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Abstract. This paper builds up the field theory necessary to prove some

famous compass and straightedge impossibility results. Basic knowledge of
rings, vector spaces, and geometric constructions with a compass and straight-

edge is assumed. Theorem 3.3 especially makes use of ring theory. We begin

by formalizing the notion of compass and straightedge construction, and then
introduce the theory of field extensions. Then, we apply field extensions to

compass and straightedge constructions to reveal the field theoretic properties

of these constructions. Finally, we show that some geometric constructions
violate those field theoretic properties, and are thus impossible to construct

with only a compass and straightedge.
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1. Compass and Straightedge Constructions

The treatment of compass and straightedge constructions here follows Chapter
30 of [2] and Chapter 15 of [3].

Even though compass and straightedge constructions were problems of great in-
terest to mathematicians for millennia, many such problems, even ones that appear
simple at first glance, went unsolved until the creation of modern algebra. After
learning the proofs of such problems, the reason why these problems went unsolved
for so long becomes clear. Abstract algebra provides advanced tools for placing
restrictions on which compass and straightedge constructions are possible, and this
enabled mathematicians to prove once and for all that the constructions they had
struggled with were, in fact, impossible. This had gone unproven for so long because
the language of abstract algebra is necessary to articulate what these restrictions
even are, let alone prove them.

In order to apply algebra to compass and straightedge constructions, we have
to put these constructions into an algebraic context. We can think of compass
and straightedge constructions as a finite sequence of steps using the compass and
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straightedge to create some geometric figure starting from a single line segment
of unit length. We imagine all of this taking place in R2, where the initial unit
line segment is the segment connecting (0, 0) and (1, 0). To formalize the idea of
which points can be constructed, we will consider what points can be constructed
when starting with a set M of “marked” points. Each step in the compass and
straightedge construction constitutes “marking” a point by appending it to the
set of already marked points. The following definition captures which points are
“markable” from a set of already marked points.

Definition 1.1. Given a set M⊆ R2, a point P ∈ R2 is constructible in one step
from M if P is the intersection of two distinct figures where each figure is either:

(1) a line AB where A,B ∈M.
(2) a circle with radius AB centered on C where A,B,C ∈M.

Remark 1.2. The line AB for points A,B ∈ R2 refers to the line passing through
points A and B and extending infinitely in both directions, not just the line segment
passing between A and B.

We can define a compass and straightedge construction to be a sequence of
“marking” points.

Definition 1.3. Given a set M ⊆ R2, a point P ∈ R2 is constructible from M if
there exists a finite sequence of points P1, P2, . . . , Pn ∈ R2 such that Pn = P and
for each 1 ≤ i ≤ n, Pi is constructible in one step from M∪ {P1, P2, . . . , Pi−1}.

While the above definition is more general, we would like a way to refer to points
that can be constructed from nothing but the unit line segment.

Definition 1.4. A point P ∈ R2 is constructible if P is constructible from {(0, 0), (1, 0)}
For the sake of brevity in our proofs, we will assume that the following geometric

constructions are possible with only a compass and straightedge: constructing a
perpendicular bisector of any given segment, constructing a line that passes through
any given point and is parallel to any given line, and bisecting any given angle.
Methods for these constructions were known even to the Ancient Greeks.

Thanks to the following proposition, we can actually translate the problem of
figuring out which points are constructible in two dimensions into a problem of
figuring out which coordinates are possible to construct, which is much simpler to
analyze with algebra.

Proposition 1.5. A point (a, b) ∈ R2 is constructible if and only if (a, 0) and (b, 0)
are constructible.

Proof. Using the straightedge, one can draw the line through (0, 0) and (1, 0) to
construct the x-axis. One can construct (−1, 0) and draw a perpendicular bisector
through (−1, 0) and (1, 0) to construct the y-axis.

Suppose (a, b) ∈ R2 is constructible. Construct the x and y axes as described
and then do the steps necessary to construct (a, b). Construct a line parallel to
the y-axis that passes through (a, b) and mark where this line intersects the x-axis.
This point is (a, 0), so (a, 0) is constructible. Now, construct a line parallel to the
x-axis that passes through (a, b) and mark where this line intersects the y-axis. This
point is (0, b). Now, draw a circle of radius |b| centered on (0, 0) and mark where
this intersects the x-axis. One of these points is (b, 0), so (b, 0) is constructible (see
Figure 1).
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Now, suppose instead that (a, 0), (b, 0) ∈ R2 are constructible. Construct the
x and y axes as described and then do the steps necessary to construct (a, 0) and
(b, 0). Draw a circle of radius |b| centered on (0, 0) and mark where this intersects
the y-axis. One of these points will be (0, b). Construct a line parallel to the y-axis
that passes through (a, 0). Then, construct a line parallel to the x-axis that passes
through (0, b), and mark where it intersects the previous line. This point is (a, b),
so (a, b) is constructible (see Figure 1).

(0,0)(0,0) (1,0)(1,0) (a,0)(a,0)(b,0)(b,0)

(a,b)(a,b)(0,b)(0,b)

Figure 1. Equivalence between constructibility of (a, b) and con-
structibility of (a, 0) and (b, 0). Image created with [4].

�

The above proposition allows us to characterize every single constructible point
in the plane just by characterizing the constructible points on the x-axis, which
motivates the following definition.

Definition 1.6. A real number x ∈ R is constructible if (x, 0) is constructible.

Now, we can narrow our focus down to studying a subset of R. It happens
that this set actually has very good algebraic properties. Recall that a field is
a commutative ring with identity 1 6= 0 such that every nonzero element has a
multiplicative inverse. This means that a field is some set equipped with addition,
subtraction, multiplication, and division. Because we can carry out all of these
operations with a compass and straightedge (see below), the constructible numbers
form a field.

Lemma 1.7. Let x ∈ R. Then, x is constructible if and only if −x is constructible.

Proof. If 0 is constructible, then −0 is constructible. If x ∈ R with x 6= 0 is
constructible, then one can construct (x, 0), draw a circle around (0, 0) of radius
|x|, and then mark the remaining intersection with the x-axis to construct (−x, 0).
Also, by the above, if −x is constructible, then −(−x) = x is constructible. Thus,
x ∈ R is constructible if and only if −x is constructible. �

Proposition 1.8. Let a, b ∈ R be constructible numbers. Then, a + b, a − b, and
ab are all constructible numbers. If b 6= 0, then a/b is a constructible number.

Proof. Construct (a, 0) and (b, 0). Draw a circle centered on (a, 0) with radius |b|
and mark the circle’s intersection points with the x-axis. If b 6= 0, one intersection
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is (a− b, 0) and the other intersection is (a+ b, 0). If b = 0, then a− b = a+ b = a,
which is constructible. Hence, a− b and a+ b are constructible numbers.

Suppose a and b are positive. Since 0, 1, a, and b are constructible numbers, by
Proposition 1.5, (0, 1), (0, a), and (0, b) are constructible points. First, construct
(a, 0) and (0, b). Draw the line through (0, 0) and (0, b), and draw the line connecting
(0, b) and (1, 0). Draw a line parallel to the latter line that passes through (a, 0).
Mark point P where this line intersects the line through (0, 0) and (0, b). By similar
triangles, the distance between P and (0, 0) is a times the length of the distance
between (0, 0) and (0, b). Therefore, P = (0, ab) (see Figure 2). By Proposition 1.5,
ab is a constructible number.

(0,0)(0,0) (1,0)(1,0) (a,0)(a,0)

(0,b)(0,b)

P = (0,ab)P = (0,ab)

Figure 2. Construction of (0, ab). Image created with [4].

Now, still assuming a, b > 0, construct (0, a), and (b, 0). Draw the line connecting
(0, a) and (b, 0). Construct a line parallel to the previous one that passes through
(1, 0) and mark the point P where it intersects the line through (0, 0) and (0, a).
By similar triangles, the distance between P and (0, 0) is 1/b times the distance
between (0, a) and (0, 0). Therefore, P = (0, a/b) (see Figure 3). By Proposition
1.5, a/b is a constructible number.

(0,0)(0,0) (1,0)(1,0)

(0,a)(0,a)

(b,0)(b,0)

P = (0,a/b)P = (0,a/b)

Figure 3. Construction of (0, a/b). Image created with [4].

If a = 0, then ab = a/b = 0 is constructible. If b = 0, then ab is constructible. If
a or b is negative, then that will only result in changing the sign of ab and a/b, so
by Lemma 1.7, ab and a/b are constructible numbers. �
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By Proposition 1.8, the constructible numbers form a subfield of the real num-
bers, which begs to be analyzed through the lens of modern algebra. In order to
prove that some compass and straightedge constructions are impossible, we must
place some sort of restriction on what can be in the field of constructible numbers.
Definition 1.3 suggests that we should investigate the process by which a new point
is appended to a set of previously marked points. Since the constructible numbers
form a field, this may lead one to wonder if the process by which a point is marked
is related to the process by which a field is enlarged to contain a new element
(think of enlarging R to contain i). Definition 1.1 suggests that we should look for
a special property that pertains to the intersections of lines and circles. One thing
we can already note is that the equations of lines and circles are first and second
degree polynomials, which will be helpful to keep in mind as we transition toward
our study of fields.

2. A Note on Irreducibility

Irreducible polynomials play an extremely important role in the theory of field
extensions and in the impossibility proofs for compass and straightedge construc-
tions. A method for proving that some polynomials are irreducible will be given
here.

Definition 2.1. Given a polynomial ring F [x] over a field F , a nonconstant
polynomial p(x) ∈ F [x] is irreducible in F [x] if whenever p(x) = a(x)b(x) for
a(x), b(x) ∈ F [x], either a(x) ∈ F or b(x) ∈ F .

Remark 2.2. This definition essentially states that a polynomial is irreducible
when it cannot be written as a product of polynomials of nonzero degree. Fur-
thermore, this definition provides a natural definition of reducible, which means
not irreducible. Also, note that this is certainly not the most general definition of
irreducibility, but for our purposes, it will suffice.

Theorem 2.3 (Eisenstein’s Criterion applied to Z). Let f(x) ∈ Z[x] ⊂ Q[x] be
such that the coefficient of the highest degree term is 1. For some n ∈ N, f(x) can
be expressed in the form

f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a0.

Suppose that for all 0 ≤ i ≤ n − 1, ai is divisible by some prime number p, but a0
is not divisible by p2. Then, f(x) is irreducible in Q[x].

Proof. For proof, see Chapter 9 Corollary 14 of [1]. �

Example 2.4. Consider x2 − 2 ∈ Q[x]. The leading coefficient is 1, every other
coefficient is divisible by 2, and the constant term is not divisible by 22 = 4.
Therefore, by Theorem 2.3, x2 − 2 is irreducible in Q[x].

3. Introduction to Field Extensions

The treatment of field theory here follows Chapter 13 of [1].
A desire to study how elements are marked in compass and straightedge con-

structions may lead one to study how fields are enlarged to contain certain elements.
In order to investigate this, we will need to introduce more language to talk about
fields and their relationships to one another. When given two fields F and K such
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that F ⊆ K, we say that F is a subfield of K. We describe the reverse relationship
as a field extension.

Definition 3.1. Let F and K be fields. We say K is a field extension over F if
F is a subfield of K. When K is a field extension over F , we write K/F , which is
read as “K over F .”

For example, since Q, R, and C are all fields and Q ⊆ R ⊆ C, by Definition 3.1,
C is a field extension of R, R is a field extension of Q, and C is a field extension
of Q. Written in symbols, C/R, R/Q, and C/Q are all field extensions. While the
idea of a field extension may initially seem like a mere restatement of the definition
of a subfield, we later find that it allows us to turn our attention toward studying
the extensions of a particular field, which are distinct from the subfields of that
field.

Given a field extension K/F and an element α ∈ K, we want to know what new
field is “generated” by appending α to F and “closing” the set under multiplication,
addition, and inverses. Specifically, we want to study what happens when you
append elements to subfields of the constructible numbers in hopes of understanding
the constructible numbers themselves, but there are other reasons why one might
want to investigate this. For instance, one may want to study the field generated
by appending

√
2 to Q. The following definition captures this idea.

Definition 3.2. Let K be a field extension of F and let α1, α2, . . . , αn ∈ K. Let
F (α1, α2, . . . , αn) denote the minimal subfield of K such that

F ⊆ F (α1, α2, . . . , αn)

and

α1, α2, . . . , αn ∈ F (α1, α2, . . . , αn).

Using this definition, we can express “the field generated by appending
√

2 to Q”
as Q(

√
2). Let a, b ∈ Q. By Definition 3.2, Q(

√
2) is a field and a, b,

√
2 ∈ Q(

√
2), so

a+ b
√

2 ∈ Q(
√

2). We will see later that every element of Q(
√

2) can be expressed
in this form. Definition 3.2 also gives another way to express the complex numbers,
as C = R(i). Note that if F is any field and α ∈ F , then F (α) = F because F is
the minimal field such that F ⊆ F and α ∈ F .

Using some ring theory, there is a way to give an explicit construction for F (α)
up to isomorphism that is completely independent of any specific field extension of
F (for ring theory definitions and results, see [1] chapters 7, 8, and 9).

Theorem 3.3. Let K be a field extension of F and let α ∈ K. Suppose there is a
polynomial p(x) ∈ F [x] such that p(x) is irreducible in F [x] and p(α) = 0. Then,

F (α) ∼= F [x]/(p(x)).

Proof. Consider the ring homomorphism ϕ : F [x]→ F (α) sending f(x) to f(α). It
follows that

ϕ(p(x)) = p(α) = 0,

so p(x) ∈ kerϕ. Therefore, we obtain an induced homomorphism

ϕ : F [x]/(p(x))→ F (α).

Since (p(x)) is a maximal ideal, F [x]/(p(x)) is a field. Hence, kerϕ = (0), so ϕ is in-
jective. Therefore, ϕ forms an isomorphism between F [x]/(p(x)) and ϕ(F [x]/(p(x))),
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so ϕ(F [x]/(p(x))) is a field. Also,

ϕ(F ) = F ⊆ ϕ(F [x]/(p(x)))

and

ϕ(x) = α ∈ ϕ(F [x]/(p(x))),

so F (α) ⊆ ϕ(F [x]/(p(x))). Since F (α) is the codomain of ϕ, ϕ(F [x]/(p(x))) ⊆
F (α). Therefore,

ϕ(F [x]/(p(x))) = F (α),

so ϕ is surjective. Thus, ϕ is an isomorphism and

F [x]/(p(x)) ∼= F (α).

�

The above theorem essentially states that we can construct F (α) by taking the
polynomial ring F [x] and defining p(x) = 0. This construction is algebraically
identical to F (α) as there is a structure-preserving correspondence between the two
fields given by replacing x with α and vice versa. In fact, the reader may already be
familiar with one such construction. Recall the earlier claim that C = R(i). Since
i is a root of x2 + 1, which is an irreducible polynomial in R[x], by Theorem 3.3,

R(i) ∼= R[x]/(x2 + 1).

Essentially, the field R[x]/(x2 + 1) is the polynomial ring R[x] but with x2 + 1
defined to be equal to 0. Defining x2 + 1 = 0 is equivalent to defining x2 = −1,
thus the field R[x]/(x2 + 1) is the polynomial ring R[x] with x2 defined to be −1.
This is exactly the way in which C is commonly defined, only with x replaced with
a formal variable i which is defined to satisfy the equation i2 = −1.

Theorem 3.3 also proves why every element in Q(
√

2) must be of the form a+b
√

2.

Since
√

2 is a root of the polynomial x2 − 2, which was shown to be irreducible in
Q[x] in Example 2.4, by Theorem 3.3,

Q(
√

2) ∼= Q[x]/(x2 − 2).

In Q[x]/(x2− 2), since x2− 2 is defined to be 0, x2 is defined to be 2. Hence, every

term xk for some k ∈ N is equal to 2k/2 or 2
k−1
2 x. Therefore, every element of

Q[x]/(x2 − 2) can be written as a+ bx for a, b ∈ Q.
In fact, we can use Theorem 3.3 make an even stronger statement about the

structure of Q(
√

2). It turns out that each element of Q(
√

2) can be expressed

uniquely in the form a+ b
√

2. This allows us to think of each element of Q(
√

2) as

a vector with two components, where the elements 1 and
√

2 form a basis for Q(
√

2)
when it is thought of as a vector space over Q. This is entirely analogous to how the
complex numbers can be thought of as a 2-dimensional vector space over R with
the basis 1, i ∈ C, and that analogy is no coincidence. Given any field extension
K/F , K forms a vector space over F because all of the vector addition and scalar
multiplication axioms follow directly from the field axioms. This corresponds to
the fact that Q(

√
2) forms a vector space over Q and C forms a vector space over

R. This fact also means that both R and C form vector spaces over Q, but these
spaces are somehow different from the previous two examples. No matter how
many elements we append to Q (provided that number is finite) we will never be
able to “generate” R, and by extension, C. This means that R and C, as a vector
spaces over Q, have no finite basis. So, R/Q and C/Q form infinite-dimensional
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vector spaces, as opposed to the finite-dimensional vector spaces formed by C/R
and Q(

√
2)/Q.

Now that we can consider field extensions as vector spaces, the dimension of
those vector spaces can give us a sense of the “size” of various field extensions.

Definition 3.4. Let K/F be a field extension. Then, the degree of the field exten-
sion K/F is the dimension of K when interpreted as a vector space over F . If the
degree of K/F is n, we write

[K : F ] = n.

Since C is a 2-dimensional vector space over R, the degree of C/R is 2. Written
in symbols,

[C : R] = 2.

As previously stated, 1,
√

2 ∈ Q(
√

2) forms a basis for Q(
√

2)/Q, so [Q(
√

2) : Q] = 2
as well. The following theorem will prove these facts.

Theorem 3.5. Let K/F be a field extension and let α ∈ K. Suppose there exists
an irreducible polynomial p(x) ∈ F [x] such that p(α) = 0. Let n be the degree of
p(x). Then, 1, α, . . . , αn−1 forms a basis for F (α) as a vector space over F , and

[F (α) : F ] = n.

Proof. For the remainder of this proof, we will think of F (α) as a vector space over
F . By Theorem 3.3,

F (α) ∼= F [x]/(p(x)).

Let ϕ : F [x]/(p(x))→ F (α) be the isomorphism given in the proof of Theorem 3.3.
Let t ∈ F (α). Since ϕ is an isomorphism, ϕ is surjective, so there exists an

element f ∈ F [x]/(p(x)) such that ϕ(f) = t. There exists a g(x) ∈ F [x] such that
f = g(x) + p(x)F [x]. By the Euclidean algorithm for F [x], there exist h(x), r(x) ∈
F [x] with deg r(x) < n such that

g(x) = h(x)p(x) + r(x).

Hence,
g(x) + p(x)F [x] = r(x) + p(x)F [x].

Since deg r(x) < n, there exist r0, r1, . . . , rn−1 ∈ F such that

r(x) = r0 + r1x+ · · ·+ rn−1x
n−1.

Therefore,

t = ϕ(f) = ϕ(g(x) + p(x)F [x]) = ϕ(r(x) + p(x)F [x]) = r(α),

which means
t = r0 + r1α+ · · ·+ rn−1α

n−1.

Therefore, the elements 1, α, . . . , αn−1 span F (α).
Suppose the elements 1, α, . . . , αn−1 are not linearly independent. Then, there

exist c0, c1, . . . , cn−1 ∈ F where there is at least one ci 6= 0 such that

(3.6) c0 + c1α+ · · ·+ cn−1α
n−1 = 0.

Let c(x) ∈ F [x] be given by

c(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

Since there is one ci 6= 0 with 0 ≤ i ≤ n− 1, c(x) is a nonzero polynomial. Also,

deg c(x) < n.
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By (3.6), c(α) = 0. Hence,

ϕ(c(x) + p(x)F [x]) = c(α) = 0 = ϕ(0 + p(x)F [x]).

Since ϕ is an isomorphism, ϕ is injective, so

c(x) + p(x)F [x] = 0 + p(x)F [x].

Therefore, c(x) ∈ p(x)F [x], so p(x) divides c(x). Since c(x) 6= 0 and p(x) di-
vides c(x), it follows that deg c(x) ≥ n. However, this is a contradiction, because
deg c(x) < n. Therefore, 1, α, . . . , αn−1 are linearly independent.

Because 1, α, . . . , αn−1 are linearly independent and span F (α), these elements
form a basis for F (α). Since the basis has n elements, F (α) is an n-dimensional
vector space. By Definition 3.4,

[F (α) : F ] = n.

�

The above theorem is the culmination of our study of fields so far because it
allows us to instantly grasp the structure of any field extension of the form F (α) as
soon as we find an irreducible polynomial p(x) ∈ F [x] such that p(α) = 0. It will
prove essential in our study of compass and straightedge constructions. While this
theorem is powerful on its own, it becomes many times more powerful when used
in tandem with the following theorem.

Theorem 3.7. Let L/K and K/F be field extensions. Then, L/F is a field exten-
sion. The degrees [L : K] and [K : F ] are finite if and only if [L : F ] is finite. If
those degrees are finite, then

[L : F ] = [L : K][K : F ].

Proof. Suppose [L : F ] is finite. Hence, L/F has a finite basis. Since F ⊆ K,
this means L/K is spanned by a finite number of vectors. Therefore, there exists
a finite basis for L/K. Thus, [L : K] is finite. Since K/F is a subspace of L/F ,
which is a finite dimensional vector space, K/F is also a finite dimensional vector
space. Thus [K : F ] is finite.

Now, instead suppose [L : K] = n and [K : F ] = m. Then, L/K is an n-
dimensional vector space and K/F is an m-dimensional vector space. Therefore,
there exists a basis α1, α2, . . . , αn ∈ L for L/K and a basis β1, β2, . . . , βm ∈ K for
K/F . It is easy, but somewhat tedious to check that the set

B = {βiαj | 1 ≤ i ≤ m and 1 ≤ j ≤ n}

forms a basis for L/F . Since B has nm elements, the dimension of L/F is nm.
Thus,

[L : F ] = nm = [L : K][K : F ].

�

There are many nontrivial results that this theorem, when combined with Theo-
rem 3.5, can prove with surprising ease. Some of these results are the compass and
straightedge proofs that we are searching for, as these theorems allow us to place
a tight bound on what degree field extensions are possible in the subfields of the
constructible numbers.
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4. Compass and Straightedge Constructions Revisited

The treatment of compass and straightedge constructions here follows Chapter
30 of [2].

Now that we have some powerful tools from field theory, we are ready to use
them to analyze compass and straightedge constructions.

Proposition 4.1. Let F be a subfield of R and let (a, b) ∈ R2. Let K be the
minimum subfield of R such that F ⊆ K and (a, b) ∈ K ×K. Then,

K = F (a, b).

Proof. We have (a, b) ∈ K ×K if and only if a, b ∈ K, so the proposition follows
directly from Definition 3.2. �

The above shows how we might use field extensions to analyze how a new point
is marked. The following theorems will use the field theoretic tools we have built
up to carry out that analysis.

Theorem 4.2. Let F be a subfield of R and let (a, b) ∈ R2 be a point constructible
in one step from F × F . Then,

[F (a, b) : F ] = 2m

for some m ∈ N ∪ {0}.

Proof. By Definition 1.1, (a, b) is the intersection of two distinct figures where each
figure is either:

(1) a line AB where A,B ∈ F × F .
(2) a circle with radius AB centered on C where A,B,C ∈ F × F .

Hence, (a, b) is either the intersection of a line and a line, the intersection of a line
and a circle, or the intersection of a circle and a circle. For the remainder of this
proof, if there is a point P ∈ R2, we will refer to the coordinates of P as xP and
yP so that P = (xP , yP ). Note that if P ∈ F × F , we have xP , yP ∈ F .

Suppose (a, b) is the intersection of two distinct linesAB and CD withA,B,C,D ∈
F × F . Therefore,

(xB − xA)(b− yA) = (yB − yA)(a− xA)

and

(xD − xC)(b− yC) = (yD − yC)(a− xC).

Solving these equations simultaneously gives expressions for a and b in terms of
elements of F combined using the field operations, which means a, b ∈ F . Hence,
F (a, b) = F , so

[F (a, b) : F ] = [F : F ] = 1 = 20.

Suppose (a, b) is the intersection of a line AB and a circle with radius CD
centered on E for A,B,C,D,E ∈ F × F . Let r = CD. Then,

r =
√

(xD − xC)2 + (yD − yC)2.

Hence,

r2 = (xD − xC)2 + (yD − yC)2 ∈ F.
Then,

(xB − xA)(b− yA) = (yB − yA)(a− xA)
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and

(a− xE)2 + (b− yE)2 = r2.

Solving the linear equation either gives the value of a or b in terms of elements of
F , or it gives a linear relationship between a and b. In the first case, applying the
result to the circle equation gives a polynomial equation for the other value of a
or b. In the second case, applying the result twice gives a polynomial equation for
a and a different polynomial equation for b. In all cases, there are polynomials in
F [x] (and by extension, F (a)[x]) of degree less than or equal to two which a and
b are roots of. In each polynomial ring, each of these polynomials must either be
irreducible or have irreducible factors that a and b are roots of, which must also be
of degree less than or equal to two. Therefore, by Theorem 3.5,

[F (a) : F ] ≤ 2 and [F (a, b) : F (a)] ≤ 2.

Thus, [F (a) : F ], [F (a, b) : F (a)] ∈ {1, 2}, so [F (a) : F ], [F (a, b) : F (a)] are both
powers of two. Hence,

[F (a, b) : F ] = [F (a, b) : F (a)][F (a) : F ] = 2m

for some m ∈ N ∪ {0}.
Suppose (a, b) is the intersection of a circle with radius AB centered on C and a

circle of radius DE centered on G for A,B,C,D,E,G ∈ F × F . Let rC = AB and
rG = DE. By a similar argument to the previous case, r2C , r

2
G ∈ F ,

(a− xC)2 + (b− yC)2 = r2C ,

and

(a− xG)2 + (b− yG)2 = r2G.

It follows that

(a− xC)2 + (b− yC)2 = r2C

=⇒ (a2 − 2xCa+ x2C) + (b2 − 2yCb+ y2C) = r2C

=⇒ a2 + b2 − 2xCa− 2yCb+ (x2C + y2C − r2C) = 0

=⇒ a2 + b2 + c1a+ c2b+ c3 = 0

for c1, c2, c3 ∈ F . By a similar process, one can use the other equation to find
d1, d2, d3 ∈ F that depend on D, E, and G such that

a2 + b2 + d1a+ d2b+ d3 = 0.

Taking the difference between these equations, we see that (a, b) lies on the line

(c1 − d1)x+ (c2 − d2)y + (c3 − d3) = 0.

Because the two circles are distinct, ci − di 6= 0 for at least one i ∈ {1, 2, 3}, so
the graph of the above equation is not the entire plane. Also, (a, b) satisfies the
above equation, so the graph of the equation is not empty. Hence, the graph of the
equation is a non-degenerate line. Furthermore, all the coefficients are in F , so this
line must pass through two points whose coordinates are in F . Therefore, (a, b)
must lie on a line that passes through two points in F × F . Thus, by applying the
previous case,

[F (a, b) : F ] = 2m

for some m ∈ N ∪ {0}. In all cases, [F (a, b) : F ] is a power of two. �
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Corollary 4.3. Let F be a subfield of R and let (a, b) ∈ R2 such that (a, b) is
constructible from F × F . Then,

[F (a, b) : F ] = 2m

for some m ∈ N ∪ {0}.

Proof. By Definition 1.3, there exists a finite sequence of points P1, P2, . . . , Pn ∈ R2

such that Pn = (a, b) and for each 1 ≤ i ≤ n, Pi is constructible in one step from
(F × F ) ∪ {P1, . . . , Pi−1}. Let K0 = F , and for each 1 ≤ i ≤ n, let Pi = (ai, bi)
and Ki = Ki−1(ai, bi). Note that since Pn = (a, b), we have (an, bn) = (a, b) and
Kn = Kn−1(a, b).

By definition, we have K0 = F , so F × F ⊆ K0 ×K0. Suppose that for some
0 ≤ j ≤ n− 1,

(F × F ) ∪ {P1, . . . , Pj} ⊆ Kj ×Kj .

Then, by Proposition 4.1,

(F × F ) ∪ {P1, . . . , Pj+1} ⊆ (Kj ×Kj) ∪ {Pj+1}
⊆ Kj(aj+1, bj+1)×Kj(aj+1, bj+1)

= Kj+1 ×Kj+1.

Therefore, by induction, for all 0 ≤ i ≤ n,

(F × F ) ∪ {P1, . . . , Pi} ⊆ Ki ×Ki.

Let 1 ≤ i ≤ n. Then, Pi is constructible in one step from (F×F )∪{P1, . . . , Pi−1}.
Therefore, Pi is constructible in one step from Ki−1 ×Ki−1. By Theorem 4.2,

[Ki : Ki−1] = [Ki−1(ai, bi) : Ki−1] = 2mi

for some mi ∈ N ∪ {0}. Finally, by Theorem 3.7,

[Kn : F ] = [Kn : K0]

= [Kn : Kn−1][Kn−1 : Kn−2] . . . [K1 : K0]

= (2mn)(2mn−1) . . . (2m1)

= 2mn+mn−1+···+m1

= 2m

for some m ∈ N ∪ {0}.
Recall that Kn = Kn−1(a, b), so a, b ∈ Kn. Also, since

F = K0 ⊆ K1 ⊆ · · · ⊆ Kn,

we have F ⊆ Kn. Therefore, F (a, b) ⊆ Kn. By Theorem 3.7,

2m = [Kn : F ] = [Kn : F (a, b)][F (a, b) : F ],

so [F (a, b) : F ] divides 2m. Therefore, there exists some 0 ≤ k ≤ m such that

[F (a, b) : F ] = 2k.

�

This is the powerful theorem that makes all the impossibility proofs in this paper
possible. For ease of use, we will put it into a form that can be more readily applied
to constructible numbers.

Proposition 4.4. A point P ∈ R2 is constructible if and only if P is constructible
from Q×Q.
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Proof. Suppose P ∈ R2 is constructible. By Definition 1.4, P is constructible from
{(0, 0), (1, 0)}. Since

{(0, 0), (1, 0)} ⊆ Q×Q,

P is constructible from Q×Q.
Suppose P ∈ R2 is constructible from Q × Q. Since the constructible numbers

form a subfield of R, and Q is the minimal subfield of R, Q is a subset of the
constructible numbers. Therefore, every point used in constructing P from Q×Q
is constructible, which implies that P is constructible. �

Corollary 4.5. Let α ∈ R be a constructible number. Then,

[Q(α) : Q] = 2m

for some m ∈ N ∪ {0}.

Proof. By Definition 1.6, (α, 0) is a constructible point. By Proposition 4.4, (α, 0)
is constructible from Q×Q. By Corollary 4.3,

[Q(α, 0) : Q] = 2m

for some m ∈ N ∪ {0}. Since 0 ∈ Q, Q(α, 0) = Q(α). Therefore,

[Q(α) : Q] = 2m.

�

5. Impossibility Proofs

The treatment of the compass and straightedge impossibility proofs here follows
Chapter 30 of [2].

We now have everything we need to do the compass and straightedge impossibil-
ity proofs. The first of these proofs is very quick and will communicate the general
strategy used in this type of proof. Do not be fooled, though: this problem went
unsolved for millennia. The simplicity of its proof is a testament to the beauty and
power of field theory.

Proposition 5.1. It is not possible, using only a compass and straightedge, to
construct a cube with double the volume of any given cube.

Proof. Suppose that, given the side length of any cube, it is possible to construct
the side length of a cube with double the volume. Then, given a length of 1, it
is possible to construct the side length of a cube with volume 2. This side length
would have a length of 3

√
2, so one could use this line segment to construct ( 3

√
2, 0).

Therefore, 3
√

2 would be a constructible number. We know that 3
√

2 is a root of
x3 − 2. Since the leading coefficient is 1, every other coefficient is divisible by 2,
and the constant term is not divisible by 4, by Theorem 2.3, x3 − 2 is irreducible
in Q[x]. By Theorem 3.5,

[Q(
3
√

2) : Q] = 3,

which is not a power of 2. This contradicts Corollary 4.5. Therefore, it is not
possible, using only a compass and straightedge, to construct a cube with double
the volume of any given cube. �
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The following proof is for a considerably more famous result: the problem of angle
trisection, which means using a compass and straightedge to divide a given angle
into three equal angles. The proof is somewhat more involved than the previous
proof, but it still follows the same structure, and it is far simpler than one might
expect given the infamy of this problem throughout history.

Proposition 5.2. It is not possible, using only a compass and straightedge, to
trisect any given angle.

Proof. Given the unit segment, one can construct an equilateral triangle by drawing
two circles of radius 1 centered on the points (0, 0) and (1, 0), and then marking
the top intersection. Connecting these three points with lines gives an equilateral
triangle of side length 1. Let A = (0, 0), B = (1, 0), and let C be the third point of
the triangle. Since 4ABC is equilateral, ∠BAC = π

3 .
Suppose it is possible to trisect any arbitrary angle. Then, it is possible to divide

∠BAC into three angles where each angle is π
9 radians. This will create two lines

that will each intersect BC. Let the lower of these points of intersection be D.
Thus, ∠BAD = π

9 . Finally, mark the point E where AD intersects a circle of
radius 1 centered on A. Since E is on the unit circle and is π

9 radians from the
x-axis,

E =
(

cos
π

9
, sin

π

9

)
(see Figure 4). Therefore, cos π9 is a constructible number. Since the constructible
numbers form a field, 2 cos π9 is also a constructible number.

A = (0, 0)A = (0, 0) B = (1, 0)B = (1, 0)

CC

DD

Figure 4. Construction of point E. Image created with [4].

By elementary trigonometry,

cos(3θ) = 4 cos3 θ − 3 cos θ
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for any angle θ. It follows that

cos
π

3
= 4 cos3

π

9
− 3 cos

π

9

=⇒ 1

2
= 4 cos3

π

9
− 3 cos

π

9

=⇒ 1 = 8 cos3
π

9
− 6 cos

π

9

=⇒ 0 = 8 cos3
π

9
− 6 cos

π

9
− 1

=⇒ 0 =
(

2 cos
π

9

)3
− 3

(
2 cos

π

9

)
− 1.

Therefore, 2 cos π9 is a root of x3 − 3x− 1. If x3 − 3x− 1 is reducible in Q[x], then

(x+ 1)3 − 3(x+ 1)− 1 is reducible in Q[x]. Expanding the latter polynomial gives

(x+ 1)3 − 3(x+ 1)− 1 =
(
x3 + 3x2 + 3x+ 1

)
+ (−3x− 3)− 1

= x3 + 3x2 + (3x− 3x) + (1− 3− 1)

= x3 + 3x2 − 3.

In the above polynomial, the leading coefficient is 1, every other coefficient is divis-
ible by 3, and the constant term is not divisible by 9. Therefore, by Theorem 2.3,
x3 + 3x2 − 3 is irreducible in Q[x]. Hence, (x+ 1)3 − 3(x+ 1)− 1 is irreducible in
Q[x], so x3 − 3x− 1 is irreducible in Q[x]. By Theorem 3.5,[

Q
(

2 cos
π

9

)
: Q
]

= 3,

which contradicts Corollary 4.5. Therefore, it is not possible to trisect any arbitrary
angle. �

Note that the above proof also shows that it is impossible to construct an angle
of π

9 radians. This also inadvertently proves that any construction resulting in an
angle of π

9 radians is impossible. For instance, see the following corollary.

Corollary 5.3. It is impossible to construct a regular 9-gon using only a compass
and straightedge.

Proof. Suppose that it is possible to construct a regular 9-gon. Then, each exterior
angle on the 9-gon is 2π

9 radians. One could then bisect one of these angles to create
an angle of π9 radians. However, the proof of the above proposition shows that it is
impossible to construct a π

9 radian angle. Therefore, it is impossible to construct a
regular 9-gon with only a compass and straightedge. �
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