by the polytabloids of all Young
tableaux with shape π is an Sn representation because Sn acts on this vector space.
However, being just a representation is not very interesting.

Proposition 6.4. For each partition π of n, the subspace of the permutation rep-
resentation of tabloids corresponding to that partition spanned by the polytabloids
of all Young tableaux with shape π is a unique irreducible Sn representation.

A proof of Proposition 6.4 is given in Chapter 4 of [3].

Corollary 6.5. Each partition of n corresponds to a conjugacy class in Sn, so
we have a unique irreducible representation for each conjugacy class of Sn. By
Proposition 3.5, these must be all irreducible representations of Sn.

With this catalog of irreducible representations of Sn, we better understand the
representation ring and can investigate the possibility of Sn-sieving.

7. Understanding (Symmetric) Sieving with λ-Rings

From Section 5 of this paper, we saw that understanding the λ-ring structure of
the representation ring gives insight into constructing sieving polynomials. In this
section, we work through a similar process for Sn and see where the process breaks
down.

First, we identify three important representations of the symmetric group. The
first is the permutation representation that comes from Sn acting on n letters. As
we have seen, identifying how the permutation representation breaks down into
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irreducible representations lets us use λ-operations in a λ-ring isomorphism when
we construct our polynomials. The second representation is the representation
coresponding to the permutation (n) for which there is only one tabloid and all
permutations act trivially on it, so this representation, called the trivial represen-
tation, sends all group members to 1. We have seen that there is always a subspace
of the permutation representation for which Sn acts trivially, so it appears at least
once in the the decomposition into irreducible representations. If we remove one
copy of the trivial representation from the permutation representation’s decompo-
sition, we are left with some (n − 1)-dimensional representation that is the direct
sum of all other irreducible representations which we call the standard representa-
tion. A fact not proven here is that the standard representation is irreducible and
corresponds to the partition (n−1, 1) [3]. Thus, we have VSnperm = V(n)⊕V(n−1,1).

Now, like with the proof of cyclic sieving, we use this to more easily describe our
permutation representations of more interesting sets. We know that

∧n
(VSmperm) =∧n

(V(n)⊕V(n−1,1)) should be isomorphic to the permutation representation of size
n subsets of {1, ...,m} and Symn(VSmperm) = Symn(V(n) ⊕ V(n−1,1)) should be
isomorphic to the permutation representation of size n multisets of {1, ...,m}. If
we could expand these powers into a polynomial in the representations, we could
generate our sieving polynomial.

In fact, this is almost possible. While we can’t expand directly into represen-
tations, we can write a formula for the character of these representations. For a
G-rep V , the simplest case of n = m gives

χ∧2 V (g) =
χv(g)2 − χV (g2)

2
,

χSym2V (g) =
χv(g)2 + χV (g2)

2
.

The higher powers are written as a determinant of a matrix with simple entries as
shown in [4]. The first problem we face is the terms of the form χV (gk) which show
up in all of these formulae. Because Sn has terms of all orders less than or equal
to n, it is challenging to determine how this is a sum of irreducible representations.
Even just tensor powers in Sn become quite complicated due to the varied nature
of the irreducible representations. Finally, after deducing which irreducible repre-
sentations the formula decomposes into, there is not a uniform way to generate the
representation ring, so the number of variables in a sieving polynomial must grow
with n.

With these challenges, finding sieving polynomials of Sn is more of an exercise
in simplifying a simple yet tedious expression rather than utilizing already existing
formulae like the case of cyclic and dihedral sieving. The first two relations for
multisets of {1, 2, 3, 4} are listed:

Sym2VS4 perm = V(4) ⊕ V(3,1) ⊕ V(2,2),

Sym3VS4 perm = 3V(4) ⊕ 4V(3,1) ⊕ V(2,1,1) ⊕ V(2,2).
These could be turned into polynomials in 5 variables for each of the irreducible
representations of S4 and could be further reduced into a polynomial in just V(1,1,1,1)
and V3,1, but the relations that make these formulae neater do not illuminate much
about the structure and are more an indication that S4 is small enough to be
generated with 2 generators. This also shows why the existence of a polynomial is
uninteresting; any permutation representation can be written as a sum of irreducible
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representations. In the cases of cyclic sieving – where all representations are powers
of one generator – or dihedral sieving – where the small degrees of irreducible
representations limit what results might be – we make use of well known polynomials
in our λ-ring homomorphism to give nice answers to these sieving questions but this
method does not work in general.
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