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Abstract

We extract and generalize a central argument from [Arn13Arn13] to provide a frame-

work for generic periodicity results inC1
billiards. Applications of this method are

demonstrated, including the existence of short periodic trajectories for generic C1

tables.
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1 Introduction
Broadly speaking, mathematical billiards are dynamical systems given by the motion of

a free-moving point (“ball”) in a bounded domain (“table”) which re�ects specularly

(“bounces”) o� the boundary. As with many dynamical systems, questions of periodicity–

i.e. about trajectories which repeat after a �nite number of bounces—are among the

most central and challenging in the study of billiards. Indeed, in [Bir27Bir27], where Birkho�

formally introduced the study of billiards in convex tables with smooth boundaries, he

proved that all such tables admit at least two distinct periodic orbits of every period. On

the other hand, it is unknown if every polygonal billiard table admits any periodic orbit,

even in the case of triangles.

Billiards in strictly convex tables with C∞ boundaries and billiards in polygons have

been extensively studied, using very di�erent methods. However, these techniques often

fail for tables with less rigid boundary conditions, particularly non-convex, non-polygonal

tables, and tables with less regular boundaries. Thus, there are far fewer results for such

tables.

For tables with non-convex C1
boundaries, one result is provided by M.-C. Arnaud

in [Arn13Arn13]. In this paper, she shows that generically (for a topology discussed below),

periodic trajectories are dense in a C1
table. This result is particularly striking since it is

unknown if non-convex C1
tables always admit periodic orbits.

Moreover, a central argument which is sketched in [Arn13Arn13] shows that, while periodic

trajectories don’t always persist underC1
perturbations, anyC1

table with a periodic orbit

can be perturbed to a table where the periodic trajectory is stable. This fact provides a

powerful tool for studying periodicity inC1
billiards, particularly in showing that generic

tables have a given type of periodic orbit.

The space ofC1
billiards and several primary results are introduced in §22, with further

discussion in the AppendixAppendix. Then, we carefully excise the argument from [Arn13Arn13] in §33

and §44, culminating in Thm. 4.34.3. Applications of this argument, including the main

theorem of [Arn13Arn13] and a result about short periodic trajectories, are given in §55.

2 C1 Billiards: The Setting, and Basic Facts
In this paper we consider C1

billiards. Formally, a C1
billiard table is a connected, open

subset of R2 with boundary C1
-di�eomorphic to the circle S1. This is more or less the

weakest reasonable setting for planar billiards “without pockets,” as we need well-de�ned

tangent vectors at the boundary against which billiard trajectories will satisfy the law of

re�ection.

Before we de�ne our space of billiards, let us review the C1
topology. Let M,N be

C1
manifolds with M compact, and let C1(M,N ) be the set of C1

maps from M to N .
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We follow the standard convention of referring to C1(M,R) as C1(M).
A topology is generated on C1(M,N ) from the subbasis of neighborhoods de�ned

as follows: We pick a chart (U, ϕ) for M and (V, ψ) for N , a compact set K ⊂ U , a

function f ∈ C1(M,N ) such that f (K) ⊂ V , and an ε > 0. Then we take the subset of

all g ∈ C1(M,N ) such that g(K) ⊂ V and����ψ ◦ f (x) − ψ ◦ g(x)���� + ����Dϕ(x)
(
ψ ◦ f ◦ ϕ−1

)
+Dϕ(x)

(
ψ ◦ f ◦ ϕ−1

) ���� < ε

for all x ∈ K .

For our purposes, N will always be Rn for some n. Since M is compact, C1(M,Rn)
can be given the structure of a normed vector space by taking a �nite cover of charts

(ϕi, Ui), and de�ning the norm����f ����C1
= max

x∈M

{����f (x)���� + min

i, x∈Ui

����Dϕi (x)
(
f ◦ ϕ−1i

) ����} .
One can check that this agrees with the topology above, and moreover that this space is

complete, so C1(M,Rn) is a Banach space.

We need two other standard facts about the C1
topology: First, if M,N are Ck

man-

ifolds for k ≥ 1, then Ck(M,N ), the set of Ck
functions from M to N , is dense in

C1(M,N ). Second, if Emb
1(M,N ) is the set of C1

embeddings of M into N , then

Emb
1(M,N ) is an open subset ofC1(M,N ). Proofs can be found in [Hir76Hir76, §2], as well

as numerous other useful results about C1
topologies and the analogously de�ned Ck

topologies.

We now de�ne our space of C1
billiard tables. From the Jordan Curve Theorem,

any injective, continuous map of the circle into the plane bounds a connected open set,

and thus all C1
embeddings of the circle S1 into the plane de�ne a C1

billiard table. One

can observe that the behaviour of billiards within a table does not depend on the size

of the table, but only on the shape. Thus it su�ces to consider tables with unit length

boundaries. Since the boundary of any such table is parameterized by aC1
embedding of

S1, which we consider to have unit length, we can reparameterize the boundary by arc-

length, i.e. with a unit speed parameterization, which simpli�es calculations. Therefore,

we will de�ne our billiard space to be the set

B =
{
β ∈ Emb

1
(
S1,R2

)
| ∀t ∈ S1,

����β′(t)���� = 1

}
. (2.1)

Recall that a Baire space is a topological space where countable intersections of open,

dense sets are dense. Such an intersection is called a generic set, and is considered “large”

in a Baire space because its complement has empty interior, and this remains true for

countable intersections of generic sets. The Baire Category Theorem asserts that open

subsets of complete metric spaces are Baire spaces.
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It is straightforward to check that the subset L ofC1(S1,R2) consisting of unit speed

loops is closed, and is thus a complete metric space since C1(S1,R2) is complete. Since

Emb
1
(
S1,R2

)
is open in C1(S1,R2), it follows that B is open in L , and thus a Baire

space.

In [Arn13Arn13], Arnaud works in a quotient of B as de�ned above which views billiard

tables as independent of the parameterization of the boundary. In the AppendixAppendix, we

discuss this space, and show how generic properties of our billiard spaceB remain generic

under the quotient.

We now formalize billiards within a table. In the framework of discrete dynamical

systems, billiards are studied as the dynamics of the billiard map, which is a function

de�ned on the space of inward-pointing unit vectors along the boundary of the table, a

space which is di�eomorphic to an open annulus. If we input an inward pointing vector

v at a point b along the boundary, the billiard map takes us to the point b′ where the ray

in the direction of v from b next meets the boundary, and outputs the vector v′ satisfying

the law of re�ection at b′ with v. For strictly convex billiards, this map has many useful

properties which aid in the analysis, in particular that it is a symplectomorphism for a

symplectic structure on the annulus, and satis�es a certain important “twist” condition.

This was key to Birkho�’s original work on billiards. See Birkho�’s work in [Bir27Bir27] as

well as [Tab95Tab95][§1, 2] for a more recent treatment, and see [Gol01Gol01] for a more general

discussion of such “symplectic twist maps.”

Unfortunately, one can observe that in the setting of non-convex billiards, which

we examine here, the billiard map is not even continuous in general. Instead, since we

are only considering periodicity, it su�ces to take the following, geometric approach to

studying billiard trajectories, which is also fairly intuitive. We begin by de�ning some

more general terminology.

Take β ∈ B, and recall that β is an embedding of S1 intoR2.

Take an n-tuple points (t1, . . . , tn) ∈
(
S1

)n
= Tn. We will think of these indices as

being cyclically ordered, i.e. ti for i ∈ Z/nZ. Then we say that (t1, . . . , tn) is a valid n-
gon in β if for each i = 1, . . . , n + 1, ti ≠ ti+1, and the line segment between β(ti) and

β(ti+1) lies completely inside the interior of the region bounded by β—only meeting the

boundary at the endpoints—and moreover is not tangent to β′(ti) or β′(ti+1). We say

that (t1, . . . , tn) is a glancing n-gon in β if it satis�es the same conditions, except that the

line segments are allowed to “glance” against the boundary. We say that (t1, . . . , tn) is an

invalid n-gon in β if the segments still are not tangent to β at the endpoints, but may leave

the interior of the table. See Fig. 11.

We then say that a valid n-gon (t1, . . . , tn) in β is a valid n-periodic billiard orbit in

β if the segments also satis�es the law of re�ection, “angle of incidence equals angle of

re�ection,” at the boundary. The points t1, . . . , tn are called “bounce points” for the or-

bit. Glancing n-periodic billiard orbit and invalid n-periodic billiard orbit are de�ned

correspondingly. See Fig. 11.

4



Remark 2.2. In the literature on non-convex billiards, there does not seem to be a consen-

sus between whether the term “billiard orbit” includes glancing orbits, or only what we

have called valid orbits. Invalid billiard orbits are always excluded. The divide is often is

determined by whether one is studying billiards as �ows, in which case allowing glancing

orbits is more natural, or as discrete systems arising from the billiard map. While Thm.

4.34.3 only applies to valid orbits, a table with a glancing billiard orbit can be perturbed such

that the orbit is valid, as discussed in Lemma 5.45.4.

We can see that the law of re�ection is equivalent to requiring that〈
β′(ti),

β(ti) − β(ti−1)����β(ti) − β(ti−1)����
〉
=

〈
β′(ti),

β(ti+1) − β(ti)����β(ti+1) − β(ti)����
〉
. (2.3)

Note that, in general (2.32.3) also allows β(ti−1), β(ti), and β(ti+1) to be collinear in the case

that
β(ti)−β(ti−1)
| |β(ti)−β(ti−1) | | =

β(ti+1)−β(ti)
| |β(ti+1)−β(ti) | | . This possible for invalid n-gons, but this can’t hap-

pen for valid or glancing n-gons, as this would either cause a segment to leave the table or

lie tangent to the table at a bounce point.

(a) A valid 4-gon. (b) A glancing 4-gon. (c) An invalid 4-gon.

(d) A valid 4-periodic billiard

orbit.

(e) A glancing 4-periodic bil-

liard orbit.

(f) An invalid 4-periodic bil-

liard orbit.

Figure 1: Examples of valid, glancing, and invalid n-gons and billiard orbits. Observe the re�ec-

tions for the billiard orbits.

From (2.32.3), we get a very useful property of billiard orbits, which is that they locally
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extremize the perimeter of the corresponding n-gon. This allows us to use critical point

theory, which will be central to our analysis.

Proposition 2.4. Let β ∈ B be a C1
billiard. Let Tn be the torus

(
S1

)n
. De�ne Ln =

Lβn : Tn → R by

Ln(t1, . . . , tn) =
����β(t2) − β(t1)���� + · · · + ����β(tn) − β(tn−1)���� + ����β(t1) − β(tn)����

=
∑

i∈Z/nZ

����β(ti+1) − β(ti)���� (2.5)

Then (t1, . . . , tn) ∈ Tn is a critical point of Ln if and only if, for any consecutive

points ti−1, ti, ti+1, either

(i) β(ti−1), β(ti), β(ti+1) are collinear, or

(ii) the line from β(ti−1) to β(ti) satis�es the law of re�ection with the line from β(ti)
to β(ti−1).

In particular, if (t1, . . . , tn) is also a valid, glancing, or invalid n-gon in β, then it is the

corresponding type of n-periodic billiard orbit.

Proof. We compute that

dLn(t1, . . . , tn) =
∑

i∈Z/nZ

( 〈
β′(ti), β(ti) − β(ti−1)

〉����β(ti) − β(ti−1)���� −
〈
β′(ti), β(ti+1) − β(ti)

〉����β(ti+1) − β(ti)����
)
dxi

=
∑

i∈Z/nZ

〈
β′(ti),

β(ti) − β(ti−1)����β(ti) − β(ti−1)���� − β(ti+1) − β(ti)����β(ti+1) − β(ti)����
〉
dxi.

(2.6)

Hence (t1, . . . , tn) is a critical point if and only if〈
β′(ti),

β(ti) − β(ti−1)����β(ti) − β(ti−1)���� − β(ti+1) − β(ti)����β(ti+1) − β(ti)����
〉
= 0

for each i. However, this is equivalent to (2.32.3), as desired. �

Corollary 2.7. If β is a strictly convex billiard table, then a critical point of Lβn corre-

sponds to an n-periodic billiard trajectory for β. Hence, such a billiard has an n-periodic

trajectory, namely at the maximum of Ln.

Proof. The convexity guarantees that the trajectories stay within the table. One need

only show that the maximum occurs away from points in the torus which correspond

to sequences on the boundary where two adjacent points are the same (where L isn’t

di�erentiable). See [Tab05Tab05, §6], which moreover contains the proof of a famous stronger

result which Birkho� proved in [Bir27Bir27] using symplectic topology. �
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3 A Morse-Theoretic Lemma
As periodic billiard trajectories are critical points of the length function for the table, a

key step in our argument is showing that critical points persist locally under C1
pertur-

bations. In general, this is not true: consider, for example, the critical point at 0 of x3.

The requirement we need is that the critical point is non-degenerate, a property which

thankfully is dense, even for length functions on C1
billiards, as we will see later.

A critical point p of a C2
function f from a manifold intoR is non-degenerate if the

Hessian matrix (
m2f

mximxj

)
i,j

of second derivatives is non-singular at p. This matrix is de�ned in coordinates, but it is

straight-forward to check that the non-singularity of the Hessian is coordinate-independent.

Non-degenerate critical points play a central role in Morse Theory, where they pro-

vide topological information about the manifold on which they are de�ned. However,

we can also intuit that non-degenerate critical points should be stable under perturbation

by comparing x2 to x3. This one-dimensional case, though, is particularly simple because

non-degenerate critical points are strict local extrema, which clearly persist under pertur-

bation.

In [Arn13Arn13], Arnaud indicates a proof for the following result via Conley Index The-

ory applied to the gradient �ow. A more topological argument comes from the fact that a

non-degenerate critical point of f : M → R is a transverse intersection of the di�erential

df : M → T ∗M with the zero-section in the cotangent bundle, and transverse intersec-

tions are stable. Results in this direction can be found in [Hir76Hir76]. However, the following

proof uses only the elementary homological fact that the sphere is not contractible, in an

argument similar to standard proofs of Brouwer’s �xed point theorem (see i.e. [Hat01Hat01]).

Observe also that a very similar proof is given for [Hir76Hir76, Thm. 1.7].

Lemma 3.1. LetM be a smooth n-dimensional manifold (compactness is not required),

and let f : M → R be a C2
function with a non-degenerate critical point p. Then for

any neighborhoodU of p, there exists a neighborhoodN of f inC1(M) such that every

g ∈ N has at least one critical point in U .

Proof. Possibly passing to a smaller neighborhood of p, we can pick a coordinate chart

sending U to a neighborhood V of 0 ∈ Rn, such that p maps to 0. Then in this chart,

we view the di�erential df as a map from V to Rn which sends 0 to 0, and the Hessian

is its di�erential. Since the Hessian is non-singular, we can �nd a neighborhood W of 0

such that the restriction of df to W is a di�eomorphism onto its image. We can change

coordinates such that W contains D, the closed unit ball about 0, such that mD is the

sphere S = Sn−1. Then, we can pick a neighborhoodN about f in theC1
topology such
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that, if we take any g in N , then in the coordinates above

����df (x) − dg(x)���� < ε for all

x ∈ D.

Suppose g ∈ N does not have a critical point in U . Then, in particular, 0 does not

belong to dg(D). Since 0 belongs to the interior of D, and df (0) = 0, 0 also belongs

to the interior of df (D). Thus, if ε is su�ciently small, we can use bump functions to

construct a continuous function ω : D→ df (W ) such that ω agrees with dg near 0 and

agrees with df away from 0. In particular, we can construct ω such that ω(D) does not

contain 0, but ω agrees with df on the sphere S.

Then, h : D→ S,

h(x) =
(
df

)−1 ◦ ω(x)������ (df )−1 ◦ ω(x)������
is a well-de�ned, continuous function fromD to S which �xes the sphere. But this means

H : [0, 1] × S → S
H (t, x) = h(tx)

is a homotopy contracting the sphere to a point, which is impossible. �

4 Arnaud’s Method
We now formalize the central argument which Arnaud outlined in [Arn13Arn13] to show that

generic C1
billiards have dense periodic orbits. The argument, which we will call Ar-

naud’s Method, says that near any table with a periodic orbit, we can �nd an open set

with “similar” periodic orbits. In particular, this implies that if tables with some type

of periodic orbit are dense in B, they are in fact generic. This is especially useful for ex-

tending (often challenging) results about periodic orbits in di�erent billiard settings to

results for generic billiards in B, as Arnaud does in [Arn13Arn13]. We will discuss this result

and another application in §55.

We prove Arnaud’s Method (Thm. 4.34.3) via the following series of lemmas. First, we

show that valid n-gons are C1
stable:

Lemma 4.1. Let β ∈ B, and let p = (t1, . . . , tn) ∈ Tn correspond to a valid n-gon for β
(in particular, a billiard orbit). Then there exists a neighborhood U ⊂ Tn about p and a

neighborhood U ⊂ B about β such that, for any q ∈ U and any α ∈ U , q corresponds

to a valid n-gon for α.

Proof. We need to keep the lines between successive points from meeting the boundary

anywhere else, and from being tangent to the boundary at these points. Hence, it will

su�ce to consider the case where n = 2, as for greater n we intersect the neighborhoods

corresponding to each pair of successive points.
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Since B has the C1
topology, it is straightforward to show that the evaluation maps

E0 : B × S1 → R2 and E1 : B × S1 → R2 given by

E0(α, x) = α(x), E1(α, x) = α′(x)

are continuous (cf. [Hat01Hat01, p. 530]). Hence, ifD ⊂ T2 is the diagonal

{
(x1, x2) ∈ T2 | x1 = x2

}
,

then we have a continuous mapΘ : B ×
(
T2 \D

)
× S1 → R,

Θ
(
α, x1, x2, y

)
=

(
1 −

〈
α(x2) − α(x1)
| |α(x2) − α(x1) | |

〉
2

, α′(y)
)
.

Observe that this gives the size of the component of α′(y) which is perpendicular to

the line from α(x1) to α(x2), measuring how far the line is from being parallel to α′(y).
Since β(t1), β(t2) are part of a valid n-gon in β, we know that

Θ(β, t1, t2, t1), Θ(β, t1, t2, t2) > 0.

Thus, there exist ε > 0, open intervals I1, I2 ⊂ S1 about t1 and t2, respectively, and a

neighborhood V ⊂ B of β such that, for all x1, y1 ∈ I1, x2, y2 ∈ I2, and all α ∈ V,

Θ(α, x1, x2, y1), Θ(α, x1, x2, y2) > ε.

Letλbe the line passing through α(x1) and α(x2). First, observe that the above bound

onΘ keepsλ from being tangent to α at α(x1) and α(x2). Then, recall that α is a unit speed

parameterization. Hence, we can observe that the path α(s) for s ∈ Ii, is bounded outside

the cone of lines through α(xi)which make an angle less than arcsin(ε)withλ.Therefore,

within I1 and I2, α only intersects λ at x1 and x2. See Figure 22.

Thus, we only need to keep the line between our points from touching points further

away on the boundary, i.e. outside of I1 and I2. As withΘ, we can observe that the func-

tionΔ : B× I1 × I2 → Rwhich maps α, x1, x2 to the distance between α
(
S1 \ (I1 ∩ I2)

)
and the line segment from α(x1) to α(x2) is continuous. Moreover, since the line from

β(t1) to β(t2) doesn’t meet β elsewhere, and S1 \ (I1 ∩ I2) is compact,

Δ(β, t1, t2) > 0.

Hence there exists a neighborhood U ⊂ I1 × I2 about (t1, t2) and a neighborhood

U ⊂ V about β such that, for (x1, x2) ∈ U, α ∈ U

Δ(α, x1, x2) > 0.

This means that the line from α(x1) to α(x2) does not meet α
(
S1 \ (I1 ∩ I2)

)
, and since

(x1, x2) ∈ I1 × I2, α(I1) and α(I2) only meet the line at α(x1) and α(x2).
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Figure 2: α is bounded outside of the cone about λ.

Finally, we might worry that the trajectory could go from lying fully inside the table

to fully outside of the table. However, this can be avoided by considering the winding

number of the boundary about, say, the midpoint of the trajectory (see e.g. [GP74GP74, §2.5]),

which can be written as a continuous function on a neighborhood t1, t2 ∈ S1 and β ∈ B
as per the other parts of this proof. This function must be locally constant since it is

integer-valued.

�

The following lemma allows us to apply Lemma 3.13.1:

Lemma 4.2. In any neighborhood of a table β ∈ B with an n-periodic billiard orbit

(t1, . . . , tn) ∈ Tn, there exists a table αwith a periodic orbit (s1, . . . , sn) arbitrarily close to

(t1, . . . , tn), such that (s1, . . . , sn) is a non-degenerate critical point of Lα.

Proof. From Lemma 4.14.1, so long as we can �nd a table as close as we desire to β with a

non-degenerate critical point as close as we desire to (t1, . . . , tn), it will correspond to a

valid billiard trajectory.

Since there are only �nitely many points t1, . . . , tn, a standard approximation argu-

ment allows us to �nd a C2
(or smooth) map γ : S1 → R2 in any C1

neighborhood of β
which agrees with β up to the �rst derivative at t1, . . . , tn.

Recall that

mLγn
mxi

����
(t1,...,tn)

=

〈
γ′(ti) ,

γ(ti) − γ(ti−1)����γ(ti) − γ(ti−1)���� − γ(ti+1) − γ(ti)����γ(ti+1) − γ(ti)����
〉
.
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Thus,

m2Lγn
mximxj

����
(t1,...,tn)

=



〈
γ′′(ti) ,

γ(ti) − γ(ti−1)����γ(ti) − γ(ti−1)���� − γ(ti+1) − γ(ti)����γ(ti+1) − γ(ti)����
〉

+
〈
γ′(ti) ,

γ′(ti)����γ(ti) − γ(ti−1)����
−

〈
γ′(ti) , γ(ti) − γ(ti−1)

〉����γ(ti) − γ(ti−1)����3
(
γ(ti) − γ(ti−1)

)〉
+

〈
γ′(ti) ,

γ′(ti)����γ(ti+1) − γ(ti)����
+

〈
γ′(ti) , γ(ti+1) − γ(ti)

〉����γ(ti+1) − γ(ti)����3
(
γ(ti+1) − γ(ti)

)〉
, i = j

〈
γ′(ti) ,

〈
γ′(tj) , γ(ti) − γ(tj)

〉����γ(ti) − γ(tj)����3
(
γ(ti) − γ(tj)

)
−

γ′(tj)����γ(ti) − γ(tj)����
〉
, j = i ± 1

0, j ≠ i, i ± 1.

The main observation about this formula is that it is a function of γ, γ′, and γ′′ at

t1, . . . , tn, and the only term containing γ′′(ti) is〈
γ′′(ti) ,

γ(ti) − γ(ti−1)����γ(ti) − γ(ti−1)���� − γ(ti+1) − γ(ti)����γ(ti+1) − γ(ti)����
〉

in the formula for

m2Ln
mx2i

, on the diagonal of the Hessian matrix. Then we can perturb γ

in the C1
topology to α : S1 → R2 such that for each ti, γ(ti) = α(ti), γ′(ti) = α′(ti),

and γ′′(ti) is whatever we desire. As noted previously,

γ(ti) − γ(ti−1)����γ(ti) − γ(ti−1)���� − γ(ti+1) − γ(ti)����γ(ti+1) − γ(ti)���� = 0

if and only if γ(ti) lies on the line between γ(ti−1) and γ(ti+1). This is not allowed for a

valid billiard trajectory, since it would mean the line would be tangent to γ′(ti) at γ(ti).
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Therefore, we can control the diagonal of the Hessian for αwhile leaving the rest the same

as for γ, thereby making the Hessian non-singular so that (t1, . . . , tn) is a non-degenerate

critical point for Lαn.
The attentive reader may have noted that γ and α were de�ned as C1

perturbations

of β, but not necessarily maps in B. Indeed, it is not necessarily possible to perform these

perturbations that �xed the maps up to the �rst derivative at each ti while maintaining

that α has unit length and is parameterized by unit speed (one can consider what happens

if α has segments which are straight lines). However, to �x this, one can conformally scale

α and reparameterize by length to get a map α̂ ∈ B with the desired dynamics. It is clear

that we can force α to have a length arbitrarily close to 1, so we can force α̂ to remain

as close as we like to β, and moreover, under the reparameterization to unit speed, the

bounce points will shift to (s1, . . . , sn) as close to (t1, . . . , tn) as we desire.

�

We are now ready for Arnaud’s Method:

Theorem 4.3 (Arnaud’s Method). Let β ∈ B, and let p = (t1, . . . , tn) ∈ Tn correspond

to a periodic billiard trajectory in β. Then for any neighborhood V ⊂ Tn of p and any

neighborhood V ⊂ B of β, there exists a non-empty open set G ⊂ V such that, for any

α ∈ G, there exists q ∈ V corresponding to a periodic billiard trajectory in α.

Proof. First, we use Lemma 4.24.2 to �nd
ˆβ ∈ V for which p still corresponds to a peri-

odic billiard trajectory, but is now a non-degenerate critical point of L
ˆβ
n. Then we apply

Lemma 4.14.1 to get a neighborhood U ⊂ V of p and V′ ⊂ V of
ˆβ such that every point in

U corresponds to a valid n-gon in V′.

Next, we apply Lemma 3.13.1 to get a neighborhoodN ⊂ C1(Tn) ofL
ˆβ
n such that every

f ∈ N has a critical point in U .

Observe (i.e. by (2.52.5) and (2.62.6)) that a perturbation of a table in B corresponds to a

C1
perturbation of the corresponding length function. Precisely, this means we can �nd

a neighborhood G ⊂ V′ of
ˆβ such that, if α ∈ G, Lαn ∈ N .

Thus, for α ∈ G,Lαn has a critical point in q ∈ U . Since q corresponds to a validn-gon

in α, this means q corresponds to a valid n-periodic billiard trajectory for α, as desired.

�

5 Applications
We conclude with applications of Arnaud’s Method. We begin with Arnaud’s result in

[Arn13Arn13], which showed that generic C1
tables have dense periodic orbits, which in this

case means that for generic β ∈ B, the points t ∈ S1 which belong to periodic billiard

12



orbits for β are dense in S1. The argument relies on a corresponding (and much more

challenging) result from rational polygonal billiards:

Theorem 5.1 ([Bos+98Bos+98]). Periodic billiard orbits are dense in rational polygons.

The method is then to approximate C1
tables by rational polygons, outlined as fol-

lows:

Theorem 5.2 ([Arn13Arn13]). Generic tables in B have dense periodic orbits.

Proof. Arnaud’s proof is more or less as follows:

First, let {Ui} be a countable basis for R2. For each Ui, we consider the sets Qi ⊂ B
which consist of tables β such that either β doesn’t enter Ui or there is bounce point of a

periodic orbit for β in Ui. We see, then, that

⋂
i
Qi is exactly the set of tables with dense

periodic orbits. Our goal is to show that each Qi contains an open, dense subset of B.

Qi contains every table that does not enterUi. Hence we only need to show that Qi
contains an open subset of B near every table which does enter Ui. Let β be such a table.

Take ε > 0. It is fairly straightforward to show that we can �nd a unit-length ra-

tional polygon P (considered as a piecewise-smooth map from S1 into R2) such that����P (t) − β(t)���� < ε
4

for all t ∈ S1, and

����P′(t) − β′(t)���� < ε
4

except at the vertices v1, . . . , vN ∈
S1. For this to be true, P′ can only di�er from β′(ti) by at most

ε
4

on either side of a vertex

vi. Thus, we can “round” the corners of P arbitrarily close to the vertices to get a table

α ∈ B such that

����α(t) − β(t)���� , ����α′(t) − β′(t)���� < ε
2

for all t ∈ S1, i.e.

����β − α����C1
< ε, and

such that P agrees with α except on a neighborhood of the vertex as small as we desire.

With ε small enough, we can require that P enters Ui. Since P is a rational polygon,

it has a periodic orbit (t1, . . . , tn) which enters Ui. As a polygonal billiard trajectory, this

orbit cannot hit a vertex. Thus, we can require that α agree with P except on neighbor-

hoods which exclude the bounce points t1, . . . , tn. Moreover, since the orbit was a valid

trajectory in P, we can keep α close enough to P such that the rounded corners won’t

cross the lines of the trajectory.

Thus, we get that (t1, . . . , tn) is also a valid periodic orbit for α, so α ∈ Qi. Since

α ∈ B, we can apply Arnaud’s Method (Thm. 4.34.3) to get an open neighborhood of B
about αwhich is contained in Qi. Since we could make α as close to β in B as we desired,

this shows that Qi contains an open, dense subset of B, as required.

�

We now provide another application, which is to show that genericC1
billiard tables

have either a 2 or a 3 periodic orbit, using a related result for C2
billiards.

Theorem 5.3 ([BG89BG89]). Every C2
billiard table has a glancing or valid 2 or 3-periodic

trajectory.
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The proof of Thm. 5.35.3 given in [BG89BG89] uses some rather intense Palais-Smale theory

to approximate billiard trajectories as Lagrangian �ows with potential that diverges at

the boundary of the table. An updated proof with other related results can be found in

[Iri14Iri14]. In order to apply Arnaud’s method, we need the fact that tables with glancing 2-

and 3-periodic orbits can be perturbed to have valid orbits.

Lemma 5.4. Suppose (x1, . . . , xn) is a glancing n-periodic orbit for β ∈ B, with n =

2, 3. Then there exists α ∈ B arbitrarily close to β and (y1, . . . , yn) arbitrarily close to

(x1, . . . , xn) such that (y1, . . . , yn) is a valid n-periodic orbit for α.

Proof. Let Γi ⊂ S1 be the set of points “glancing” against the segment σi between β(xi)
and β(xi+1), i.e. the points t such that σi is tangent to β at t. Observe that, since we do

not allow σi to be tangent to β at xi or xi+1, Γi is bounded away from xi, xi+1. Then, since

Γi = β−1(σi) \ {xi, xi+1}which is a compact set minus two isolated points, and is this also

compact. Moreover, since n = 2 or 3, if there is a third point xj , it does not lie on the

segment, and thus does not belong toΓi. Thus, the set of all “glance points” Γ =
⋃n

i=1 Γi
is a compact subset of S1 which is does not contain any xi.

Let η be the unit exterior normal map corresponding to β, i.e. the map such that α(t)
is a unit vector pointing outwards at β(t) which is perpendicular to β′(t). Observe that η
is continuous. Then sinceΓ is compact, we can take a smooth bump function ϕ and �nd

a su�ciently small ε such that, if α : S1 → R2 is given by α(t) = β(t) + εϕ(t)η(t), then

α(t) = β(t) around the xi and away from Γ, and α(t) lies in the exterior of β around Γ.

It follows that (x1, . . . , xn) is still a billiard orbit for α, but we have pushed all of the

glancing points away, so this orbit is valid. Moreover, we can make α as close to β in the

C1
topology as we like. However, there is no guarantee that α still has unit length and is

parameterized by unit speed. Observe, though, that we can control the change in length

via ε. Thus, similar to the proof of Lemma 4.24.2, we can scale and reparameterize to �nd

the desired table in B close to β.
�

Theorem 5.5. Generic tables in B have valid 2 or 3-periodic orbits.

Proof. C2
tables are dense inB. Thm. 5.35.3 gives at least a glancing 2 or 3-periodic orbit for

each C2
table, and perturbing these via Lemma 5.45.4 gives a dense set of tables in B with

valid 2- or 3-periodic orbits. Hence, we apply Arnaud’s Method (Thm. 4.34.3) to these

tables to produce a dense, open set in B with valid 2- or 3-periodic orbits. �

Appendix: Quotiented Spaces of Billiard Tables
Here we discuss the de�nition of the billiard space used in [Arn13Arn13], which is a quotient of

the billiard space B de�ned in §22. Recall that Emb
1(S1,R2) is the set of C1

embeddings
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of the circle into the plane, which is an open subset of the Banach space C1(S1,R2), and

that L ⊂ C1(S1,R2) is the set of unit-speed loops, which is closed in C1(S1,R2), and

thus a complete metric space. In §22, we de�ned B as the intersection of Emb
1(S1,R2)

and L .

In [Arn13Arn13], Arnaud de�nes a smaller space as follows: First, we de�ne an equivalence

relation ∼ on L by identifying any two maps which agree up to pre-composition with

an isometry of S1, i.e. if we think of S1 as R/Z, then α ∼ β if α(x) = β (±(x + τ)) , for

τ ∈ R/Z. We denote the equivalence class of α ∈ L by [α]. If d is the metric L inherits

from C1(S1,R2), then we de�ne
ˆd on the set of equivalence classes, L /∼, by

ˆd
(
[α], [β]

)
= inf

α∈[α],β∈[β]

{
d(α, β)

}
.

Arnaud’s billiard space, which we call B̃, is the image of B under the quotient.

In general, a quotient metric such as
ˆdmay not be a metric. For example, the quotient

metric may not satisfy the triangle inequality. Even under a standard modi�cation of the

above formula to resolve this (see [BBI01BBI01, §3]), for some equivalence relations it is only

possible to obtain a compatible pseudometric, for which the distance between distinct

equivalence classes is allowed to be 0. Finally, even when
ˆd is a valid metric on the set of

equivalence classes, this metric may not induce the standard quotient topology.

However, in this case
ˆd is a metric which induces the quotient topology on L /∼. The

key observations to prove this are as follows: First, each equivalence class, as a subset of

L , is homeomorphic to the union of two circles—one for isometries which preserve the

orientation of S1, one for those which reverse it—and in particular is compact. Thus for

any classes [α] and [β], there are α ∈ [α] and β ∈ [β] such that

ˆd
(
[α], [β]

)
= d

(
α, β

)
.

But then we observe that, for any isometry ϕ of S1,

d
(
α ◦ ϕ, β ◦ ϕ

)
= d

(
α, β

)
= ˆd

(
[α], [β]

)
. (5.6)

Using this fact, it is fairly straightforward to show that
ˆd is a metric on L /∼ which

induces the quotient topology. In particular, this means that open subsets of L project

to open subsets of L /∼, and thus B̃ is open in L /∼. The observations above and the fact

that L is complete also allows us to show that
ˆd is a complete metric on L /∼. Thus, as

an open subset of a complete metric space, B̃ is a Baire space. Moreover, since L /∼ has

the quotient topology, we can see that open dense sets project to open dense sets, and it

follows that generic sets project to generic sets. Therefore, the results proven in this paper

for B apply to B̃.
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Finally, it is not hard to repeat all of this analysis for the space where we also identify

maps which agree after composition with a�ne isometries ofR2. In this case, the equiv-

alence classes are not compact (they are homeomorphic to O(2) × R2), but we still have

the property that every point in one equivalence class is a closest point to another, giving

an analogue of (5.65.6). In any case, what this means is that our analysis still agrees with the

principle that only the “shape” of the billiard table matters.
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