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Abstract. The Borsuk-Ulam Theorem and Brouwer’s Fixed Point Theorem

are classic results in topology, with wide-reaching applications. In this paper,
we discuss these theorems, and two combinatorial results which are equivalent

to these theorems, in the hope of shedding some light on the nature of the

classic results.
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1. Description

Here is the structure of the results we will lay out:

Borsuk-Ulam Theorem
p.11 //

KS

p.17

��

Brouwer’s Fixed Point TheoremKS

p.22

��
Tucker’s Lemma

p.25 // The Hex Theorem

Over the course of this paper, we will show each of the arrows on its own, and show
each result on its own. The point of these equivalences and implications is not to
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prove the other results by proving one or two of them. Rather, the point is to give
an equivalent reframing of the relationship between two topological results in terms
of two combinatorial results.

Readers may already be aware of Sperner’s Lemma as a combinatorial statement
equivalent to Brouwer’s Fixed Point Theorem. The Hex Theorem and Sperner’s
Lemma are vaguely similar, but the Hex Theorem is a result for which it’s more
intuitive why one might expect it to relate to Brouwer’s Fixed Point Theorem.

We will start with some preliminaries to establish notation and ensure readers
are familiar with the topological results used in the paper. This can be skipped if
the reader has studied homology theory. We will then demonstrate the top row of
the diagram, followed by the equivalence arrows, and finally the bottom row.

2. Preliminaries

Before discussing simplices and homology at length, there is a graph-theoretic
result we should get out of the way. This result will be used in the proofs of Tucker’s
Lemma and the Hex Theorem.

Theorem 2.1. If every vertex in a graph G has degree at most 2 (that is, at most
2 edges are coming out of each vertex), then G is composed of simple paths, simple
cycles, and isolated vertices.

Proof. We proceed by induction on the number of edges in G.
If G has only one edge, then it either connects two distinct vertices, or connects

one vertex to itself. In either case, the edge forms a simple path or cycle and the
vertices not on the edge are isolated vertices.

Suppose G has n+1 vertices, and the theorem is true for graphs with n vertices.
Consider an edge e in G, and let G′ be the graph G, with the edge e removed.
Removing an edge can only lower the degree of the vertices in a graph, so every
vertex in G′ has degree at most 2. By our induction hypothesis, G′ is composed of
simple paths, simple cycles, and isolated vertices. The vertices on e had degree at
most 2 in G, so they have degree at most 1 in G′. Each of the vertices on e is thus
either an isolated vertex or an end of a simple path in G′. In any of these cases,
adding the edge e back into G′ produces a graph which is still composed of simple
paths, simple cycles, and isolated vertices. But adding e back into G′ just gives the
graph G. □

Importantly, if such a graph contains a vertex with degree 1, then that vertex
is one end of a simple path, and so there must be another vertex with degree 1, at
the other end of the path.

2.1. Simplices. A simplex is the simplest convex shape in a given dimension, like
a triangle or a tetrahedron. Every result in this paper uses simplices, so we’ll spend
some time defining the notation we’ll use. The notation comes from [1] and [2].

Definition 2.2. A collection of points v0, . . . ,vk ∈ Rn is affinely dependent if

there are coefficients αi, not all zero, such that
∑k

i=0 αivi = 0 and
∑k

i=0 αi = 0.
Equivalently, the collection is affinely dependent if the system {v1−v0, . . . ,vn−v0}
is linearly dependent.

A collection of points which is not affinely dependent is called affinely inde-
pendent.
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Definition 2.3. The convex hull of a collection of points v0, . . . ,vk ∈ Rn is the
set

conv{v0, . . . ,vk} B

{
k∑

i=0

αivi :

k∑
i=0

αi = 1, αi ≥ 0

}
For every point in the convex hull, the sequence {αi} is called the coordinates of
the point.

Definition 2.4. A simplex is the convex hull of a collection of affinely independent
points. The points are called the vertices of the simplex, and the dimension of
the simplex is one less than the number of vertices.

Often, we will just associate a simplex with its vertices, and write it as the set of
vertices, with square brackets, like [v0, . . . ,vk]. We will sometimes need to denote
a generic n-simplex (a simplex of dimension n). So we let ∆n B [0, e1, . . . , en] be
a generic simplex.

Definition 2.5. A face of a simplex is the convex hull of any subset of the vertices.
The relative interior of a simplex is the simplex with all the faces of smaller
dimension removed.

The usefulness of simplices is in how they allow us to decompose a space into
simple shapes. This is done with a “simplicial complex”:

Definition 2.6. A simplicial complex is a nonempty family ∆ of simplices such
that:

(1) Every face of a simplex σ ∈ ∆ is also in ∆, and
(2) the intersection σ1 ∩ σ2 of any two simplices in ∆ is a face of both σ1 and

σ2.

The vertex set V (∆) of a simplicial complex is the set of all 0-dimensional
simplices in ∆. Equivalently, it’s the set of all the vertices of simplices in ∆.

The polyhedron of a simplicial complex, denoted ∥∆∥, is the union of all the
simplices in ∆.

Because the intersection of two simplices in a complex must be a face of both
simplices, every point in ∥∆∥ \V (∆) is in the relative interior of exactly one simplex.

Definition 2.7. A triangulation of a space X is a simplicial complex ∆ such
that ∥∆∥ is homeomorphic to X.

So far, we’ve given a geometric definition of simplices and simplicial complexes.
However, there’s a way to define them more abstractly. An abstract simplex can
generally just be thought of as a set, and a face as a subset. Then a simplicial
complex becomes:

Definition 2.8. An abstract simplicial complex is a pair (V,K), where V is a
vertex set and K ⊆ 2V such that every subset of an element of K is also in K.

If there is a geometric complex ∆ with a bijection f : ∆ → K which commutes
with intersection (f(σ1∩σ2) = f(σ1)∩f(σ2)), we call ∆ a geometric realization
of (V,K).

The simplicial complex (V,K) will often be named after the set of simplices, i.e.
“K”, and the set of vertices called “V (K)”.
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We can always geometrically realize an abstract complex by finding an appropri-
ately sized vertex set. The distinction between abstract and geometric complexes
isn’t that strict, and we will often identify an abstract simplicial complex with a
specific geometric realization. The main advantage of abstract complexes is that
they are simple to define.

Definition 2.9. For two simplicial complexes K and L, a simplicial mapping
from K to L is a function f : V (K) → V (L) such that f(σ) ∈ L for all σ ∈ K. In
other words, it’s a function on the vertices which preserves the simplex status of a
collection of vertices.

There is a way to go from a map on the vertices of a simplicial complex to a
map on the interior of every simplex:

Definition 2.10. For two geometric simplicial complexes ∆1 and ∆2 and a sim-
plicial map f : V (∆1) → V (∆2), the affine extension of f is the extension of f
onto ∥∆1∥,

∥f∥ : ∥∆1∥ → ∥∆2∥
given by

∥f∥ (x) B
n∑

i=0

αif(vi)

where x is in the simplex [v0, . . . ,vn] with coordinates α0, . . . , αn

This is well-defined, as a point on two simplices must be on a common face, so
any coordinate it has for a vertex which isn’t shared must be zero.

The affine extension of a simplicial mapping is continuous, because it’s continu-
ous on each of the relative interiors of simplices in the complex, and around every
vertex you can find a neighborhood where the coordinates other than the one for
the vertex in question are arbitrarily small.

2.2. Homotopy and Homology. We’re now going to move into the algebraic
topology necessary for our proofs of the Borsuk-Ulam Theorem and Brouwer’s Fixed
Point Theorem. This is meant mostly to collect the necessary information to be
able to read the proofs; for a more complete understanding, please consult Hatcher’s
textbook [2].

We first define homotopy. This gives a way of deforming one shape into another
one which only preserves some very basic properties.

Definition 2.11. Two continuous functions f0, f1 : X → Y are homotopic, writ-
ten f0 ≃ f1, if there is a continuous function F : X × I → Y with F (x, 0) = f0(x)
and F (x, 1) = f1(x) for all x. The function F is called a homotopy.

Definition 2.12. Two spaces X and Y are homotopy equivalent if there are
continuous functions f : X → Y and g : Y → X such that f ◦ g ≃ idY and
g ◦ f ≃ idX

One type of homotopy equivalence is a deformation retraction:

Definition 2.13. A subspace A of X is a deformation retract of the space X
if there is a continuous function r : X → A which is the identity on A, and a
homotopy F : X × I → X between r and idX which is always the identity on A.
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We now move on to homology groups. The homology groups of a space are a
way to count holes in a space, so they are meant to represent all the loops in the
space, considering two loops the same if one can be turned into the other without
crossing a hole. We’ll specifically deal with “singular homology”.

Definition 2.14. An oriented simplex is a simplex where the order of the vertices
is taken into account. Every oriented simplex which is derived from [v0, . . . ,vn] by
performing an even permutation on the vertices is considered the same oriented
simplex. There are thus two orientations for every set of vertices. We’ll write σ
and −σ for the two orientations.

Definition 2.15. A singular n-simplex in a space X is a continuous function
σ : ∆n → X. We’ll think of σ as a simplex which was placed in X.

If you reverse the orientation of ∆n, call the resulting singular simplex −σ.

Definition 2.16. An n-chain is defined to be a finite formal sum of singular n-
simplices. We add an n-chain “0”, and define σ + (−σ) = 0.

This definition has every n-chain written as a sum of simplices, with integer
coefficients. We can actually define n-chains to have coefficients in any abelian
group, not just the integers.

To be formal, we let Cn(X;G) be the abelian group with elements of the form∑
i giσi, where gi ∈ G and σi : ∆n → X. We also give the group left and right

distributive laws. We call this the group of n-chains in X with coefficients
in G.

We define a boundary map for the group of n-chains. The reason for this is that
it will shortly be used to define a loop (called a “cycle”).

Definition 2.17. The boundary map ∂n : Cn(X;G) → Cn−1(X;G) is defined
by first setting its value on each singular n-simplex to be

∂n(σ) B
n∑

i=0

(−1)iσ|[v0, . . . , v̂i, . . . ,vn]

where the hat over the vertex means we remove it from the simplex. Then we
extend the boundary map linearly.

We will generally write the application of or composition with ∂ without paren-
theses or a “◦” symbol. So we’ll write these like ∂σ to mean ∂(σ), ∂f to mean ∂ ◦f ,
and f∂ to mean f ◦ ∂.

There are two important features of the boundary map which you can verify:

(1) For all n, ∂n∂n+1 = 0. (Sometimes written ∂2 = 0, as the subscripts are
usually omitted.)

(2) In the cases we can easily visualize (n = 1, 2), ∂ξ = 0 if and only if ξ forms
a loop (taking orientation into account, as well).

The second property isn’t rigorous, as we haven’t defined loops. Instead, it gives
us inspiration for how we can define them:

Definition 2.18. A cycle is an n-chain ξ such that ∂ξ = 0.

The equation ∂2 = 0 can be rephrased as “every boundary is a cycle”.
We are ready to define the homology groups. One way to sensibly get from one

cycle to another that would make them “the same” is to add a boundary. This is
how we define the homology groups:
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Definition 2.19. For a space X and abelian group G, the n-th homology group
with coefficients in G is

Hn(X;G) B Ker ∂n/ Im ∂n+1

We let [ξ] be the set {ξ + ∂α : α ∈ Cn+1(X;G)}, the homology class of ξ.

The most common coefficients are Z. Unless otherwise stated, if we don’t write
the coefficients, they are Z.

Homology as a concept isn’t tied to chains of singular simplices. All you need
is a sequence of abelian groups {Cn}, and a family of maps ∂n : Cn → Cn−1 with
∂2 = 0. Such a structure is called a chain complex, and the homology groups of
the complex can be defined as Ker ∂/ Im ∂.

Definition 2.20. Until now, we’ve assumed there are no negative-dimensional
chains, so the chain complex we used to define the homology groups ends with C0,
and then the trivial group.

However, if we define C−1(X;G) as the group of chains deriving from the singular
empty simplex (of which there is exactly one), we get the reduced homology

groups, H̃n(X;G).
The boundary map C0(X;G) → C−1(X;G), denoted ε, is

ε

(∑
i

giσi

)
B
∑
i

gi

We can also just think of ε as a homomorphism C0(X;G) → G. This homomor-
phism contains Im ∂1 in its kernel, so it induces a homomorphism H0(X;G) → G,

with kernel H̃0(X;G). Therefore, H0(X;G) ≈ H̃0(X;G) ⊕ G. This is the only
dimension where the reduced homology group is different.

We can now introduce the results we’ll need in this paper.

Theorem 2.21. If X is a point, then H̃n(X;G) ≈ 0 for all n.

Proof. For each n, there is only one singular n-simplex, σn. So, Cn(X;G) ≈ G.
Calculating the boundary of σn gives ∂σn =

∑n
i=0(−1)iσn−1, so the boundary map

is zero for odd n, and an isomorphism for even n. The chain complex looks like

· · · 0 //G
≈ //G

0 //G
≈ //G //0

At every part of the chain complex, Ker ∂/ Im ∂ ≈ 0. □

Theorem 2.22. A continuous map f : X → Y induces homomorphisms f♯ :
Cn(X;G) → Cn(Y ;G) and f∗ : Hn(X;G) → Hn(Y ;G).

Proof. We let f♯(σ) B f ◦ σ, and extend linearly. Because we extended linearly, we
get that the following diagram commutes:

Cn+1(X;G)
∂ //

f♯

��

Cn(X;G)
∂ //

f♯

��

Cn−1(X;G)

f♯

��
Cn+1(Y ;G)

∂ // Cn(Y ;G)
∂ // Cn−1(Y ;G)

A commutative diagram is one where any two sequences of arrows which start
and end in the same places correspond to two compositions of functions which are
equal. The commutativity of the above diagram means f♯∂ = ∂f♯.
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Because of this identity, f♯ sends cycles to cycles and boundaries to boundaries,
and hence induces a homomorphism f∗ on the homology groups by f∗[α] = [f♯(α)].

□

Definition 2.23. A map from one chain complex to another which commutes with
the boundary map is called a chain map.

So what we really just showed is that chain maps induce homomorphisms on the
homology groups, and continuous function induce chain maps.

Theorem 2.24. If f, g : X → Y are homotopic, then they induce the same homo-
morphism on the homology groups.

We won’t give all the details here. For the complete proof (with pictures), see
[2], page 112.

Proof. First, you form a certain subdivision of ∆n × I into simplices. Specifically,
if ∆n × {0} = [v0, v1, . . . , vn] and ∆n × {1} = [w0, w1, . . . , wn], then we subdivide
into simplices of the form

σn−i = [v0, . . . , vi, wi, wi+1, . . . , wn]

If F (x, t) is a homotopy from f to g, and σ is a singular n-simplex in X, we can
define the composition F ◦ (σ × id) : ∆n × I → X × I → Y .

All this is to define the “prism operator” P : Cn(X) → Cn+1(Y ). Let

P (σ) B
n∑

i=0

(−1)iF ◦ (σ × id)|σi

This function has an important property:

∂P = g♯ − f♯ − P∂

Given this property, if α is a cycle, then

g♯(α)− f♯(α) = ∂P (α)− P∂(α)

= ∂P (α)

So the induced homomorphisms g∗ and f∗ send the homology class of α to the same
homology class. □

Since (f ◦ g)∗ = f∗ ◦ g∗, this theorem also implies that homotopy equivalent
spaces has isomorphic homology groups.

We introduce an important algebraic tool.

Definition 2.25. An exact sequence is a sequence of groups {An} and homo-
morphisms αn : An → An−1 such that Kerαn = Imαn+1.

An exact sequence of the form

0 //A
α //B

β //C //0

is called a short exact sequence. Note that α must be injective, and β must be
surjective.

This is an important result, which we won’t be able to prove entirely. We’ll prove
one of the intermediate results, and present the general sketch.
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Theorem 2.26. If A is a deformation retract of an open neighborhood in X, then
there is an exact sequence

· · · // H̃n(A)
i∗ // H̃n(X)

j∗ // H̃n(X/A)
∂ // H̃n−1(A) // · · · // H̃0(X/A) // 0

where i is the inclusion map, j is the quotient map, and the coefficients are in any
group G, for some homomorphism ∂.

We will show this intermediate result, which gets you to a long exact sequence
of homology groups, as we’ll use this result separately:

Theorem 2.27. If An, Bn, and Cn are chain complexes, with chain maps i, j such
that the following sequence is exact for all n:

0 //An
i //Bn

j //Cn
//0

then there is a map ∂ giving a long exact sequence of homology groups:

· · · //Hn(A)
i∗ //Hn(B)

j∗ //Hn(C)
∂ //Hn−1(A) // · · ·

Proof. Note that the exactness of the given sequence implies that i is one-to-one,
j is onto, and we have j ◦ i = 0.

We will define ∂ : Hn(C) → Hn−1(A). Let c ∈ Cn be a cycle. Because j is onto,
there is b ∈ Bn such that j(b) = c. Taking the boundary of b, we get something
in Ker j, because j(∂b) = ∂j(b) = ∂c = 0. By exactness, we have that ∂b is in
Im i, so there is some a ∈ An−1 with i(a) = ∂b. This chain a is a cycle, because
i(∂a) = ∂i(a) = ∂∂b = 0, and the homomorphism i is one-to-one. So we can let
∂[c] B [a].

To see that ∂ is well-defined, we need to show that at any point where choice is
involved, we always send a given homology class to the same homology class.

• Once c and b are chosen, ∂b and thus a are unique, by the injectivity of i.
• If there were a different choice for b, that is, a b′ such that c = j(b′),
then we’d have b′ − b ∈ Ker j = Im i. Therefore, there would be some
a′ ∈ An with i(a′) = b′ − b, so that b′ = b + i(a′). We’d then have
∂b′ = ∂(b + i(a′)) = ∂b + i(∂a′) = i(a) + i(∂a′) = i(a + ∂a′), so we’d send
[c] to [a+ ∂a′]. But this is the same homology class as [a].

• A different choice from the homology class of c would be of the form c+∂c′.
By surjectivity, there is some b′ ∈ Bn+1 such that c′ = j(b′), so c + ∂c′ =
j(b+ ∂b′), and b is replaced with b+ ∂b′. But this has the same boundary
as b, so the rest is unchanged.

We also need to check that ∂ is a homomorphism. Suppose ∂[c1] = [a1] and
∂[c2] = [a2], via b1 and b2. Then c1 + c2 = j(b1 + b2), and ∂(b1 + b2) = ∂b1 + ∂b2 =
i(a1) + i(a2) = i(a1 + a2). So ∂([c1] + [c2]) = [a1] + [a2], as desired.

Lastly, we need to verify that the produced sequence is exact. We’ll work through
the inclusions:

• Im i∗ ⊆ Ker j∗: We’re given j ◦ i = 0, so j∗ ◦ i∗ = 0.
• Im j∗ ⊆ Ker ∂: If [c] ∈ Im j∗, then b in the construction of ∂ is a cycle, so
∂b = 0, and hence ∂[c] = 0

• Im ∂ ⊆ Ker i∗: In the notation of the construction, i∗∂[c] = i∗[a] = [i(a)] =
[∂b] = 0.
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• Ker j∗ ⊆ Im i∗: If [b] ∈ Ker j∗, then j(b) = ∂c′ for some c′ ∈ Cn+1. Because
j is onto, there is some b′ ∈ Bn+1 such that j(b′) = c′. The chain b− ∂b′ is
in the same homology class as b. It is also in Ker j, as j(b− ∂b′) = j(b)−
∂j(b′) = ∂c′ − ∂c′ = 0. Because Ker j = Im i, there is some a ∈ An such
that i(a) = b−∂b′. This a is a cycle, as i(∂a) = ∂i(a) = ∂(b−∂b′) = ∂b = 0.
Therefore, i∗[a] = [b− ∂b′] = [b].

• Ker ∂ ⊆ Im j∗: In the notation of the construction, if [c] ∈ Ker ∂, then
a = ∂a′ for some a′ ∈ An. Consider b − i(a′). This is a cycle, because
∂(b− i(a′)) = ∂b− i(∂a′) = i(a)− i(a) = 0. The function j sends this cycle
to c, because j(b− i(a′)) = j(b)− j(i(a′)) = c. So, j∗[b− i(a′)] = [c].

• Ker i∗ ⊆ Im ∂: If [a] ∈ Ker i∗, then i(a) = ∂b, for some b ∈ Bn. We have
∂j(b) = j(∂b) = j(i(a)) = 0, so j(b) is a cycle. By the definition of ∂, we
have ∂[j(b)] = [a].

□

If we have the elements necessary to apply this theorem, we say we have a short
exact sequence of chain complexes.

It’s worth checking that we actually can’t apply this to immediately get the
sequence in Theorem 2.26, as the quotient map from X to X/A doesn’t induce a
chain map which gives an exact sequence. What we can instead do to prove Theo-
rem 2.26 is define a new chain complex Cn(X,A) B Cn(X)/Cn(A) and homology
groups Hn(X,A), with which we can apply this result. Then we use a different

result, called the “Excision Theorem,” to show that Hn(X,A) ≈ H̃n(X/A) when
A is a deformation retract of an open neighborhood in X. (For the full proof, see
[2], pages 114-124.)

We can say a little bit more about the sequence in Theorem 2.27. Namely,

Theorem 2.28. Suppose we have a short exact sequence of chain complexes as
in Theorem 2.27, and another short exact sequence of chain complexes (denoted
by A′

n, B
′
n, and C ′

n). If there are families of functions α, β, and γ such that the
diagram

0 // An
i //

α

��

Bn
j //

β

��

Cn
//

γ

��

0

0 // A′
n

i′ // B′
n

j′ // C ′
n

// 0

commutes for all n, then the induced homology diagram also commutes:

· · · // Hn(A)
i∗ //

α∗

��

Hn(B)
j∗ //

β∗

��

Hn(C)
∂ //

γ∗

��

Hn−1(A) //

α∗

��

· · ·

· · · // Hn(A
′)

i′∗ // Hn(B
′)

j′∗ // Hn(C
′)

∂ // Hn−1(A
′) // · · ·

Proof. We can go through the homology diagram shown, showing each square com-
mutes.

For the left square, we’re given that β ◦ i = i′ ◦ α, so we have β∗ ◦ i∗ = i′∗ ◦ α∗
Similarly, for the middle square, we’re given γ ◦ j = j′ ◦ β, so we have γ∗ ◦ j∗ =

j′∗ ◦ β∗.
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For the right square, recall the definition of ∂. Suppose [a] B ∂[c] and j(b) B c,
with i(a) = ∂b. Then γ(c) = γ(j(b)) = j′(β(b)), and i′(α(a)) = β(i(a)) = β(∂(b)) =
∂(β(b)). So, according to the definition of ∂ in the A′

n-B
′
n-C

′
n short exact sequence,

we have ∂[γ(c)] = [α(a)]. In other words, ∂γ∗[c] = α∗∂[c]. □

3. Borsuk-Ulam and Brouwer’s Fixed Point Theorem

First, we’ll explain the statements of the two classic results, and how the Borsuk-
Ulam Theorem implies Brouwer’s Fixed Point Theorem. Then we’ll present a topo-
logical proof for both theorems.

3.1. The Borsuk-Ulam Theorem. The usual version of the Borsuk-Ulam Theo-
rem says that any continuous map from Sn to Rn sends a pair of antipodal points
(points on the sphere that are diametrically opposite) to the same point:

Theorem 3.1. Let f : Sn → Rn be a continuous function. Then there is a point
x ∈ Sn such that f(x) = f(−x).

The Borsuk-Ulam Theorem has several similar, equivalent formulations. We
only state one here, but a longer list can be found in [1]: (Bn denotes the closed
n-dimensional unit ball)

Theorem 3.2. There is no continuous function f : Bn → Sn−1 which is odd on
the boundary (that is, f(−x) = −f(x) for all points x on ∂Bn = Sn−1).

Proof of Theorem 3.2 from Theorem 3.1. Let π : Sn → Bn be the projection

(x1, . . . , xn, xn+1) 7−→ (x1, . . . , xn)

Suppose there is a continuous function f : Bn → Sn−1 which is antipodal on
the boundary. Then g = f ◦ π is a continuous function from Sn to Sn−1 which is
odd. On Sn−1, which doesn’t contain the origin, this implies that g(x) ̸= g(−x)
for all x ∈ Sn. As Sn−1 is a subset of Rn, this contradicts Theorem 3.1, and hence
f can’t exist. □

Proof of Theorem 3.1 from Theorem 3.2. Suppose there is a continuous function
f : Sn → Rn with f(x) ̸= f(−x) for all points x ∈ Sn.

We can then define a function g : Sn → Sn−1 by g(x) B f(x)−f(−x)
∥f(x)−f(−x)∥ . Note

that g is odd.
Let π−1 : Bn → Sn be the inverse of the projection of the upper hemisphere:

x 7−→
(
x,

√
1− ∥x∥2

)
Then h B g ◦ π−1 is a continuous function from Bn to Sn−1 which is odd on the
boundary, contradicting Theorem 3.2. □

3.2. Brouwer’s Fixed Point Theorem. Brouwer’s Fixed Point Theorem in gen-
eral guarantees a fixed point for any continuous map from a compact, convex subset
of Rn to itself. It is sufficient to state it for the n-dimensional closed ball:

Theorem 3.3. Every continuous function f : Bn → Bn, has a fixed point. That
is, a point x ∈ Bn with f(x) = x.
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Figure 1. Demonstration of retraction when n = 2

3.3. Proof that the Borsuk-Ulam Theorem Implies Brouwer’s Fixed Point
Theorem. The proof relies upon a construction called a “retraction”. If we sup-
pose that Brouwer’s Fixed Point Theorem is false for some f , then we can draw
a ray from f(x) through x for all x ∈ Bn, and let h(x) be where that ray inter-
sects the boundary, Sn−1. By inspection, h is continuous. (Consider how h acts
on a neighborhood around a point, and use the continuity of f .) Moreover, h is
the identity on Sn−1. These two properties are what makes h a retraction – a
continuous function from a space X onto a subspace A which is the identity on A.
This construction will also be used in the proof of Brouwer’s Fixed Point Theorem
given later, which does not use the Borsuk-Ulam Theorem.

So, if Brouwer’s Fixed Point Theorem is false, then we can construct a retraction
of Bn onto Sn−1. However, such a function would be odd on the boundary (because
it’s the identity on the boundary). If the Borsuk-Ulam Theorem is true, no such
function exists, so Brouwer’s Fixed Point Theorem must be true.

3.4. Proof of Brouwer’s Fixed Point Theorem. We’ve just laid the ground-
work for the general proof of Brouwer’s Fixed Point Theorem. The strategy will be
to show that there cannot be a retraction of Bn onto Sn−1.

This calculation will be necessary for this proof, and the proof of the Borsuk-
Ulam Theorem.

Lemma 3.4. H̃k(S
n;G) =

{
G, k = n

0, otherwise

Proof. It is a fact from topology that Sn is homeomorphic to Bn/Sn−1. So by
Theorem 2.26, there is a long exact sequence:

· · · //H̃k(S
n−1) //H̃k(B

n) //H̃k(S
n) //H̃k−1(S

n−1) // · · ·

(The coefficients are in G.) The space Bn deformation retracts to a point, by the

homotopy F (x, t) = tx. So by Theorems 2.21 and 2.24, H̃k(B
n;G) ≈ 0 for all k
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and n. Therefore, there is an exact sequence

0 //H̃k(S
n) //H̃k−1(S

n−1) //0

for all positive k and n, and for all positive n there is an exact sequence

0 //H̃0(S
n) //0

So H̃k(S
n;G) ≈ H̃k−1(S

n−1;G), and H̃0(S
n;G) ≈ 0, for all positive k and n.

S0 is two points, so in general there are two singular k-simplices, αk and βk.
Like in the proof of Theorem 2.21, ∂(αk) is 0 for odd k and αk−1 for even k, and
similarly for βk. Moreover, Ck(S

0;G) ≈ G⊕G, so the chain complex is

· · · 0 //G⊕G
≈ //G⊕G

0 //G⊕G
ε //G //0

where Ker ε = {(g,−g) : g ∈ G}. Hence H̃k(S
0;G) is isomorphic to G for k = 0

and trivial otherwise.
By induction, we get our result. □

We can use this calculation to show that Sn−1 is not a retract of Bn.

Proof. Suppose r : Bn → Sn−1 is a retraction. Then if i : Sn−1 → Bn is the
inclusion map, we have r ◦ i = id. Passing to homology groups, then we have
r∗ ◦ i∗ = id∗, which is the identity on H̃n−1(S

n−1). But H̃n−1(B
n) is trivial, so i∗

and r∗ are both trivial maps. However, H̃n−1(S
n−1) is not trivial, so we have a

contradiction.
Brouwer’s Fixed Point Theorem follows from the construction of a retraction we

did earlier. □

3.5. Proof of the Borsuk-Ulam Theorem. The proof of the Borsuk-Ulam The-
orem relies upon a lemma about the “degree” of a function. The degree of a function
is, intuitively, how many times it “wraps around” the origin. To uncerstand the
connection to polynomial degree, look at a complex polynomial, like f(z) = zk.
Any point eiθ on the unit circle has exactly k preimages under f . As this sort of
property generalizes more easily than the degree of a polynomial, it’s used to define
degree for all continuous functions. Homology gives a very clean way to phrase it:

Definition 3.5. For a continuous function f : Sn → Sn, the induced homomor-
phism f∗ : Hn(S

n) → Hn(S
n) further induces a homomorphism f ′

∗ from Z to Z.
Hence, there is an integer d such that f ′

∗(α) = dα. The degree of f is this integer
d.

We need to perform the following calculation for our lemma. The reason will
become clear shortly.

Lemma 3.6. Hk(RPn;G) ≈ 0 for all k > n.

Proof. It’s a fact from topology that Sn is homeomorphic to RPn/RPn−1, so by
Theorem 2.26 we get an exact sequence

· · · //Hk(RPn−1) //Hk(RPn) //Hk(S
n) //Hk−1(RPn−1) // · · ·

with coefficients in G. For k > n, we get the following exact sequence by Lemma
3.4:

0 //Hk(RPn−1) //Hk(RPn) //0

When n = 0, we have RPn is a point, so our lemma is true by Theorem 2.21. By
induction with this short exact sequence, we get our result for all n. □
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The lemma is this:

Lemma 3.7. An odd map f : Sn → Sn has odd degree.

Proof. The goal of the proof is to show that f∗ : Hn(S
n;Z2) → Hn(S

n;Z2) is an
isomorphism, which will imply that f has odd degree. To that end, it’s useful
to produce a long exact sequence with the homology groups of Sn and RPn with
coefficients in Z2.

Let p : Sn → RPn be the quotient map p(x) = [x] = {x,−x}. We get an
associated chain map p♯ : Cn(S

n;Z2) → Cn(RPn;Z2). This map is onto.
Every singular n-simplex σ : ∆n → RPn has exactly two singular n-simplices

σ̃1, σ̃2 : ∆n → Sn which get sent to it by p♯. Because our coefficients are in Z2, the
kernel of p♯ is generated by all such σ̃1 + σ̃2.

If we define τ(σ) B σ̃1+ σ̃2 and extend to chains linearly, then Ker p♯ = Im τ , so
we get the following short exact sequence:

0 //Cn(RPn;Z2)
τ //Cn(S

n;Z2)
p♯ //Cn(RPn;Z2) //0

Both τ and p♯ commute with the boundary map, so this extends to a short
exact sequence of chain complexes, and by Theorem 2.27, this gives us a long exact
sequence of homology groups. For convenience, we’ll abbreviate RPn as Pn and
leave the Z2 coefficients implicit:

· · · //Hk(P
n)

τ∗ //Hk(S
n)

p∗ //Hk(P
n) //Hk−1(P

n) // · · ·

By Lemmas 3.4 and 3.6, we know many of the groups in this sequence:

0 //Hn(P
n) //Z2

//Hn(P
n) //Hn−1(P

n) //0 // · · ·

· · · //0 //Hi(P
n) //Hi−1(P

n) //0 // · · ·

· · · //0 //H1(P
n) //H0(P

n) //Z2
//H0(P

n) //0

The middle row tells us that Hi(P
n) ≈ Hi−1(P

n), for 1 < i < n.
From the bottom row, we know that H0(P

n) is not trivial, as that would imply
Z2 is trivial. We also know from the bottom row that |H0(P

n)| ≤ |Z2| because
there’s a surjection from Z2 to H0(P

n). So |H0(P
n)| = 2, and hence H0(P

n) ≈ Z2.
From this, we infer that the map from H0(P

n) to Z2 is trivial, so H1(P
n) ≈

H0(P
n). By induction, Hi(P

n) ≈ Z2 for i < n.
From the top row, |Hn−1(P

n)| ≤ |Hn(P
n)| ≤ |Z2|. But then by the calculations

we’ve done already, |Hn(P
n)| = 2, and hence Hn(P

n) ≈ Z2.
(Note that the case of n = 1 is slightly different. We still get that the map from

H0(P
1) to Z2 is trivial, but this only lets us deduce that |H0(P

1)| ≤ |H1(P
1)|.

However, we also still get that |H1(P
1)| ≤ |Z2|, so the result is the same. The case

of n = 0 is also different, but it’s a very simple exact sequence in that case.)
Because we know what all the groups are, up to isomorphism, we can deduce

that the maps must behave like this:

0 //Hn(P
n)

≈ //Hn(S
n)

0 //Hn(P
n)

≈ //Hn−1(P
n) //0 // · · ·

· · · //0 //Hi(P
n)

≈ //Hi−1(P
n) //0 // · · ·

· · · //0 //H1(P
n)

≈ //H0(P
n)

0 //H0(S
n)

≈ //H0(P
n) //0
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All of this was to set up the above diagram. Now, if f : Sn → Sn is odd, then
it induces a map f̄ : RPn → RPn defined by f̄ ◦ p = p ◦ f . (The oddness of f is
necessary here.) Let f♯ and f̄♯ be the induced chain maps.

This diagram commutes for all i:

0 // Ci(P
n)

τ //

f̄♯

��

Ci(S
n)

p♯ //

f♯

��

Ci(P
n) //

f̄♯

��

0

0 // Ci(P
n)

τ // Ci(S
n)

p♯ // Ci(P
n) // 0

The right square commutes by the definition of f̄ . To show the left square com-
mutes, let a simplex σ ∈ Ci(P

n) have two simplices σ̃1, σ̃2 ∈ Ci(S
n) which get sent

to it by p♯. Note that, because f is odd, f♯(σ̃1) ̸= f♯(σ̃2). We have p♯(f♯σ̃1) =
f̄♯(p♯σ̃1) = f̄♯σ, and similarly for σ̃2, so τ(f̄♯(σ)) = f♯(σ̃1) + f♯(σ̃2) = f♯(τ(σ)).

By Theorem 2.28, this extends to a commutative diagram of the homology se-
quence we’ve just computed. We won’t show the whole diagram, but it contains
these commutative squares for all i:

Hi(P
n)

≈ //

f̄∗
��

Hi−1(P
n)

f̄∗
��

Hn(P
n)

≈ //

f̄∗
��

Hn(S
n)

f∗

��
Hi(P

n)
≈ // Hi−1(P

n) Hn(P
n)

≈ // Hn(S
n)

We’ll show f̄∗ : H0(P
n) → H0(P

n) is an isomorphism, and use induction to show
that f∗ : Hn(S

n) → Hn(S
n) is an isomorphism.

Suppose σ1, σ2 are singular 0-simplices in RPn. Because RPn is path-connected,
there is a singular 1-simplex σ so that ∂σ = σ1 − σ2. So in C0(P

n), which is in
Z2 coefficients, σ1 + σ2 is a boundary. Therefore, any chain in C0(P

n) can have its
terms grouped in pairs to get c = a + ∂b, where a is zero or a singular 0-simplex.
We already know that H0(P

n) ≈ Z2, and any two chains of the form a+ ∂b, a ̸= 0,
differ by a boundary, so the homology classes of H0(RPn;Z2) are [a+ ∂b] and [∂b].
The chain map f̄♯ sends singular 0-simplices to singular 0-simplices, so f̄∗ is the
identity. In particular, it’s an isomorphism.

Suppose f̄∗ is an isomorphism from Hi−1(P
n) to itself. Then if we invert the

isomorphism on the bottom of the left commutative square, we get that f̄∗ is also
an isomorphism from Hi(P

n) to itself. This applies all the way to i = n, so if we
invert the isomorphism on the top of right commutative square, we get that f∗ is
an isomorphism from Hn(S

n) to itself.
We now want to translate the degree of f to Z2 coefficients. If ϕ : Z → Z2 is a

homomorphism, it induces a chain map ϕ♯ : Ci(S
n;Z) → Ci(S

n;Z2), and therefore
a homomorphism ϕ∗ : Hi(S

n;Z) → Hi(S
n;Z2). This homomorphism commutes

with the homomorphisms induced by maps Sn → Sn, and we haven’t built the
framework in this paper to show this, but ϕ∗ also gives a commutative diagram
mapping the long exact sequences derived from Theorem 2.26. In particular, we
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have this commutative diagram: (See the proof of Lemma 3.4)

H̃i(S
i;Z) ≈ //

ϕ∗

��

H̃i−1(S
i−1;Z)

ϕ∗

��
H̃i(S

i;Z2)
≈ // H̃i−1(S

i−1;Z2)

Using these facts, and inducting from the case n = 0 where

H̃0(S
0;G) = {gσ1 − gσ2 : g ∈ G, σ1, σ2 : ∆0 → S0},

we find that this diagram commutes:

Z ≈ //

ϕ

��

H̃n(S
n;Z)

f∗ //

ϕ∗

��

H̃n(S
n;Z) ≈ //

ϕ∗

��

Z

ϕ

��
Z2

≈ // H̃n(S
n;Z2)

f∗ // H̃n(S
n;Z2)

≈ // Z2

Going along the bottom, where f∗ is an isomorphism, sends 1 ∈ Z to 1 ∈ Z2. But
going across the top sends 1 ∈ Z to deg f modulo 2, so f has odd degree. □

Now, for the proof of the Borsuk-Ulam Theorem:

Proof. Suppose that the theorem is false. That is, suppose there is a function
f : Sn → Rn where f(x) ̸= f(−x) for all x. Then we can construct a function
g : Sn → Sn−1 by

g(x) B
f(x)− f(−x)

∥f(x)− f(−x)∥

Let h be the restriction of g to the equator, Sn−1.
One can check that h is odd, so by Lemma 3.7, h has odd degree.
However, h is also homotopic to a constant map. To see this, note that the

closed upper hemisphere of Sn (which can be thought of as the set of points in
Sn with nonnegative last coordinate) is homeomorphic to Bn, and hence there is
a homotopy F (x, t) between the identity on the upper hemisphere and a constant
map. We can construct a homotopy between h and a constant map with

G(x, t) B h(F (x, t))

Homotopic maps induce the same homomorphism on homology groups, and a con-
stant map has degree 0, so h also has degree 0. But this contradicts our previous
finding that h has odd degree. Hence, the function f cannot exist. □

4. Tucker’s Lemma and the Hex Theorem

We’ll explain each result, prove its equivalence to the corresponding continuous
result, and prove each result independently. Then, we’ll show how Tucker’s Lemma
implies the Hex Theorem, completing the diagram which connects the four theorems
in this paper.
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Figure 2. An example of a Tucker triangulation and labeling

4.1. Tucker’s Lemma. Tucker’s Lemma is a surprising result about triangula-
tions, which uses information about the triangulation at the boundary to deduce a
property that manifests in the interior. First, define the following kind of triangu-
lation:

Definition 4.1. Suppose T is a triangulation of Bn (or, where appropriate, a home-
omorphic subset of Rn), together with a labeling λ : V (T ) → {±1, . . . ,±n}. Then
the pair (T, λ) is a Tucker pair if T and λ are both antipodal on the boundary.
That is:

(1) For all σ ∈ T such that σ ⊂ ∂Bn, we have −σ ∈ T .
(2) For all vertices v ∈ V (T ) such that v ∈ ∂Bn, we have λ(−v) = −λ(v).

We call such a T a Tucker triangulation, and call such a λ a Tucker labeling.

Note that this definition is only concerned with the behavior of T and λ on the
boundary. This makes Tucker’s Lemma quite remarkable:

Theorem 4.2. Suppose (T, λ) is a Tucker pair. Then there is a 1-simplex (edge)
in the triangulation which is complementary (its vertices’ labels are negatives of
each other).

Tucker’s Lemma, like the Borsuk-Ulam Theorem, has an equivalent formulation
negating the existence of a kind of embedding Bn → Sn−1. To state it, let’s first
define a specific family of simplicial complexes:

Definition 4.3. For each n, let ^n−1 denote the simplicial complex with vertex
set {±1, . . . ,±n}, and with σ ⊆ V (^n−1) a simplex when σ does not contain both i
and −i for any i. Geometrically, we associate the vertex +i with ei, and the vertex
−i with −ei, so

∥∥^n−1
∥∥ = {x ∈ Rn :

∑
i|xi| = 1}.

Then we can rephrase Tucker’s Lemma as:

Theorem 4.4. Suppose T is a Tucker triangulation. Then there is no simplicial
map from T to ^n−1 which is odd on the boundary.

That these two formulations are equivalent comes from identifying λ in the first
formulation with any attempted antipodal simplicial map in the second formulation.
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Figure 3. The inspiration for the name – ^1

Proving Tucker’s Lemma from the Borsuk-Ulam Theorem is straightforward,
using the nonexistence versions of both (Theorems 3.2 and 4.4):

Proof of Theorem 4.4 from Theorem 3.2. Suppose we have a Tucker triangulation
T and a simplicial map λ : V (T ) → V (^n−1) which is odd on the boundary.
Then the affine extension of λ can be composed with central projection to get a
continuous function Bn → Sn−1 which is odd on the boundary. Our desired result
is the contrapositive of what we’ve just shown. □

The other direction will be somewhat constructive, using Tucker’s Lemma to
find points which get mapped arbitrarily close to their antipodal pair. Compactness
gives us the full result.

Let’s quickly introduce some notation:

Definition 4.5. The ℓ∞ norm, or ∥·∥∞, is defined by

∥(x1, x2, . . . , xn)∥∞ B max{|xi|}

This norm produces much of the same topological structures on Rn as the stan-
dard norm. In particular, they produce the same compact sets, and a function is
uniformly continuous under one norm if and only if it’s uniformly continuous under
the other.

Proof of Theorem 3.1 from Theorem 4.2. Let g : Sn → Rn be a continuous func-
tion. If we let f(x) B g(x)− g(−x), then we wish to show that f(x) = 0 for some
x. Note that f is odd and continuous.

In this proof, we will triangulate the closed upper hemisphere of Sn. Although
this isn’t Bn, it is homeomorphic to it, and its boundary has antipodal symmetry,
so Tucker’s Lemma still applies.

Let ε > 0. Because Sn is compact, f must be uniformly continuous, so there
is a δ > 0 such that ∥f(x)− f(y)∥∞ < ε whenever ∥x− y∥∞ < δ. We let T
be a Tucker triangulation of the upper hemisphere where every simplex in T has
diameter at most δ under the ℓ∞ norm.

We now define the Tucker labeling λ. First, let

k(v) B min{i : |f(v)i| = ∥f(v)∥∞}
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for every vertex v in T . We define λ : V (T ) → {±1, . . . ,±n} by

λ(v) B

{
+k(v), f(v)k(v) > 0

−k(v), f(v)k(v) < 0

This labeling represents the direction in which v gets sent the farthest from the
origin.

Since f is odd, λ is odd on the boundary. The pair (T, λ) is therefore a Tucker
pair, and contains a complementary edge vv′. WLOG, suppose i B λ(v) > 0.
Then, by our construction of T , we get:

∥f(v)− f(v′)∥∞ < ε

|f(v)i − f(v′)i| < ε

f(v)i − f(v′)i < ε

f(v)i < ε

∥f(v)∥∞ < ε

So, for any ε > 0, there is some x ∈ Sn such that ∥f(x)∥∞ < ε. We can
construct a sequence {xn} of these points, so that limn→∞ f(xn) = 0. Because
Sn is compact, this sequence has a convergent subsequence. We might as well just
throw out the rest of the sequence, and let {xn} be the convergent subsequence.
Let x∗ = limn→∞ xn. Then f(x∗) = 0 by continuity. □

The proof of Tucker’s Lemma we’ll present is constructive, so combining these
two proofs will give a method for finding antipodal points mapped arbitrarily close
to each other. (Performing such an algorithm usually doesn’t require the entire
Tucker triangulation to be found, so it’s computationally feasible.)

4.2. Proof of Tucker’s Lemma. The proofs of Theorems 4.2 and 4.4 are all topo-
logical. In order to prove Tucker’s Lemma with combinatorial techniques, we have
to weaken it, and place further conditions on a Tucker triangulation. These condi-
tions will still allow the simplices in a Tucker triangulation to have arbitrarily small
diameter, so the proof that Tucker’s Lemma implies the Borsuk-Ulam Theorem still
holds. This means that this “weaker” version of Tucker’s Lemma is equivalent to
the complete version.

Let B̂n be the unit ball in Rn under the ℓ1 norm. That is,

B̂n B {(x1, . . . , xn) ∈ Rn : |x1|+ · · ·+ |xn| ≤ 1}

Our condition on Tucker’s Lemma will involve this natural triangulation of B̂n:

Definition 4.6. +̂n is a simplicial complex with vertex set

V (+̂n) B {0,±1,±2, . . . ,±n}

and σ ⊆ V (+̂n) a simplex if and only if it doesn’t contain both +i and −i for any
i ∈ {1, . . . , n}.

Every simplex in +̂n is either a simplex in ^n−1 or the union of a simplex in
^n−1 with the set {0}. See figure 4 for what +̂2 looks like.

We can embed +̂n in Rn by putting 0 at the origin, +i at the unit vector ei,
and −i at the unit vector −ei. In this case, the sign of each coordinate is constant
within the relative interior of each simplex.
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Figure 4.

Definition 4.7. A special Tucker triangulation is a triangulation of B̂n which
is antipodal on the boundary of B̂n and refines +̂n. That is, every simplex in a
special Tucker triangulation is contained in a simplex of +̂n.

An equivalent way of stating the second part of the definition is that the sign
of each coordinate is constant within the relative interior of each simplex. Note
that B̂n is homeomorphic to Bn, so such a triangulation is also a normal Tucker
triangulation.

We will prove that Tucker’s Lemma is true for all Tucker pairs (T, λ) where T is
special. The proof is taken from [1], with the proper adjustments made to make it
constructive.

Theorem 4.8. If (T, λ) is a Tucker pair where T is a special Tucker triangulation,
then there is a 1-simplex in T which is complementary.

Proof. First, some notation. For a simplex σ, let

λ(σ) B {λ(v) : v ∈ V (σ)}
and let

S(σ) B {i : xi > 0} ∪ {−i : xi < 0}
where (x1, . . . , xn) is a point in the relative interior of σ. This is well-defined
because T is a special triangulation. Call a simplex σ “happy” if S(σ) ⊆ λ(σ).

If σ is a happy simplex, let k B |S(σ)|. We have that σ is contained in the span
of the vectors e|i|, where i ∈ S(σ), so σ is contained in a k-dimensional subspace of
Rn. Hence we must have dimσ ≤ k. But at least k vertex labels are required for σ
to be happy, so dimσ ≥ k− 1. If dimσ = k− 1, so that σ needs every vertex label
to be happy, then we’ll call σ “tight”. If dimσ = k, then we’ll call σ “loose”.

We quickly note three properties of happy simplices. First, a happy simplex σ
on the boundary must be tight, because then |S(σ)| is one more than the dimension
of the simplex in +̂n whose relative interior contains σ’s. Second, the simplex {0}
is happy and loose, because S({0}) = ∅. And third, the empty simplex is happy
and tight.

We define a graph of the happy simplices of T , where two simplices σ and τ are
connected if:

• σ is on the boundary of B̂n and τ is its antipodal partner (τ = −σ), or
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• σ is a facet of τ with λ(σ) = S(τ)

We want to show that every happy simplex has degree at most 2, the empty simplex
has degree 1, and any other simplex with degree 1 contains a complementary edge.
Then by Theorem 2.1, there is a path starting from the empty simplex which ends
in a simplex containing a complementary edge. (The empty simplex’s neighbor is
always {0}, so you may as well consider the path to start from {0} for computa-
tions.)

Let σ be happy simplex. We distinguish two cases:

(1) σ is tight. Then it cannot have a facet τ with λ(τ) = S(σ), because then
τ would have at least the same dimension as σ. If σ is on the boundary,
then it’s neighbors with its antipodal pair, but is only the facet of one
happy simplex. If it’s not on the boundary, then it is the facet of two
happy simplices. These happy simplices τ are in a k-dimensional linear
subspace of Rn with σ, so S(τ) = S(σ) = λ(σ). Hence, τ is a neighbor of
σ. One exception to this reasoning is the empty simplex. Its k-dimensional
subspace is just the origin, so it only has one neighbor, the simplex {0}. In
conclusion, every tight simplex has exactly two neighbors – except for the
empty simplex, which only has one.

(2) σ is loose. Then it either has a repeated vertex label, or a vertex label i
which doesn’t appear in S(σ). If the former, then σ can’t be the facet of
a happy simplex (because |λ(σ)| = k), but is neighbors with its two happy
facets. If the latter, then σ is neighbors with its facet which doesn’t contain
i, and no other facets. Moreover, if −i isn’t also in λ(σ), then σ is a facet
of a simplex τ with S(τ) = S(σ)∪{i}. This simplex can be reached from σ
by moving along the i-th coordinate axis (in the positive direction if i > 0,
and in the negative direction if i < 0). If −i is also in λ(σ), then it is
in S(σ), and so no such simplex τ exists, because T is special. Note that
the former case of a loose simplex cannot contain a complementary edge,
because S(σ) cannot contain i and −i. In conclusion, a loose simplex has
exactly two neighbors – unless it contains a complementary edge, in which
case it only has one.

As we said earlier, this guarantees a path from {0} to a simplex with a comple-
mentary edge. This is the only path from {0} (other than the path to the empty
simplex), so you can use the graph’s definition to find the path algorithmically. □

4.3. The Hex Theorem. This theorem gets its name from a game called “Hex”.
It’s a two-player game with a board made of hexagonal tiles, where players alter-
nate placing their color on a hexagon, until one player forms a connected path of
hexagons from one side of the board to another. Which pair of sides each player has
to connect is dependent on which color they are. For the purpose of mathematical
analysis, the game is usually represented as a game where players color a graph like
in Figure 5.

The Hex Theorem traditionally says that at least one player must always win.
The game of Hex also generalizes to n dimensions and players, and the Hex Theorem
can be shown to be true for these specific graphs (see [3]). In this paper, we will
generalize a bit further, by defining a Hex board more broadly than the definition
usually given (a graph where x and y are connected if ∥x− y∥∞ = 1). This
generalization is inspired by a previous paper from the UChicago REU [4].
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Figure 5. Traditional Hex board as a graph

First, here’s how the Hex Theorem looks in its traditional form:

Theorem 4.9. If every vertex on a two-player Hex board is colored red or blue,
then there is a path of red vertices from the top of the board to the bottom, or there
is a path of blue vertices from the left side of the board to the right side.

The intuition for the generalization is taken from how this and the n-dimensional
Hex Theorem are proven, so it may be useful to keep the normal Hex board in mind,
or consult [3] or [4] for a more traditional treatment.

First, we define a Hex game:

Definition 4.10. An n-dimensional Hex game Γ is a pair (T, λ) where T is a
simplicial complex with ∥T∥ = In and λ is a coloring function sending V (T ) to
{1, . . . , n}. T is called a Hex board.

Figure 6. Hex board in Figure 5, with winning path highlighted
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Figure 7. Example of a general 2-dimensional Hex board

A central part of the Hex Theorem is the idea of connectedness:

Definition 4.11. Two vertices a, b in a Hex game (T, λ) are connected if there
is a sequence of 1-simplices in T of the form

[a,v1], [v1,v2], . . . , [vk−1,vk], [vk, b]

We say these two vertices are i-connected if λ(a) = λ(b) = i and λ(vj) = i for all
j between 1 and k. We call such a sequence an i-path.

The last definition required is the sides to be connected to win:

Definition 4.12.

F ({+i}) B {x ∈ V (T ) : xi = 0}
F ({−i}) B {x ∈ V (T ) : xi = 1}

And in general, F : 2{±1,...,±n} → 2V (T ) is defined by

F ({i1, i2, . . . , ik}) B
k⋂

m=1

F ({im})

At last, here is the Hex Theorem:

Theorem 4.13. In every Hex game, for some color i, there are a ∈ F ({+i}) and
b ∈ F ({−i}) which are i-connected.

The proof of Brouwer’s Fixed Point Theorem from the Hex Theorem is akin to
the proof of the Borsuk-Ulam Theorem from Tucker’s Lemma. For the equivalence,
we will use the fact that In and Bn are homeomorphic to make Brouwer’s Fixed
Point Theorem concern functions f : In → In.

Proof of Brouwer’s Fixed Point Theorem from the Hex Theorem. Let f be a con-
tinuous function from In into itself, and let ε > 0.

Because In is compact, f is uniformly continuous, so there is δ > 0 smaller than
ε such that ∥f(x)− f(y)∥∞ < ε whenever ∥x− y∥∞ < δ. Let T be a Hex board
where the diameter of every simplex in T is less than δ, under the ℓ∞ norm.

For any x ∈ In, if i is the smallest index such that ∥f(x)− x∥∞ = |fi(x)− xi|,
we’ll say that x is “moved in the direction i”. Define the Hex coloring λ(x) to be
the direction x is moved in.
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By the Hex Theorem, for some i, there is an i-path connecting F ({+i}) and
F ({−i}). For a vertex x ∈ F ({+i}), we must have fi(x) − xi ≥ 0, while for a
vertex x ∈ F ({−i}), we have fi(x) − xi ≤ 0. One of these two statements is true
for every vertex on the i-path. Then somewhere on the path is an edge [x,y] with
fi(x)−xi ≥ 0 and fi(y)−yi ≤ 0. It cannot be the case that both ∥f(x)− x∥∞ ≥ ε
and ∥f(y)− y∥∞ ≥ ε, because then

2ε ≤ ∥f(x)− x∥∞ + ∥f(y)− y∥∞
= (fi(x)− xi) + (yi − fi(y))

= (fi(x)− fi(y)) + (yi − xi)

≤ ∥f(x)− f(y)∥∞ + ∥y − x∥∞
< ε+ δ

< 2ε

So, for every ε > 0, we can use the Hex Theorem to find a point x where
∥f(x)− x∥∞ < ε. Therefore, because In is compact, it contains a convergent
sequence {xn} where limn→∞ f(xn) = limn→∞ xn. By continuity, if x∗ is the limit
of the sequence, then f(x∗) = x∗. So f has a fixed point. □

Proof of the Hex Theorem from Brouwer’s Fixed Point Theorem. Suppose there is
a Hex game (T, λ) such that for each i, there is no i-path connecting F ({+i})
and F ({−i}). We’ll first construct a function from V (T ) to In which preserves
simplices.

Define f : V (T ) → In as follows:

(1) If λ(v) = 1, then send v into the relative interior of a simplex of which it
is a face, moving it along e1 if there is a 1-path connecting v to F ({+1}),
and along −e1 if there isn’t. By our assumptions about the Hex game, this
produces a geometric realization of the same triangulation T . The amount
moved doesn’t have to be the same for all such v, but it can be.

(2) If we’ve defined f for vertices colored i − 1, then for a vertex v colored i,
send v into the relative interior of a simplex of which it is a face, moving
it along ei if there is an i-path connecting v to F ({+i}), and along −ei if
there isn’t.

The function f is a simplicial mapping, so we can consider its affine extension
∥f∥ : In → In. We show a lemma now.

Lemma 4.14. If f([x0, . . . ,xn]) = [y0, . . . ,yn], then ∥f∥ has a fixed point in this
simplex if and only if 0 ∈ conv{y0 − x0, . . . ,yn − xn}.

Proof. A point in the domain simplex can be written as x =
∑n

i=0 αixi, where the
coefficients are nonnegative and sum to 1. By the definition of ∥f∥, we have:

∥f∥ (x)− x =

n∑
i=0

αiyi −
n∑

i=0

αixi

=

n∑
i=0

αi(yi − xi)

So ∥f∥ (x) − x is a point in conv{y0 − x0, . . . ,yn − xn}, and every point in that
convex hull can be expressed as ∥f∥ (x)−x for some x ∈ conv{x0, . . . ,xn}. Hence,
∥f∥ (x) = x for such an x if and only if 0 ∈ conv{y0 − x0, . . . ,yn − xn}. □
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Figure 8. Example of a 2-dimensional augmented Hex board

In the way we’ve defined f , the vertices of the simplices in T get moved along
standard unit vectors, and within one simplex, no two vertices are moved in opposite
directions. Our lemma then implies that ∥f∥ doesn’t have a fixed point in any
simplex in T . That is, ∥f∥ is a continuous function from In into itself with no fixed
point. □

4.4. Proof of the Hex Theorem. Our constructive proof will use a modified Hex
game, so that the boundary of the board always looks the same. This will allow us
to perform a similar sort of constructive proof as we did for Tucker’s Lemma.

Definition 4.15. If Γ = (T, λ) is a Hex game, then the augmented Hex game

Γ̂ = (T̂ , λ) is defined as follows:

• V (T̂ ) B V (T )∪{±1, . . . ,±n}, where these are assumed to be new vertices.

• Every simplex in T is a simplex in T̂
• If σ ⊆ F (τ) is a simplex in T , where τ doesn’t contain both i and −i, then

σ ∪ τ is a simplex in T̂ .
• λ(i) B |i|, where i ∈ {±1, . . . ,±n}.

Note that the added simplices include every subset of {±1, . . . ,±n} which doesn’t
include a number and its negative, because σ ⊆ F (τ) can be empty. The augmented
Hex game is then a kind of suspension of the Hex game inside ^n−1.

Proof of the Hex Theorem. Call a simplex in Γ̂ “completely colored” if λ sends its
vertices onto all of {1, . . . , n}. We define a graph with the completely colored sim-

plices in Γ̂ as the vertices, where two simplices are connected if one is a completely
colored facet of the other.

If σ is completely colored, then its dimension is n or n− 1. If the former is the
case, then σ has exactly two vertices which are the same color, and thus has two
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completely colored facets. If the latter is the case, then σ is a completely colored
facet of one or two completely colored simplices.

So every vertex in the graph has degree at most 2, and by Theorem 2.1 the
graph is composed of simple paths, simple cycles, and isolated vertices. The only
completely colored simplices which are facets of just one completely colored simplex
are those on the boundary, ^n−1, and all the (n− 1)-dimensional simplices on the
boundary are completely colored, so they are the only vertices in the graph with
degree 1. Therefore, there is a path from the simplex [1, . . . , n] to some other
completely colored simplex in ^n−1. Each pass in the graph from one completely
colored facet to the next connects the vertices of the same color. So a path from
[1, . . . , n] to another face of ^n−1 i-connects the vertex +i with either +i or −i. If
the face is different from [1, . . . , n], then it must have a negative vertex, −i. So our
path i-connects +i and −i.

The only vertices in Γ̂ colored i, other than the vertices +i and −i, are those
colored i in the original game Γ. So the only i-colored vertices the vertex +i shares
an edge with are in F ({+i}), and the only i-colored vertices the vertex −i shares
an edge with are in F ({−i}). Therefore, the i-colored path connecting +i and −i
also i-connects a vertex in F ({+i}) and a vertex in F ({−i}). □

4.5. Proof that Tucker’s Lemma Implies the Hex Theorem. Consider the
augmented Hex Board Γ̂. This is a triangulation of B̂n. If we label the origin 0,
then we can geometrically realize T̂ as a special Tucker triangulation by putting +i
at −2ei and −i at 2ei. (Specifying it’s a special triangulation means we can use
the constructive proof when we apply Tucker’s Lemma.)

We now define a Tucker labeling λ̂ on this triangulation. Suppose λ(v) = i.
Then we let

λ̂(v) B

{
−i, v = −i, or v and + i aren’t i-connected

+i, otherwise

Then (T̂ , λ̂) is a Tucker pair, so T̂ contains a complementary edge. This edge
cannnot be in the original triangulation T , nor can it involve the vertex +i, as

those would contradict the definition of λ̂. So, the vertex in the edge with label −i
must be −i, and this implies that −i and +i are i-connected.
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