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Abstract. In this paper we will observe the eight-fold periodicity in Clifford
algebras and use it to explain the real Bott periodicity in topological K-theory
through the Atiyah-Bott-Shapiro map [4]. We will also discuss the equivalence
between KO-orientability and Spin-structures, the vector fields on spheres
problem, and the problem of normed division algebras over R as applications.
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1. Introduction

The Bott periodicity theorem is essential in algebraic topology because it deter-
mines how topological K-theories are realized as generalized cohomology theories.
Hence, people came up with many different proofs of Bott periodicity theorem to
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better understand it. However, the hardest thing to explain is why the eight-fold
periodicity in real topological K-theory arises.

In 1963, Atiyah-Bott-Shapiro [4] discovered that the eight-fold periodicity in
Clifford modules coincides with the periodicity in real K-theory, and this striking
coincidence can be further developed into a ring isomorphism between the Clifford
modules and the real K-theory of a point since both sides are equipped with nice
ring structures. This is an exciting moment that Clifford algebras step into the
area of topology. Through this ring isomorphism, the algebraic structure of real
K-theory is captured by the Clifford modules and the eight-fold periodicity hence
arises from Clifford algebras in the sense of Morita equivalence.

The goal of this paper is to explicate the construction of the Atiyah-Bott-Shapiro
map (abbreviated as ABS map) which is a ring homomorphism connecting the
Clifford modules with real topological K-theory and prove that it becomes a ring
isomorphism in a special case, following [4]. In this paper, we fill in the gaps in
the proofs in [4] and try to clarify the ideas behind the technical details. Also, the
paper [4] restricted the discussion of the real K-theory Thom isomorphism only for
vector bundles of dimension of a multiple of 8 and it has already been remarked
by Karoubi [18] that such restriction is unnecessary. We generalize the result to
an arbitrary dimension and include a complete proof of the equivalence between
KO-orientability and Spin-structures.

We first observe the eight-periodicity in Clifford algebras and Clifford modules
(Table 1, Table 2, Table 3) in Section 2. Further, we will construct the ring struc-
tures of the Clifford modules (Definition 2.27) and give an explicit computation of
the rings (Theorem 2.33, Theorem 2.34). Then, we aim to construct the ABS map

(1.1) αP : Ak →
⊕
k≥0

K̃O(T (V ))

where P → X is a principal Spin(k)-bundle, X is a based finite CW complex, and
V = P ×Spin(k) Rk is the associated vector bundle of P . Roughly speaking, for
every Z/2-graded Clifford module M = M0 ⊕M1, we associate a vector bundle
E = P ×Spin(k)M = E0⊕E1 over X with it which is also Z/2-graded. Pulling back
through π : D(V ) → X gives us two bundles π∗E1 and π∗E0 over D(V ) which
coincide on S(V ), and a morphism π∗E1 → π∗E0 by multiplication by elements
in the Clifford algebra. Since the morphism restricts to an isomorphism on S(V ),
the difference bundle construction, called Euler characteristic in [4], gives us an
element in KO(D(V ), S(V )) = K̃O(T (V )).

The main theme of Section 3 is to introduce this difference bundle construction
(Theorem 3.5). To further show that the ABS map is multiplicative, we generalize
our bundles π∗E1 → π∗E0 to sequence of bundles (Definitions 3.2, Definition 3.3,
Definition 3.8). This generalization mainly works to ease calculations but brings no
new mathematics. The multiplicative property of the Euler characteristic is stated
in Proposition 3.12 and a computation of the product is summarized in Proposi-
tion 3.16. These provide essential data to ensure the ABS map to be multiplicative.

In particular, composing the restriction map i∗x : K̃O(T (V )) → K̃O(T (Vx)) =

K̃O(Sk) = KO−k(pt) with the ABS map gives us a map α : Ak → KO−k(pt).
This induces a ring isomorphism

α : A∗ →
⊕
k≥0

KO−k(pt)

where A∗ is the graded ring of Clifford modules, called the Atiyah-Bott-Shapiro
isomorphism. The main goal of Section 4 is to prove the ring isomorphism. The
idea is that as we have computed the ring structure of Clifford modules in Section 2,



CLIFFORD ALGEBRAS AND BOTT PERIODICITY 3

combining this data with the ring structure of the real K-theory of a point, which
is well-known, it suffices to check that the ABS isomorphism sends generators to
generators, so it will naturally become a ring isomorphism. Although we mainly
focus on the real K-theory in this paper, the parallel results carry out for the
complex case as well.

Proving the ABS isomorphism is the climax of this paper. However, the signif-
icance of the ABS map is more than this. In Section 5, we will first use the ABS
map to prove that the KO-orientability of a vector bundle is equivalent to that
it admits a Spin-structure. The ABS map also plays a role in the computation
of the real K-theory of real stunted projective spaces. This computation plays a
very important role in Adams’ solution to the upper bound of the vector fields on
spheres problem. Since the construction of the maximal number of vector fields also
comes from Clifford algebras, we will introduce this problem briefly in Section 5.2
and outline how Clifford algebras and the ABS map are involved there. Finally,
as an interesting corollary of the vector fields on spheres problem which also con-
nects to Clifford algebras closely, we will introduce a solution to the classification
of normed division algebras over R in Section 5.3. The main goal of introducing
the vector fields on spheres problem and the normed division real algebras problem
is to show how Clifford algebras appear as key ingredients in many other problems
in mathematics.

The paper [4] inspires people to look for proofs of Bott periodicity using Clifford
algebras. However, it is not easy to directly connect the topological K-theory with
Clifford algebras; the construction of the ABS map is rather technical and not
computational-friendly. Hence, the strategy for using Clifford algebras to prove
Bott periodicity is to find alternative models for topological K-theory which are
closely related to Clifford algebras, so we can use Clifford algebras to prove the
Bott periodicity in those models first; then show that the Bott periodicity in the
alternative models imply the original Bott periodicity. The first attempt is given
by Wood [28] in 1966 using Z/2-graded Banach algebras to realize the periodicity
in Clifford algebras. In 1968, Karoubi [18] introduced the K-theories of Banach
categories which are additive categories endowed with extra topological structures,
generalizing Wood’s result. This new K-theory directly inherits the periodicity of
Clifford algebras and is equivalent to the topological one. In 1969, Atiyah-Singer [5]
gave a different proof by studying the action of some particular Fredholm operators
on Z/2-graded Hilbert spaces acted by Clifford algebras. The Fredholm operators
are connected to topological K-theory by the Atiyah-Jänich theorem [3, Theorem
A1] that the real K-theory of a compact space is represented by the space of all
Fredholm operators on an infinite-dimensional real Hilbert space.

2. Clifford algebras and Clifford modules

This section aims to introduce the Clifford modules which appear on the left
hand side of the ABS map, construct the ring structure, and finally compute the
ring (Theorem 2.33, Theorem 2.34). To set up the foundation, we need to first
understand the Clifford algebras.

2.1. Clifford algebras. We will first define the general Clifford algebras in Sec-
tion 2.1.1, and move to some particular Clifford algebras (denoted as Ck) we are
most interested in, the ones derived from Euclidean spaces Rn, in Section 2.1.2. A
complete computation of Ck will be given in Section 2.1.3.

2.1.1. Basic definitions. We denote k as a field. Let E be a k-vector space and
Q : E → k be a quadratic form over E.
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Definitions 2.1. (1) The tensor algebra over E is

T (E) =

∞⊕
i=0

T iE

where for i > 0, T iE = E ⊗ E ⊗ · · · ⊗ E︸ ︷︷ ︸
k times

and T 0E = k.

(2) The Clifford algebra of Q is defined by the quotient

C(Q) = T (E)/(x⊗ x−Q(x) | x ∈ E).

where (−) refers to the ideal generated by the elements in the brackets.

We embed the vector space E into C(Q) through the composition iQ : E ↪→
T (E) � C(Q) which is injective.

Example 2.2. When Q = 0, the Clifford algebra C(Q) is the exterior algebra
Λ(E).

Proposition 2.3 (The universal property of Clifford algebras). For any k-algebra
A with a linear homomorphism φ : E → A such that

(2.4) φ(x)2 = Q(x) in A,

there exists a unique k-algebra homomorphism φ̃ : C(Q)→ A such that φ̃ ◦ iQ = φ.

Define F qT (E) =
∑
i≤q T

i(E) and F qC(Q) = F qT (E)/(x⊗ x−Q(x) | x ∈ E).

Notice that F qC(Q) gives a filtration over C(Q). Moreover, denote GC(Q) as
the associated graded algebra of C(Q) with respect to this filtration, and we have
GC(Q) ∼= Λ(E). Hence, dimk C(Q) = 2dimk E . Let e1, · · · , en be a basis of iQ(E).
Then

{ei1ei2 · · · eik | 1 ≤ i1 < · · · < ik ≤ n}
⋃
{1}

forms a basis for C(Q).
Let π : T (E)→ C(Q) be the quotient map. Define the Z/2-grading on C(Q) by

C0(Q) = π
(∑∞

i=0 T
2i(E)

)
and C1(Q) = π

(∑∞
i=0 T

2i+1(E)
)
. It is worth noticing

that we equip C(Q) with the Z/2-grading while T (E) is a Z-graded algebra. This
is because (x⊗ x−Q(x) | x ∈ E) is not homogeneous when Q 6= 0.

2.1.2. The algebras Ck. From now on, we fix base field to be R and E = Rk where
k ≥ 1 is an integer. Consider the quadratic form Qk : Rk → R,

(x1, · · · , xk) 7→ −
k∑
i=1

x2
i .

We denote the Clifford algebra of Qk as Ck. In particular, we identify Rk with its
embedding image iQ(Rk) in Ck and R with R ·1 in Ck. For k = 0, we define C0 = R.
For each Ck, its corresponding complex version is defined by the complexification,
i.e. Ck ⊗R C.

Now we want to develop an alternative description of Ck using generators and
relations, which turns out to be more useful. Let ei = (0, · · · , 1, · · · , 0) be the unit
vector in Rk with 1 in the i-th position and 0 in the others. Then Ck is the universal
algebra over R generated by {e1, · · · , ek} subject to the relation{

e2
i = −1,
eiej + ejei = 0, i 6= j.

This follows directly from Lemma 2.6 and the following definition of graded tensor
product where k can be taken as an arbitrary field.



CLIFFORD ALGEBRAS AND BOTT PERIODICITY 5

Definition 2.5. A =
⊕

α=0,1A
α, B =

⊕
β=0,1B

β are Z/2-graded k-algebras. The
graded tensor product A⊗̂kB of A and B over k is⊕

i=0,1

⊕
α+β≡i (mod2)

Aα ⊗Bβ

with the multiplication given by

(u⊗ x)(y ⊗ v) = (−1)αβuy ⊗ xv
where x ∈ Bβ , y ∈ Aα, u ∈ A, v ∈ B.

Lemma 2.6. As R-algebras, C1
∼= C and

Ck ∼= C⊗̂ · · · ⊗̂C︸ ︷︷ ︸
k times

.

To prove Lemma 2.6 we need the following lemma which is stated below without
proof.

Lemma 2.7. Let E = E1 ⊕ E2 be an orthogonal decomposition of E with respect
to Q. Let Qi = Q|Ei , i = 1, 2. Then there is an isomorphism

C(Q) ∼= C(Q1)⊗̂kC(Q2).

Proof of Lemma 2.6. The isomorphism C1
∼= C follows from ϕ : E = R → C, x 7→

ix which extends to ϕ̃ : C1 → C by applying the universal property (2.4) of C1.
Observe that ϕ̃ maps generators to generators as an R-vector space homomorphism;
hence it is an isomorphism. Ck ∼= C1 ⊗̂ · · · ⊗̂C1 follows by applying Lemma 2.7
repeatedly. �

2.1.3. Computing Ck. This section focuses to compute the algebras Ck (Table 1).
This is important because it lays a foundation to our calculations of the Clifford
modules in Section 2.2.

In the following, let F = R or C or H and write F (n) for the F -algebra of n× n
matrices over F . We will assume the following facts about matrix algebras.

Facts 2.8. (1) F (n) ∼= R(n)⊗R F ;
(2) R(n)⊗ R(m) ∼= R(nm);
(3) C⊗R C ∼= C⊕ C;
(4) H⊗R C ∼= C(2);
(5) H⊗R H ∼= R(4).

We first introduce a new family of Clifford algebras which mirror our Ck’s. They
are used as an intermediary in the computation.

Definition 2.9. C ′k is defined as the universal algebra over R generated by {1, e1, · · · , ek}
subject to the relation {

e2
i = 1
eiej + ejei = 0 i 6= j.

Indeed, C ′k = C(−Qk) is a Clifford algebra.

Proposition 2.10. There are isomorphisms

Ck ⊗R C
′
2
∼= C ′k+2, C ′k ⊗R C2

∼= Ck+2.

Proof. We denote the generators of Ck by {1, e1, · · · ek} and the generators of C ′k
by {1, e′1, · · · e′k}. To show that Ck ⊗R C

′
2
∼= C ′k+2, consider the map

ψ : Rk+2 → Ck ⊗ C ′2

e′i 7→
{
ei−2 ⊗ e′1e′2, 3 ≤ i ≤ k + 2;
1⊗ e′i, 1 ≤ i ≤ 2.
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Since ψ satisfies the universal property (2.4) of C ′k+2, it can be extended as ψ :
C ′k+2 → Ck⊗C ′2 and is a vector space isomorphism because it sends basis to basis.
Then ψ is an R-algebra isomorphism. C ′k ⊗R C2

∼= Ck+2 follows similarly. �

Observation 2.11. (1) C1
∼= C;

(2) C2
∼= H;

(3) C ′1 ∼= R⊕ R;
(4) C ′2 ∼= R(2).

Proof. (1) and (2) follow from Lemma 2.6. (3) is given by C ′1 ∼= R 1+e′1
2 ⊕R 1−e′1

2 and
one checks that it is a direct sum of rings. The isomorphism in (4) is determined

by e′1 7→ 1√
2

(
1 1
1 −1

)
and e′2 7→ 1√

2

(
−1 1
1 1

)
. �

Now, using Facts 2.8, Proposition 2.10 and Observation 2.11, an inductive cal-
culation gives us the following table of Clifford algebras.

k Ck C ′k Ck ⊗R C = C ′k ⊗R C

1 C R⊕ R C⊕ C

2 H R(2) C(2)

3 H⊕H C(2) C(2)⊕ C(2)

4 H(2) H(2) C(4)

5 C(4) H(2)⊕H(2) C(4)⊕ C(4)

6 R(8) H(4) C(8)

7 R(8)⊕ R(8) C(8) C(8)⊕ C(8)

8 R(16) R(16) C(16)

Table 1.

Notice that Proposition 2.10 implies

Ck+4
∼= C ′k+2 ⊗ C2

∼= Ck ⊗ C ′2 ⊗ C2
∼= Ck ⊗ C4

and hence

(2.12) Ck+8
∼= Ck ⊗ C8

∼= Ck ⊗ R(16).

If Ck ∼= F (n), then Ck+8
∼= F (16n), so Ck and Ck+8 have the same coefficient ring

but of different dimensions. This guarantees the eight-fold periodicity of Clifford
modules which will be discussed in detail in Section 2.2. For the complex case, we
observe that

Ck+2 ⊗R C ∼= (Ck ⊗R C)⊗ R(2)

leads to a two-fold periodicity.

2.2. Clifford modules. We now introduce the left hand side objects in the ABS
map, the ring A∗, and calculate its ring structure.

In Section 2.2.1 we define the Clifford modules M(Ck) and calculate them (Ta-
ble 2). Then, in Section 2.2.2, we define Ak as a cokernel of M(Ck), and derive the
calculations of Ak based on M(Ck) (Table 3). From the computations of Ak, we
observe that they coincide with KO−k(pt) and share the same eight-fold periodic-
ity. In Section 2.2.3, we construct the ring structure on A∗ =

∑
k Ak, and give a

computation of the ring A∗ (Theorem 2.33, Theorem 2.34).
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2.2.1. M(Ck) and M c(Ck).

Definitions 2.13. We define M(Ck) to be the free abelian group generated by
the isomorphism classes of irreducible Z/2-graded Ck-modules. Similarly, we de-
fine N(Ck) to be the free abelian group generated by the isomorphism classes of
irreducible (ungraded) Ck-modules. Usually we callM(Ck) and N(Ck) the Clifford
modules.

We denote the corresponding free abelian groups with respect to the complex
Clifford algebras Ck⊗RC byM c(Ck) andN c(Ck) and call them the complex Clifford
modules.

The reason that we introduce N(Ck) after M(Ck) is because it forgets about
the grading structure on Ck-modules and hence is easier to compute. Indeed, the
computation of N(Ck) is closely connected to the computation ofM(Ck) according
to the following result. Recall that Ck = C0

k ⊕ C1
k is given a Z/2-grading.

Proposition 2.14. (1) Let M = M0⊕M1 be a Z/2Z-graded Ck-module. Nat-
urally, M0 is a C0

k-module. Then there is an isomorphism

M(Ck) ∼= N(C0
k)

M = M0 ⊕M1 7→M0

Ck ⊗C0
k
M ←[ M.

For the complex case, we also have M c(Ck) ∼= N c(C0
k). [4, Proposition 5.3]

(2) Define

φ : Rk → C0
k+1

ei 7→ eiek+1

where {e1, · · · , ek} generates Ck. Since φ satisfies the universal property
(2.4) of Ck, it extends to an isomorphism φ : Ck

∼−→ C0
k+1. [4, Proposition

5.4]

An important algebraic tool we need is the following result on representations of
artinian rings.

Theorem 2.15 ([16, Theorem 4.4]). Let R be a semi-simple aritinian ring and
R = R1 ⊕ · · · ⊕Rs be the direct sum decomposition of the simple components of R.
Let Ii be a minimal left ideal in Ri. Then {I1, · · · , Is} is a set of representatives
of the isomorphism classes of irreducible R-modules. Moreover, any R-module is
completely reducible.

Definition 2.16. Let ak (resp. ack) be the R-dimension (resp. C-dimension) ofM0

when M = M0⊕M1 is an irreducible Z/2Z-graded module for Ck (resp. Ck⊗RC).

We now start to compute M(Ck) and M c(Ck). In Table 1, notice that Ck is
always isomorphic to the direct sum of rings of finite dimensional matrices over
R,C or H which are all division rings. According to the structure theorem for
semi-primitive aritinian rings [16, page 203], Ck is semi-simple and aritinian. Then
Theorem 2.15 tells us that when k 6= 3, 7, Ck has only one (ungraded) irreducible
module up to isomorphism, the n-tuples of elements in F (F = R,C orH); and when
k = 3, 7, Ck has exactly two (ungraded) irreducible modules (up to isomorphism),
each inherited from the summand. In summary,

N(Ck) ∼=

 Z, k 6= 3, 7

Z⊕ Z, k = 3, 7.
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On the other hand, using Proposition 2.14 we get

M(Ck) ∼= N(C0
k) ∼= N(Ck−1).

Hence,

M(Ck) ∼=

 Z, k 6= 4, 8

Z⊕ Z, k = 4, 8.

The calculation of M c(Ck) is similar. Now we are able to write down the following
table of M(Ck), M c(Ck), ak and ack.

k Ck M(Ck) ak M c(Ck) ack

1 C Z 1 Z 1

2 H Z 2 Z⊕ Z 1

3 H⊕H Z 4 Z 2

4 H(2) Z⊕ Z 4 Z⊕ Z 2

5 C(4) Z 8 Z 4

6 R(8) Z 8 Z⊕ Z 4

7 R(8)⊕ R(8) Z 8 Z 8

8 R(16) Z⊕ Z 8 Z⊕ Z 8

Table 2.

Moreover, in (2.12) we have Ck+8
∼= Ck ⊗R R(16), so

M(Ck+8) ∼= M(Ck)

M c(Ck+2) ∼= M c(Ck),
(2.17)

and
ak+8 = 16ak

ack+2 = 2ack.
(2.18)

Theorem 2.15 tells us that every Z/2-graded Ck-module is completely reducible;
hence the Grothendieck group of Z/2-graded Ck-modules coincide with M(Ck).
For this reason, we may also call M(Ck) the Grothendieck group of Z/2-graded
Ck-modules.

(2.17) is the eight-fold periodicity (resp. two-fold periodicity) in Clifford modules
(resp. complex Clifford modules), guaranteed by (2.12). Now we want to explain
this periodicity from the perspective of Morita equivalence.

Definition 2.19. We say that two rings R and S areMorita equivalent if there exist
bimodules RMS and SNR such that RM ⊗S NR ' RRR and SN ⊗RMS ' SSS .

For any ring R, R is Morita equivalent to R(n) if we consider the bimodules
RR

n
R(n) and R(n)R

n
R. In particular, since Ck+8

∼= Ck ⊗R R(16), Ck and Ck+8 are
Morita equivalent.

Moreover, the rings R and S are Morita equivalent if and only if the category
of left R-modules is equivalent to the category of left S-modules [16, Morita I,
page 167, and Morita II, page 178], and this implies the group isomorphism be-
tween the Grothendieck groups of left R-modules and left S-modules. Hence, the
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Morita equivalence between Ck and Ck+8 implies the group isomorphism between
M(Ck) and M(Ck+8), and then reveals the eight-fold periodicity. More details
about Morita equivalence can be found in [16, Section 3.12].

The isomorphism in (2.17) can be explicitly written down as the multiplication
by an isomorphism class of irreducible modules of C8, as will be further explained
in Section 2.2.3.

2.2.2. Ak and Ack. Let i : Ck → Ck+1 be the inclusion. It induces a group homo-
morphism

i∗ : M(Ck+1)→M(Ck).

Definition 2.20. We define

Ak := coker i∗ = M(Ck)/i∗M(Ck+1).

Similarly, in the complex case we define

Ack := M c(Ck)/i∗M c(Ck+1).

By abusing notations, we also call Ak and A∗ the Clifford modules.

Now we want to calculate Ak and Ack. The calculation of Ak when k 6= 4n
(n ∈ Z≥0) (resp. Ack when k 6= 2n) is simple because there is only one irreducible
Z/2Z-graded module for Ck (resp. Ck ⊗R C) up to isomorphism. The results are
listed in the following table.

k Ck M(Ck) Ak ak M c(Ck) Ack ack

1 C Z Z/2Z 1 Z 0 1

2 H Z Z/2Z 2 Z⊕ Z Z 1

3 H⊕H Z 0 4 Z 0 2

4 H(2) Z⊕ Z Z 4 Z⊕ Z Z 2

5 C(4) Z 0 8 Z 0 4

6 R(8) Z 0 8 Z⊕ Z Z 4

7 R(8)⊕ R(8) Z 0 8 Z 0 8

8 R(16) Z⊕ Z Z 8 Z⊕ Z Z 8

Table 3.

(2.17) tells us that
Ak+8

∼= Ak

Ack+2
∼= Ack.

(2.21)

It remains to prove that A4n
∼= Z and Ac2n

∼= Z. We will use the following ∗
operation on M(Ck) and M c(Ck) as an important tool.

Definition 2.22. Let M = M0⊕M1 be a Ck-module (resp. Ck⊗C-module) with
its Z/2Z-grading. Define

M∗ = M1 ⊕M0;

that is, M∗ is the module obtained from M by interchanging its grading decompo-
sition. Then M∗ is again a Z/2Z-graded Ck-module (resp. Ck ⊗ C-module). This
induces an involutive operation on M(Ck) (resp. M c(Ck)), called the ∗ operation.
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Proposition 2.23. Let k = 4n. IfM and N are the two non-isomorphic irreducible
Ck-modules, then

M ∼= N∗ and N ∼= M∗.

Proof. First we reduce this problem to ungraded modules. Let λ ∈ Aut(Ck) and
construct a Z/2Z-graded Ck-module Mλ from M in the following way: the under-
lying set of Mλ is the same as M , but the action of Ck on Mλ is defined as

x ·m = λ(x)m, x ∈ Ck.
In particular, consider the automorphisms

α : Ck−1 → Ck−1 β : Ck → Ck

ei 7→ −ei x 7→ ekxe
−1
k

where {e1, · · · , ek} generates Ck. We only stated the action of α on generators; its
detailed construction will be later explained in ??. One checks that α and β fit into
the commutative diagram

(2.24) Ck−1
φ //

α

��

C0
k

β

��
Ck−1

φ
// C0
k

where φ is defined in Proposition 2.14 (2). Consider the map

ek · − : M∗ →Mβ

m 7→ ek ·m

which is a Z/2Z-graded Ck-module homomorphism. Since multiplication by ek
induces a Ck-module isomorphism M0 ∼= M1, ek · − is an isomorphism. Hence,
using (2.24) we have the following commutative diagram

M(Ck)
∼ //

∗
��

N(C0
k)

∼ //

ek·− ∼
��

N(Ck−1)

−α

��
M(Ck)

ek·− ∼
��

N(C0
k)

∼ // N(Ck−1)

M(Ck)

∼
::

from which we see that the ∗ operation
∗ : M(Ck)→M(Ck)

M 7→M∗

corresponds to

−α : N(Ck−1)→ N(Ck−1)

N 7→ Nα.

Therefore we have reduced the problem of the ∗ operation onM(Ck) to the problem
of −α operation on N(Ck−1).

Then, it suffices to show that the operation −α switches the two irreducible
modules of Ck−1. From Table 1 we see that when k = 4n, Ck−1

∼= Ck−2⊗Ck−2 and
Ck−2 is simple. Recall that a ring R can be expressed as a finite direct product of
simple rings if and only if 1 ∈ R can be written as a sum of orthogonal centrally
primitive idempotents [20, page 327]. Hence we seek the central elements in C4n−1.
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Indeed, the center of C4n−1 is spanned by 1 and ω = e1e2 · · · e4n−1. Further, ω2 = 1.
Thus, there are two orthogonal centrally primitive idempotents (1 ± ω)/2, and
Ck−1 = Ck−1(1+ω)/2⊕Ck−1(1−ω)/2 is a decomposition of its simple components.
By Theorem 2.15,

N1 = Ck−1
1 + ω

2
and N2 = Ck−1

1− ω
2

represent the two non-isomorphic classes of irreducible modules of Ck−1. Moreover,
notice that there is a Ck−1-module isomorphism Nα

i
∼= α(Ni) where i = 1, 2. Since

α(ω) = −ω, α switches N1 and N2 and hence and −α switches N1 and N2. �

Corollary 2.25. A4n
∼= Z.

Proof. Let x, y be the isomorphism classes of the two distinct irreducible modules
in M(C4n) and z be the class of the irreducible module in M(C4n+1). Then z∗ = z
and Proposition 2.23 tells us that x∗ = y and y∗ = x. Let i : C4n → C4n+1 be the
inclusion. Then (i∗z)∗ = i∗z∗ = i∗z. Counting the dimension, the only possibility
is i∗z = x+ y. Hence

A4n = M(C4n)/i∗M(C4n+1) = Zx⊕ Zy/Z(x+ y) ∼= Z.

�

The proof of Ac2n ∼= Z follows similarly.

2.2.3. The ring structure of Clifford modules.

Notation 2.26. We write M∗ =
⊕∞

k=0M(Ck) and A∗ =
⊕∞

k=0Ak; M
c
∗ and Ac∗

are the corresponding complex versions.

In this section we will define the ring structures ofM∗ and A∗, and their complex
versions. Moreover, we will give an explicit calculation of the rings A∗ and Ac∗ in
Theorem 2.33 and Theorem 2.34 respectively, and use the calculation to describe
the complexification map in Proposition 2.35.

In Definition 2.5 we have introduced the graded tensor product of two graded
algebras. Similarly, we give the following definition of the graded tensor product of
two graded modules.

Definition 2.27. Let M,N be Z/2Z-graded modules of Ck and Cl respectively.
We defineM⊗̂N , called the graded tensor product ofM and N , as a Ck⊗̂Cl-module
in the following way:

(1) The underlying group has the grading

(M⊗̂N)0 = M0 ⊗N0 ⊕M1 ⊗N1,

(M⊗̂N)1 = M1 ⊗N0 ⊕M0 ⊗N1;

(2) The action of Ck⊗̂Cl on M⊗̂N is given by

(x⊗ y) · (m⊗ n) = (−1)qi(x ·m)⊗ (y · n), y ∈ Cql ,m ∈M
i (q, i = 0, 1).

Now we define the ring structure on M∗. Consider the isomorphism

(2.28) φk,l : Ck+l → Ck⊗̂Cl
which is defined as the extension of the map

ei 7→

 ei ⊗ 1 1 ≤ i ≤ k,

1⊗ ei−k k + 1 ≤ i ≤ k + l
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where {e1, · · · , ek+l} generates Ck+l. This induces the following composition

M(Ck)×M(Cl)→M(Ck⊗̂Cl)→M(Ck+l)

(M,N) 7→ M⊗̂N 7→ φ∗k,l(M⊗̂N)

which is bilinear. Hence, we have the pairing

M(Ck)⊗M(Cl)→M(Ck+l).

which induces the Z-graded ring structure over M∗. We denote the product by
(u, v) 7→ u · v for u ∈M(Ck), v ∈M(Cl). The following proposition summarizes the
basic properties of this ring structure.

Proposition 2.29 ([4, Proposition 6.2]). Let u ∈M(Ck), v ∈M(Cl). We have the
following properties:

(1) the multiplication u · v is associative;
(2) (u · v)∗ = u · v∗;

(3) u · v =

 v · u, if kl is even,

(v · u)∗, if kl is odd;
(4) If i : Ck−1 → Ck is the inclusion, then the induced map

i∗ : M(Ck)→M(Ck−1)

is the restriction homomorphism, and

u · i∗v = i∗(u · v)

for k ≥ 1.

In particular, from Proposition 2.29 (4) we know that im i∗ is an ideal of M∗.
Hence A∗ = coker i∗ naturally inherits the ring structure from M∗.

Next we show that the eight-fold periodicity in (2.17) can be realized by multi-
plying an isomorphism class of irreducible graded modules of C8.

Corollary 2.30. Let λ ∈M(C8) be one isomorphism class of the irreducible graded
modules of C8. Then multiplication by λ induces an isomorphism

M(Ck)
∼−→M(Ck+8)

and
Ak

∼−→ Ak+8,

where k ≥ 0.

Proof. We first show that multiplying by λ induces isomorphismM(Ck)
∼−→M(Ck+8).

When k 6= 4n, let x be the class of the irreducible module of Ck. Then

dim(λ · x)0 = dimλ0 · dimx0 + dimλ1 · dimx1 = 2a8 · ak = 16ak = ak+8

where the last equality comes from (2.18). Therefore, λ · x corresponds to the class
of the irreducible module of Ck+8, so λ ·− : M(Ck)

∼−→M(Ck+8) is an isomorphism.
When k = 4n, let x and y be classes of the two irreducible graded modules of

Ck. Proposition 2.23 tells us that x∗ = y. Again, by comparing dimensions, λ · x
corresponds to one class of the irreducible graded modules of Ck+8. Since

λ · y = λ · x∗ = (λ · x)∗,

where the last equality comes from Proposition 2.29, (2), λ · y corresponds to the
other class of irreducible graded modules of Ck+8. Hence λ·− : M(Ck)

∼−→M(Ck+8)
is an isomorphism.

The isomorphism Ak
∼−→ Ak+8 given by multiplication by λ follows directly from

M∗. �
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When k = 4n, recall that in the proof of Proposition 2.23 we showed the two
generators of N(Ck−1) are represented by

N1 = Ck−1
1 + ω

2
and N2 = Ck−1

1− ω
2

.

Using Proposition 2.14, let M1 and M2 be two irreducible graded Ck-modules rep-
resenting the two generators of M(Ck). Then,

M0
1
∼= C0

k

1 + ω

2
and M0

2 = C0
k

1− ω
2

.

Observe that ω = e1 · · · e4n acts as 1 on M0
1 and acts as −1 on M0

2 since ω2 = 1.
Hence, the behavior of ω on the zero-degree of the irreducible graded Ck-modules
distinguishes the two generators.

Definition 2.31. Let M be a Z/2Z-graded module of C4n. For any ε ∈ Z, we say
that M is an ε-module if ω acts as ε on M0. This definition also applies for the
graded C2n ⊗R C-modules.

Lemma 2.32. (1) If M is an ε-module for C4n, then M∗ is a (−ε)-module;
(2) If M is an ε-module and M ′ an ε′-module for C4n, then M⊗̂M ′ is an

εε′-module for C8n.

Proof. Notice that every element in M1 can be expressed in the form eix where ei
is a generator of Ck and x ∈ M0. Since ωeix = −eiωx = −ei(εx) = −ε(eix), ω
acts as −ε on M1; hence M∗ is a (−ε)-module. The second part follows directly
from (1). �

Now we compute the ring structure of A∗.

Theorem 2.33. A∗ is the graded-commutative ring generated by a unit 1 ∈ A0, ξ ∈
A1, µ ∈ A4, λ ∈ A8 with relations:

2ξ = 0

ξ3 = 0

ξµ = 0

µ2 = 4λ.

Proof. 2ξ = 0 because A1
∼= Z/2. Since dim(ξ2)0 = dim ξ0 ·dim ξ0+dim ξ1 ·dim ξ1 =

2, ξ2 is nonzero; hence it generates A2. ξ3 = 0 and ξµ = 0 because the groups they
lie in are both zero. Hence it remains to show that µ2 = 4λ.

Let µ be the generator of A4 and λ be the generator of A8. We know that
µ2 = aλ for some integer a. To determine the coefficient a, we need to go back
to M(C∗) where the ring structure is explicitly defined and work on particular
irreducible graded C∗-modules. LetM be an irreducible 1-module for C4. Consider
ω = e1e2e3e4. By Lemma 2.32 (2), M⊗̂M is an 1-module for C8. Now let W be an
irreducible 1-module for C8. Then we know that M⊗̂M ∼= aW. Since dimM⊗̂M =
64 and dimW = 16, it follows that a = 4. �

A parallel result holds for the complex case where two generators of M c(C2l)
correspond to ±il-modules respectively.

Theorem 2.34. There is a ring isomorphism

Ac∗
∼= Z[µc].

Now, knowing the ring structures of both A∗ and Ac∗, we will study the relation
between these two rings, as summarized by the following result.
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Proposition 2.35. There is a ring homomorphism

c : A∗ → Ac∗

given by the complexification M 7→ M ⊗R C, under which ξ 7→ 0, µ 7→ 2(µc)2 and
λ 7→ (µc)4.

Proof. c(ξ) = 0 because there is no nonzero 2-torsion element in Ac1. Again, to
determine the coefficients a, b where c(µ) = a(µc)2 and c(λ) = b(µc)4, we need to
go back to M(C∗) and M c(C∗). Let M be an irreducible 1-module for C4. Then
M ⊗RC is a complex (−1)-module for C4⊗RC. Let N be an i-module for C2⊗RC.
Hence M ⊗RC = aN⊗̂N. Since dimM ⊗RC = 2a4 = 8 and dim(N⊗̂N) = 2ac4 = 4,
we see that a = 2. Then, c(λ) = c(µ2/4) = (µc)4. �

3. The difference bundle construction

This section focuses to introduce the difference bundle construction which is the
last step in the construction of the ABS map. The result applies equally to real
and complex vector bundles, and we will just refer to vector bundles.

We first introduce our main objects, the sequences of bundles over (X,Y ) for Y
a subcomplex of a based finite CW complex X (Section 3, Definition 3.3) in Sec-
tion 3.1. Then, in Section 3.2, we will introduce the difference bundle construction
(Theorem 3.5) which connects Ln(X,Y ) with topological K-theory. In Section 3.3,
we will construct a product structure over Ln(X,Y ) (Proposition 3.12) and give an
explicit computation of the product of two elements (Proposition 3.16). In these,
Many proofs of the results are omitted in this section for clarity and those who are
interested can find the detailed proofs in Appendix B.

Convention 3.1. In this section, all base spaces of the vector bundles are assumed
to be based finite CW complexes.

3.1. Sequences of bundles.

Definitions 3.2. Let Y ⊆ X be based finite CW complexes. For each positive
integer n,

• consider Cn(X,Y ) consisting of sequences

E = (0→ En
σn−−→ En−1

σn−1−−−→ · · · → E1
σ1−→ E0 → 0)

where the Ei’s are vector bundles overX, σi’s are homomorphisms of vector
bundles defined over Y , and the sequence is exact over Y . There is a natural
levelwise direct sum operation on the sequences E which endows Cn(X,Y )
with an abelian semi-group structure;

• a homomorphism E → E′ in Cn(X,Y ) consists of levelwise isomorphisms
of vector bundles Ei → E′i on X such that the squares are commutative
over Y ;

• an elementary sequence in Cn(X,Y ) is a sequence of the form 0 → Ei
id−→

Ei → 0; that is, Ei = Ei−1 with σi = id for some i, and Ej = 0 for
j 6= i, i− 1.

The elementary sequences determine an equivalence relation ∼ in Cn(X,Y ) in
the following sense: E ∼ E′ if there exist elementary sequences P i, Qj ∈ Cn(X,Y )
such that E ⊕ P 1 ⊕ · · · ⊕ P r ∼= E′ ⊕ Q1 ⊕ · · · ⊕ Qs. In other words, we regard
sequences E and E′ to be equivalent if they are isomorphic after taking direct sums
with elementary sequences.

Definition 3.3. Define Ln(X,Y ) = Cn(X,Y )/ ∼ where ∼ is the equivalence re-
lation defined above. Ln(X,Y ) inherits the abelian semi-group structure from
Cn(X,Y ) given by direct sums. If Y = ∅, we write Ln(X) = Ln(X,∅).
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Ln(X,Y ) are the main objects that we work with for the difference bundle con-
struction. Observe that Ln(X,Y ) defines a functor

Ln : The category of pairs of based finite CW complexes→ SemiAb.

Consider the inclusion map

Cn(X,Y ) ↪→ Cn+1(X,Y )

E = (0→ En → · · · → E0 → 0) 7→ (0→ 0→ En → · · · → E0 → 0);

the image of E in Cn+1(X,Y ) is obtained by adding En+1 = 0. This gives us a
sequence of inclusions

C1(X,Y ) ↪→ C2(X,Y ) ↪→ · · · ↪→ Cn(X,Y ) ↪→ · · ·
which passes to

L1(X,Y )→ L2(X,Y )→ · · · → Ln(X,Y )→ · · · .
These inclusions are abelian semi-group homomorphisms.

Proposition 3.4. The abelian semi-group homomorphisms jn : L1(X,Y )→ Ln(X,Y )
are isomorphisms for 1 ≤ n <∞.

Now, since all the Ln(X,Y )’s are isomorphic, why should we define so many of
them instead of just focusing on a single one, for example, L1(X,Y )? Indeed, when
we involve Cn(X,Y )’s and Ln(X,Y )’s in our construction of the ABS map, we are
just using the case when n = 1. However, the higher-degree semi-groups make it
easier to describe the product structure

Ln(X,Y )⊗ Lm(X ′, Y ′)→ Ln+m(X ×X ′, X × Y ′ ∪ Y ×X ′)
which will be discussed in Section 3.3, which allows the ABS map to naturally be-
come a group homomorphism. One can definitely use the isomorphism Ln(X,Y ) ∼=
L1(X,Y ) to pass this product structure to a multiplication on L1(X,Y ), but this
is not computationally friendly because the extension σ′n+1 : En+1 → En, though
has been proved to exist, is not constructed explicitly.

3.2. Euler characteristics. Following is our main result for the difference bundle
construction.

Theorem 3.5. There exists a unique natural transformation between the functor
L1 and the (complex or real) K-theory χ : L1 → K which for Y = ∅ is given by
χ(E) = E0 − E1. Moreover, χ is an isomorphism.

Here we abused the notation of K to denote either complex or real K-theory,
depending on whether we are considering complex or real vector bundles for Cn
and Ln. For any integer 1 ≤ n <∞, we can use the isomorphism jn : L1

∼−→ Ln to
define

χ : Ln
j−1
n−−→
∼

L1
χ−→ K

which we still denote as χ, and it is an isomorphism as well. Moreover, from our
construction of j−1

n : Ln → L1 in the proof of Proposition 3.4, we know that when
Y = ∅, χ(E) =

∑n
i=0(−1)iEi.

Definition 3.6. We call the map χ the Euler characteristic.

Notice that χ(E) = E0 − E1 for E ∈ L1(X,∅) coincides with the geomet-
ric description of K(X) that every element can be written as a difference of two
vector bundles over X. This shows how Ln(X,Y ) can be interpreted as an alterna-
tive description of the relative K-group K(X,Y ). However, the product structure
on Ln(X,Y ) (which will be introduced in Section 3.3) is easier to compute than
K(X,Y ).
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We will only introduce the construction of the Euler characteristic χ : L1 → K
here. The proof that such Euler characteristic is unique and a natural isomorphism
is contained in Section B.2. Consider a pair of CW complexes (X,Y ). Let Xi :=
X × {i}, where i = 0, 1. We first construct a new space A from (X,Y ) by gluing
X0 and X1 along Y

A = X0 ∪Y X1 = X0 tX1/(y, 0) ∼ (y, 1), y ∈ Y.

Then we have the natural retractions

πi : A→ Xi, (a, i) 7→ a

for i = 0, 1 which induces a map on K-groups π∗i : K(Xi)→ K(A). Recall that in
K-theory we have the following exact sequence

Kn−1(A)
j∗i // Kn−1(Xi)

π∗i

{{
// K0(A,Xi)

ρ∗i // K0(A)
j∗i // K0(Xi)

π∗i

||
// K1(A,Xi)

where n = 2 for real K-theory and n = 8 for complex K-theory. Since we have
j∗i ◦ π∗i = id, j∗i is naturally surjective. Hence, by exactness, the maps K0(Xi) →
K1(A,Xi) and Kn−1(Xi) → K0(A,Xi) are zero maps, so we get a split exact
sequence

0 // K(A,Xi)
ρ∗i // K(A)

j∗i // K(Xi) //

π∗i

~~
0.

Also, if we identify X with Xi, we have natural inclusions φi : (X,Y )→ (A,Xi+1)

where we regard i ∈ Z/2Z. This induces an isomorphism onK-groups φ∗i : K(A,Xi+1)
∼−→

K(X,Y ) because A/Xi+1 ' X/Y.
Now, consider a sequence E = (0 → E1

σ−→ E0 → 0) ∈ C1(X,Y ) where by
definition σ : E1 → E0 is an isomorphism of vector bundles over Y . Construct a
vector bundle F → A by

F := E0 t E1/(e1, y) ∼ (σ(e1), y), y ∈ Y, e1 ∈ E1|{y}.

Then the isomorphism class of F depends only on the isomorphism class of E in
C1(X,Y ); that is, if there exists another vector bundle F ′ → A which is constructed

from E′ = (0 → E′1
σ′−→ E′0 → 0) such that F ∼= F ′ as vector bundles over A, the

restriction of the isomorphism overX0 andX1 gives rise to the isomorphism E ∼= E′,
and vice versa.

Let Fi := π∗i (Ei) ∈ K(A). By definition, we have F |Xi = Fi|Xi = Ei, which
implies that (F−Fi)|Xi = 0 where the minus sign means taking fiberwise orthogonal
complement. Hence F − F1 ∈ ker j∗i = im ρ∗1. ρ

∗
1 being injective ensures that

ρ∗−1
1 (F − Fi) is well-defined, so we may define

χ(E) = (φ∗0 ◦ ρ∗−1
1 )(F − F1) ∈ K(X,Y ).

This gives us a map
χ : C1(X,Y )→ K(X,Y )

E 7→ (φ∗0 ◦ ρ∗−1
1 )(F − F1).

(3.7)

Observe that χ is additive, i.e. χ(E ⊕ E′) ∼= χ(E) ⊕ χ(E′). Moreover, if E is an
elementary sequence, we have χ(E) = 0. Indeed, E being elementary implies that
E1 = E0 and σ = id. Since F1 = π∗1(E1), we have F = F1 and F − F1 = 0. Notice
that ρ∗1 is injective and φ∗0 is bijective, so χ(E) = 0. Therefore, (3.7) factors through
L1(X,Y ):

χ : L1(X,Y )→ K(X,Y ).
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Our construction of χ is natural.
The last step is to check what χ looks like when Y = ∅. Indeed, we have

A = X0 tX1

F = E0 × {0} t E1 × {1}
Fi = Ei × {0} t Ei × {1}

F − F1 = (E0 − E1)× {0} t {0} × {1}

so χ(E) = (φ∗0 ◦ ρ∗−1
1 )(F − F1) = E0 − E1, as we expected.

3.3. Products. Now we aim to construct the product structure for Ln’s and prove
the multiplicative property of the Euler characteristic under this product structure
(Proposition 3.12). Although we remark at the end of Section 3.1 that it is difficult
to use the isomorphism L1

∼= Ln to compute the product of E,E′ ∈ L1(X,Y )
in L1(X,Y ), we still find an element F ∈ L1(X,Y ) such that χ(F ) = χ(EE′) =
χ(E)χ(E′) (Proposition 3.16).

Definition 3.8. We denote Dn(X,Y ) as the set of sequences E = (0 → En
σn−−→

En−1
σn−1−−−→ · · · → E1

σ1−→ E0 → 0) where the Ei’s are vector bundles over X, σi’s
are homomorphisms of vector bundles defined over X, σi−1σi = 0, and the sequence
is exact over Y .

By restricting the homomorphisms σi to Y , we get a sequence in Cn(X,Y ). This
gives us an inclusion map ϕ : Dn(X,Y )→ Cn(X,Y ).

Definition 3.9. Two sequences E,E′ ∈ Cn(X,Y ) (resp. Dn(X,Y )) are homotopic
if there exists an element F ∈ Cn(X × I, Y × I) (resp. Dn(X × I, Y × I)) such that
E ∼= F |X×{0} and E′ ∼= F |X×{1}.

The homotopy relation behaves well under our natural quotient map Cn(X,Y )→
Ln(X,Y ) in the following sense.

Proposition 3.10. Homotopic elements in Cn(X,Y ) define the same elements in
Ln(X,Y ). Hence, we have a well-defined induced homomorphism Cn(X,Y )/ '→
Ln(X,Y ) where ' is the homotopy relation.

Proof. This follows from the isomorphism χ : Ln(X,Y )
∼−→ K(X,Y ) in Theorem 3.5

by noticing that the K-theory K(X,Y ) is homotopy-invariant. �

Proposition 3.11. The induced map

ϕ : Dn(X,Y )/ '→ Cn(X,Y )/ ',
where ' is the homotopy relation, is a bijection.

The main result of the product structure on Ln(X,Y ) is summarized as follows.

Proposition 3.12 (Douady). There is a natural product

Ln(X,Y )⊗ Lm(X ′, Y ′)→ Ln+m(X ×X ′, X × Y ′ ∪ Y ×X ′)
which is induced by the tensor product of vector bundles; we also denote this prod-
uct as ⊗. Moreover, the Euler characteristic is multiplicative with respect to this
product, i.e. χ(E ⊗ E′) = χ(E)χ(E′).

Notation 3.13. Let V and W be vector bundles (resp. principal G-bundles) over
based spaces X and Y respectively. Let p1 : X × Y → X and p2 : X × Y → Y be
the projections to the first and second coordinate. We denote

V �W = p∗1V ⊕ p∗2W,
V �W = p∗1V ⊗ p∗2W
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as the direct sum and tensor product operations for vector bundles (resp. principal
G-bundles) over two different base spaces. Then, V �W and V �W become vector
bundles (resp. principal G-bundles) over X × Y.

For homomorphisms f : V → V ′ and g : W →W ′, the induced homomorphisms
are denoted as

f � g = p∗1f ⊕ p∗2g : V � V ′ →W �W ′,

f � g = p∗1f ⊗ p∗2g : V � V ′ →W �W ′.

Proof of Proposition 3.12. We first define the product structure over Dn:

(3.14) Dn(X,Y )⊗Dm(X ′, Y ′)→ Dn+m(X ×X ′, X × Y ′ ∪ Y ×X ′).

Given E ∈ Dn(X,Y ), F ∈ Dm(X ′, Y ′) such that

E = (0→ En
σn−−→ · · · σ1−→ E0 → 0),

F = (0→ Fm
τm−−→ · · · τ1−→ F0 → 0),

we define the product E ⊗ F by

(3.15) (E ⊗ F )i =

i∑
k=0

Ek � Fi−k

with the vector bundle homomorphisms defined as

σi : (E0 � Fi)⊕ · · · ⊕ (Ei � F0)→ (E0 � Fi−1)⊕ · · · ⊕ (Ei−1 � F0)

(a0,i, a1,i−1, · · · , ai,0) 7→ ((id � τi)(a0,i) + (σ1 � id)(a1,i−1), · · · ).

This gives an element in Dn+m(X×X ′, X×Y ′∪Y ×X ′); further, it is additive and
compatible with homotopies. Hence, using Proposition 3.10 and Proposition 3.11,
this product is passed to to Ln:

Ln(X,Y )⊗ Lm(X ′, Y ′)→ Ln+m(X ×X ′, X × Y ′ ∪ Y ×X ′).

The multiplicative property of Euler characteristic with respect to this product
can be rephrased by the commutativity of the following diagram

Ln(X,Y )⊗ Ln(X ′, Y ′) //

χ⊗χ
��

Ln+m(X ×X ′, X × Y ′ ∪ Y ×X ′)

χ

��
K(X,Y )⊗K(X ′, Y ′) // K(X ×X ′, X × Y ′ ∪ Y ×X ′)

where the bottom horizontal arrow is the external product for relative K-theory.
For Y = Y ′ = ∅, since χ(E) =

∑
i(−1)iEi, we can see from (3.15) that χ(E ⊗

E′) = χ(E)χ(E′). The general case follows from the naturality of χ. �

The following computation will become a key process in showing that χV is
multiplicative (Proposition 4.13) so that the ABS map is a group homomorphism.

Proposition 3.16. Let E = (0 → E1
σ−→ E0 → 0) ∈ D1(X,Y ) and E′ = (0 →

E′1
σ′−→ E′0 → 0) ∈ D1(X ′, Y ′) where all the bundles are equipped with metrics. Let

F = (0→ F1
τ−→ F0 → 0) ∈ D1(X ×X ′, X × Y ′ ∪ Y ×X ′) be defined by

F1 = E0 � E′1 ⊕ E1 � E′0

F0 = E0 � E′0 ⊕ E1 � E′1

τ =

1 � σ′ σ � 1

σ∗ � 1 −1 � σ′∗


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where σ∗ and σ′∗ denote the adjoints of σ and σ′ respectively. Then, χ(F ) =
χ(E)χ(E′).

4. The main theorem

The main goal for this section is to construct the Atiyah-Bott-Shapiro map and
and prove that it becomes a ring isomorphism when restricting to a point. For a
based finite CW complex X, we will construct two maps

χV : A(V )→ K̃O(T (V )),

and
βP : Ak → A(V ),

where P is a principal Spin(k)-bundle overX, V is a vector bundle overX associated
with P , T (V ) is the Thom space of V , and A(V ) is the bundle analogy of the
Clifford module Ak (Definitions 4.5), in Section 4.3 and Section 4.4 respectively.
Their composition gives the ABS map

αP : Ak
βP−−→ A(V )

χV−−→ K̃O(T (V ))

which gives rise to the desired group isomorphism α : Ak → K̃O(Sk) for each
dimension k. This extends to the ABS isomorphism (Theorem 4.23)

α : A∗ →
⊕
k≥0

KO−k(pt)

which is a ring isomorphism. Similarly, we have the corresponding complex ring
isomorphism

αc : Ac∗ →
⊕
k≥0

K−k(pt).

4.1. A prelude: Pin groups and Spin groups. Before we start our construc-
tions of χV and βP , we first introduce Pin groups and Spin groups which are Lie
groups defined from Clifford algebras. We will encounter them in the averaging ar-
gument (4.14) when we prove the multiplicative property of χV and in the principal
Spin(k)-bundle P when we construct βP . Recall that we use k to denote a field, E
a k-vector space and Q a quadratic form over E.

Notations 4.1. • Recall that we use k to denote a field, E a k-vector space
and Q a quadratic form over E.

• Let R be an arbitrary ring. We write R× for the set of units in R.

We first introduce some operations over general Clifford algebras C(Q) which
will later be used to define Clifford groups. Consider

−t : T k(E)→ T k(E), x1 ⊗ · · · ⊗ xk 7→ xk ⊗ · · · ⊗ x1

which factors through C(Q) because the ideal (x ⊗ x − Q(x) | x ∈ E) is invariant
under this map, so we get −t : C(Q) → C(Q) and it is identity on E. Also, we
have

α : E → C(Q), x 7→ −iQ(x)

where iQ : E → C(Q) is the embedding. Since α satisfies the universal property
(2.4) of C(Q), it extends to a homomorphism α : C(Q)→ C(Q). Composing these
two maps together gives us

·̄ : C(Q)→ C(Q), x 7→ x̄ = α(xt)

which defines a norm map on Ck
N : Ck → Ck, x 7→ x · x̄.
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This definition is compatible with the norm on Rn in the sense that for x ∈ Rk,
N(x) = −x2 = −Qk(x) =

∑k
i=1 x

2
i .

Definitions 4.2. For k ≥ 1, we define
• Γk = {x ∈ C×k | for any y ∈ Rk, α(x)yx−1 ∈ Rk};
• Pin(k) = ker(N : Γk → R×) = {x ∈ Γk | N(x) = 1} and its complex

version Pinc(k) = Pin(k)×Z/2 U(1);
• Spin(k) = Pin(k)∩C0

k and its complex version Spinc(k) = Spin(k)×Z/2U(1).

Example 4.3. When k = 1, Pin(1) = Z/4 and Spin(1) = Z/2.

It worths noticing that Pin(k) and Spin(k) are double covers of Lie groups O(k)
and SO(k) respectively in the sense of the following short exact sequences

1→ Z/2→Pin(k)
ρ−→ O(k)→ 1

1→ Z/2→Spin(k)
ρ−→ SO(k)→ 1

[4, Theorem 3.11], so they inherit the Lie group structures from the later two.
Similarly, we also have short exact sequences for the complex ones

1→ U(1)→Pinc(k)→ O(k)→ 1

1→ Z/2→Spinc(k)→ SO(k)×U(1)→ 1.

4.2. Clifford bundles. The left hand side of the ABS map is purely algebraic
while the right hand side is purely topological. Hence, we need a bridge to connect
the algebra and the topology - the Clifford bundles, which are the fiber-bundle
analogies of Clifford algebras and Clifford modules.

Convention 4.4. For notational convenience we will consider real vector bundles
and the real K-theory in the following discussions. The complex case is entirely
parallel.

Let X be a based finite CW complex and V be a real Euclidean vector bundle
over X, i.e. there is a positive definite inner product on the fiber Vx of V for every
point x ∈ X, which we denote as 〈− | −〉x as it depends on x continuously. Now,
the fiber Vx becomes a vector space equipped with a positive quadratic form Qx
which is equivalent to the inner product 〈− | −〉x on Vx. Hence, we are able to form
bundles of Clifford algebras, Pin groups and Spin groups, Clifford modules, etc.

Definitions 4.5. (1) The Clifford bundle C(V ) of V is defined as a bundle of
algebras whose fiber at x is the Clifford algebra C(−Qx).

(2) Similarly, we can define the bundles of groups Pin(V ) and Spin(V ) whose
fibers at x are groups Pin(Vx) and Spin(Vx) respectively.

(3) Let E = E0 ⊕ E1 be a Z/2Z-graded vector bundle over X. E is called a
Z/2Z-graded C(V )-module if we have vector bundle homomorphisms

(4.6) V ⊗R E
0 → E1, V ⊗R E

1 → E0

denoted by v ⊗ e 7→ v(e), such that

(4.7) v(v(e)) = −Qx(v)e, v ∈ Vx.
The action of V on E (4.6) naturally extends to an action of C(V ) on E
by the universal property Proposition 2.3.

(4) We define M(V ) to be the Grothendieck group of Z/2Z-graded C(V )-
modules and A(V ) = coker(M(V ⊕ 1) → M(V )). These are the bundle
analogies of the Clifford modules Mk and Ak.

Comparing these definitions with those of the algebraic concepts in Section 2,
we may regard the original algebraic ones as the special cases when X = pt.
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4.3. Constructing χV . In this section construct the map

χV : A(V )→ K̃O(T (V )),

where T (V ) = D(V )/S(V ) is the Thom space of the Euclidean vector bundle V →
X, D(V ) is the unit disk bundle of V and S(V ) as the unit sphere bundle of V .
Recall that we assume X to be a based finite CW complex, so it is compact. Hence,
T (V ) is the one-point compactification of V . Without loss of generality, we may
assume that (D(V ), S(V )) is a CW pair.

The idea of constructing χV is to first associate a complex to every element in
M(V ) and apply the Euler characteristic to get an element in real K-theory; then
pass it to A(V ).

4.3.1. First step. Let E = E0 ⊕ E1 be a Z/2Z-graded C(V )-module. Then E
determines an element in M(V ). Now we associate a complex to E.

Let π : D(V ) → X be the projection map. Then we have two pullback bundles
π∗E1 → D(V ) and π∗E0 → D(V ). Define a bundle homomorphism

σ(E) : π∗E1 → π∗E0,

(e, v, x) 7→ (−v(e), v, x)
(4.8)

where v ∈ D(V )x, e ∈ E1
x, x ∈ X. Then restricting σ(E) to S(E) gives an isomor-

phism because from (4.7) we know that (e, v, x) 7→ (v(e), v, x) is its inverse when
v ∈ S(V )x. Hence, the complex

(4.9) 0→ π∗E1 σ(E)−−−→ π∗E0 → 0

is an element in D1(D(V ), S(V )). Applying the composition of maps

D1(D(V ), S(V ))→ C1(D(V ), S(V ))→ L1(D(V ), S(V ))
χ−→ KO(D(V ), S(V ))

to (4.9), we obtain an element in KO(D(V ), S(V )) = K̃O(T (V )). This defines a
map

(4.10) χV : M(V )→ K̃O(T (V ))

and it is further a group homomorphism.

4.3.2. Second step. The next step to reduce (4.10) to A(V ).
If E ∈ im(M(V ⊕ 1) → M(V )), then E has the structure of C(V ⊕ 1)-module

extending the C(V )-module structure. Repeating the procedure in the paragraph
above by replacing V with V ⊕ 1, we extend the bundle isomorphism σ(E)|S(V )

from S(V ) to S+(V ⊕ 1), the upper hemisphere of S(V ⊕ 1). Then, as a sequence
over S+(V ⊕ 1),

0→ π∗E1 σ(E)−−−→ π∗E0 → 0

is isomorphic to an elementary sequence in C1(S+(V ⊕ 1), S(V )); hence it equals
to zero in L1(S+(V ⊕ 1), S(V )). Applying the homeomorphism (D(V ), S(V )) ∼=
(S+(V ⊕ 1), S(V )), E is mapped to zero in L1(D(V ), S(V )). This implies that
χV (E) = 0 ∈ K̃O(T (V )). Therefore, the map (4.10) is reduced to

(4.11) χV : A(V )→ K̃O(T (V )),

as we desire.
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4.3.3. Multiplicative properties of χV . Now we want to discuss the multiplicative
properties of (4.11), which is a key ingredient of making the ABS isomorphism
into a ring homomorphism. Let V,W be Euclidean bundles over X,Y respectively.
Then V �W is an Euclidean bundle over X × Y and (V �W )(x,y) = Vx ⊕Wy.

Recall that there is a natural homeomorphism

T (V ) ∧ T (W ) ∼= T (V �W )

where ∧ is the smash product of two based spaces [2, Lemma 2.3]. This induces a
homomorphism

(4.12) K̃O(T (V ))⊗ K̃O(T (W ))→ K̃O(T (V �W ))

where for a ∈ K̃O(T (V )), b ∈ K̃O(T (W )), we denote the image of a⊗ b simply as
ab.

Proposition 4.13. The following diagram commutes

A(V )⊗A(W )
�̂ //

χV ⊗χW
��

A(V �W )

χV�W

��
K̃O(T (V ))⊗ K̃O(T (W )) // K̃O(T (V �W ))

where for E ∈ A(V ), F ∈ A(W ), E�̂F = p∗1E⊗̂p∗2F is induced by the graded tensor
product of Clifford modules, and the bottom horizontal arrow is the map (4.12).
Thus,

χV�W (E�̂F ) = χV (E)χW (F )

for E ∈ A(V ) and F ∈ A(W ).

Proof. First notice that

χV (E)χW (F ) ∈ K̃O(T (V �W )) = K̃O(T (V ) ∧ T (W ))

= KO(D(V )×D(W ), D(V )× S(W ) ∪ S(V )×D(W )).

As we did in Section 4.3.1, we can associate E with 0 → π∗E1 σ(E)−−−→ π∗E0 → 0
which is an element in D1(D(V ), S(V )), and same for F . Apply Proposition 3.16
and it follows that χV (E)χW (F ) = χ(G) where G = (0 → G1

τ−→ G0 → 0) is an
element in D1(D(V )×D(W ), D(V )× S(W ) ∪ S(V )×D(W )) defined by

G1 = π∗E0 � π∗F 1 ⊕ π∗E1 � π∗F 0

G0 = π∗E0 � π∗F 0 ⊕ π∗E1 � π∗F 1

τ =

 1 � σ(F ) σ(E) � 1

σ(E)∗ � 1 −1 � σ(F )∗

 .

Next, we calculate σ(E)∗ and σ(F )∗. Recall that E = E0⊕E1 is a Z/2Z-graded
C(V )-module. Analogous to Spin groups, we have Spin(V ) = Pin(V ) ∩ C(V )0;
hence E0 is a Spin(V )-module. Consider the norm on E0 which is induced by the
inner product and denote it as ‖−‖. We may assume that this norm is invariant
under Spin(V ); otherwise we apply an averaging argument by considering the new
norm

(4.14) ‖e‖′ =

∫
v∈Spin(V )

‖v(e)‖dµ

where e ∈ Ex, v ∈ Spin(V )x, x ∈ X, dµ is the Haar measure. This norm can be
extended to a norm on E which is invariant under Pin(V ) and such that E0 and
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E1 are orthogonal complements. There is also a norm on V induced by the inner
product which, by abusing notation, we still denote as ‖−‖. Now, for v ∈ Vx, v 6= 0,
we have v/‖v‖ ∈ Pin(Vx). Hence,

‖ v

‖v‖
(e)‖ =

‖v(e)‖
v

= ‖e‖

implies that ‖v(e)‖ = ‖v‖‖e‖. Then,

(4.15) ‖v(e)‖2 = 〈v(e), v(e)〉 = 〈v∗v(e), e〉,

while on the other hand,

(4.16) ‖v(e)‖2 = ‖v‖2‖e‖2 = ‖v‖2〈e, e〉 = 〈‖v‖2e, e〉 = 〈(−v)(v(e)), e〉.

Comparing (4.15) and (4.16), we conclude that v∗ = −v. Therefore, we rewrite

τ =

 1 � σ(F ) σ(E) � 1

−σ(E) � 1 1 � σ(F )


where we used σ(E)∗ = −σ(E), σ(F )∗ = −σ(F ). For any (v, w) ∈ D(V ) ×D(W ),
by definition (4.8) we know that

τ |(v,w) =

1 �−w −v � 1

v � 1 1 �−w

 .

On the other hand, notice that E�̂F is a C(V )�̂C(W )-module. Parallel to
the isomorphism Ck+l

∼= Ck⊗̂Cl (2.28), we have C(V �W ) ∼= C(V )�̂C(W ); hence,

E�̂F is a C(V�W )-module. Consider its associated complex 0→ π∗(E⊗̂F )1 σ(E⊗̂F )−−−−−→
π∗(E⊗̂F )0 → 0 which lies in D1(D(V�W ), S(V�W )). Then, for any v+w ∈ V�W,
we have

σ(E⊗̂F )|v+w =

1 � w v � 1

v � 1 −1 � w

 .

Therefore,

(4.17) τ =

−1 0

0 1

σ(E⊗̂F )

Let D′(V �W ) be the disk bundle of radius 2 and let

S′(V �W ) = D′(V �W )−D(V �W ).

Then we have two homotopy equivalences induced by inclusions

i : (D(V �W ), S(V �W ))→ (D′(V �W ), S′(V �W ))

j : (D(V )×D(W ), D(V )× S(W ) ∪ S(V )×D(W ))→ (D′(V �W ), S′(V �W )).

Comparing G with 0 → π∗(E⊗̂F )1 σ(E⊗̂F )−−−−−→ π∗(E⊗̂F )0 → 0, from (4.17) we see
that they define the same element in real K-theory under the isomorphism

KO(D(V )×D(W ), D(V )× S(W ) ∪ S(V )×D(W ))

∼= KO(D′(V �W ), S′(V �W )) ∼= KO(D(V �W )

which is induced by i and j. Therefore, χ(G) = χV�W (E�̂F ). �
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4.4. Constructing βP . Now we start to construct the other map

βP : Ak → A(V )

where P is a fixed principal Spin(k)-bundle over X, and V is a vector bundle over
X constructed using P .

4.4.1. The construction.

Definition 4.18. Let G be a topological group, X be a right G-space and Y be a
left G-space. The balanced product of X and Y over G is

X ×G Y := X × Y/(xg, y) ∼ (x, gy),

where x ∈ X, y ∈ Y, g ∈ G. Equivalently, we can regard Y as a right G-space by
y · g := g−1y, so G acts on the right on X × Y by (x, y) · g = (xg, g−1y); thus,
X ×G Y = (X × Y )/G.

Choose a principal Spin(k)-bundle P over X and define V = P ×Spin(k) Rk by
the balanced product. Then V is a vector bundle over X of dimension k. If M
is a graded Ck-module, equip M with the discrete topology; then P ×Spin(k) M is
naturally a graded C(V )-module. Further, if M ∈ Ak, then P ×Spin(k) M ∈ A(V ).
Thus, for each degree k and principal Spin(k)-bundle P over X, we obtain a map

βP : Ak → A(V )

M 7→ P ×Spin(k) M.
(4.19)

It naturally extends to a group homomorphism.

4.4.2. Multiplicative property of βP . Similar as χV , we discuss the multiplicative
properties of βP so that the ABS isomorphism becomes a ring homomorphism. Let
P, P ′ be principal Spin(k),Spin(l)-bundles over X and X ′ respectively. Then P�P ′

is a principal Spin(k) × Spin(l) bundle over X ×X ′. Notice that there is a group
homomorphism

Spin(k)× Spin(l)→ Spin(k + l)

which is induced by the graded tensor product Ck × Cl → Ck⊗̂Cl = Ck+l (2.28).
Then Spin(k + l) becomes a left Spin(k)× Spin(l) space. Define

P ′′ = (P � P ′)×Spin(k)×Spin(l) Spin(k + l).

This is a principal Spin(k + l)-bundle over X ×X ′.
Define V = P ×Spin(k) Rk, V ′ = P ′ ×Spin(l) Rl, V ′′ = P ′′ ×Spin(k+l) Rk+l. Then

we have the following multiplicative property which follows directly from the con-
struction.

Proposition 4.20. For a ∈ Ak, b ∈ Al, we have

βP ′′(ab) = βP (a)βP ′(b).

where the product on the right hand side is induced by �̂.

4.5. The main theorem. Now we are able to first define the Atiyah-Bott-Shapiro
map and then prove that it is a ring isomorphism.

Definition 4.21. For each degree k, the Atiyah-Bott-Shapiro map is defined to be
the composition

αP : Ak
βP−−→ A(V )

χV−−→ K̃O(T (V ))

where P is a principal Spin(k)-bundle over X and V = P ×Spin(k) Rk is the k-
dimensional vector bundle over X associated with P .

Then, αP naturally inherits the multiplicative property from χV and βP .
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Proposition 4.22.
αP ′′(ab) = αP (a)αP ′(b)

where the notations are the same as in Proposition 4.20.

Let V → X be a k-dimensional vector bundle. For any point x ∈ X, we have an
inclusion ix : T (Vx)→ T (V ) which induces a map on real K-theory

i∗x : K̃O(T (V ))→ K̃O(T (Vx)).

Fix a dimension k. For a principal Spin(k)-bundle P and V = P ×Spin(k) Rk,
consider the composition

α : Ak
αP−−→ K̃O(T (V ))

i∗x−→ K̃O(T (Vx)) = K̃O(Sk)

which is independent of the choice of principal Spin(k)-bundle P as P becomes the
trivial Spin(k)-bundle when we restrict to x. Summing over all nonnegative integers
k, we get the Atiyah-Bott-Shapiro isomorphism

α : A∗ →
⊕
k≥0

KO−k(pt)

where we used the fact that K̃O(Sk) = K̃O(Sk ∧ S0) = K̃O
−k

(S0) = KO−k(pt).
The ABS isomorphism α is naturally a ring homomorphism due to the multiplicative
property of αP .

Theorem 4.23 (Main theorem). The ABS isomorphism

α : A∗ →
⊕
k≥0

KO−k(pt)

is a ring isomorphism.

Proof. As we already know that α is a ring homomorphism and are clear about the
ring structures on both sides, it suffices to check that α sends generators to gener-
ators. The ring structures of

⊕
k≥0K

−k(pt) and
⊕

k≥0KO
−k(pt) are summarized

as follows:
(1)

⊕
k≥0K

−k(pt) = Z[x] where x ∈ K−2(pt) corresponds to the canonical
line bundle over S2 = CP 1;

(2)
⊕

k≥0KO
−k(pt) = Z[a, z, y]/(2a, a3, az, z2 − 4y) where a ∈ KO−1(pt),

z ∈ KO−4(pt), y ∈ KO−8(pt), and a corresponds to the canonical line
bundle over S1 = RP 1;

(3) y 7→ x4 under the complexification map
⊕

k≥0KO
−k(pt)→

⊕
k≥0K

−k(pt).

The first eight groups of
⊕

k≥0KO
−k(pt) are listed in the following table.

k 1 2 3 4 5 6 7 8

KO−k(pt) Z/2Z Z/2Z 0 Z 0 0 0 Z

Table 4.

Recall that in Theorem 2.33 and Theorem 2.34 we have calculated the ring
structures of A∗ and Ac∗ respectively. Since the ring structure of the complex case
is simpler, we will first prove that the complex analog of α,

αc : Ac∗ →
⊕
k≥0

K−k(pt),

is a ring isomorphism.
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In Theorem 2.34 we have shown that Ac∗ = Z[µc] where µc is the generator of Ac2,
so it suffices to show that αc(µc) = x where the class x ∈ K−2(pt) is represented
by the canonical line bundle over S2 = CP 1. First notice that regarding α as
the composition i∗x ◦ αP for an arbitrary X is equivalent to taking X = pt when
we construct αP , where P becomes the trivial Spin(2)-bundle pt × Spin(2). We
will take the latter approach. Recall that the class µc is represented by C2, so
βP (µc) = (pt×Spin(2))×Spin(2)C2 = pt×C2 is the trivial bundle. It is regarded as
a C(V )-module where V = pt× R2 is the 2-dimensional real vector bundle. Then,
D(V ) = pt × D2 and S(V ) = pt × S1, and pt × C2 is associated to the following
element in D1(pt×D2,pt× S1)

0→ pt× C×D2 σ−→ pt× C×D2 → 0

where σ(pt, z, t) = (pt,−tz, t). Applying the Euler characteristic to the sequence
above, we get an element in K̃O(S2) = KO−2(pt) represented by

C×D2 t C×D2/(z, t) ∼ (−tz, t), t ∈ ∂D2 = S1

which is a 1-dimensional complex vector bundle over S2. Its clutching function is
given by

f : S1 → C×, t 7→ −t.
Notice that the clutching function of the canonical line bundle over S2 is given by
g : S1 → C×, t 7→ t, and f ' g by the following homotopy

F : S1 × [0, 1]→ C×, (t, s) 7→ t · eisπ.

Hence, f and g determine the same element in K̃O(S2), so αc(µc) = x.
The map αc helps to prove that α is an isomorphism. By Theorem 2.33, it

suffices to calculate the image of ξ, µ and λ under α. Consider the commutative
diagram

A∗
α //

c

��

⊕
k≥0KO

−k(pt)

c

��
Ac∗

αc //⊕
k≥0K

−k(pt)

where the vertical arrows are the complexification maps denoted by c. By Propo-
sition 2.35, we know that c(λ) = (µc)4, so

c ◦ α(λ) = αc ◦ c(λ) = αc((µc)4) = x4 = c(y).

Thus, α(λ) − y ∈ ker c. On the other hand, since α(λ) − y ∈ KO−8(pt) and
KO−8(pt) ∩ ker c = 0, we have α(λ) = y.

Assume that α(µ) = kz where k is a positive integer. Then

c ◦ α(µ2) = c(k2z2) = c(4k2y) = 4k2x4,

αc ◦ c(µ2) = αc(4(µc)4) = 4x4.

This implies that k2 = 1 and hence we may take α(µ) = z.
Similar to our discussion in the complex case, α(ξ) is the canonical line bundle

over RP 1 = S1, so α(ξ) = a. This completes our proof that α is a ring isomorphism
as we have shown that it sends generators to generators. �

5. Applications

5.1. KO-orientability and Spin-structures. Recall that V → X is a k-dimensional
vector bundle. For any point x ∈ X, we have a group homomorphism

i∗x : K̃O
k
(T (V ))→ K̃O

k
(T (Vx)) = K̃O

k
(Sk) = KO(pt) = Z.
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Definitions 5.1. (1) V is called KO-orientable if there exists a class µV ∈
K̃O

k
(T (V )) such that for any point x ∈ X, i∗x(µV ) is a generator. In that

case, such a choice of µV is called a KO-orientation (or Thom class) of V .
(2) V is said to have a Spin-structure if there exists a principal Spin(k)-bundle

P such that V ∼= P ×Spin(k) Rk.

Theorem 5.2. V is KO-orientable if and only if V has a Spin-structure.

Proof. "⇐": First we assume that the dimension k = 8r (r ∈ Z≥0). By the eight-
fold periodicity of real K-theory, we can shift the degree of the map

i∗x : K̃O
k
(T (V ))→ K̃O

k
(T (Vx))

to 0, i.e. i∗x : K̃O(T (V )) → K̃O(T (Vx)). Hence, to show that V is KO-orientable,
it suffices to find a class µV ∈ K̃O(T (V )) which restricts to the generator at every
point x ∈ X. Recall that λ ∈ A8

∼= Z is a generator. We claim that µV := αP (λr)
gives a KO-orientation of V . Let y be a generator of KO−8(pt) ∼= Z. Since V has
a Spin-structure, we can apply the ABS map to V . In particular, since the ABS
isomorphism is a ring isomorphism, we know that α(λ) = y, so

α : Ak
αP−−→ K̃O(T (V ))

i∗x−→ K̃O(T (Vx)) = KO−k(pt)

λr 7→ µV 7→ yr,

i.e. i∗x(µV ) = yr is the generator of K̃O(T (Vx)) ∼= Z for any point x ∈ X. This
shows that µV gives a KO-orientation of V , so V is KO-orientable.

For the general dimension k, let s be the positive integer such that k + s is a
multiple of 8. From the fiber sequence

BSpin(k)→ BSO(k)
w2−−→ B2Z/2,

we see that V having a Spin-structure implies that its second Stiefel-Whitney class
vanishes, i.e. w2(V ) = 0. Hence, w2(V ⊕ s) = w2(V ) = 0 implies that V ⊕ s also
has a Spin-structure, where s denotes the trivial s-bundle over X. Since V ⊕ s has
dimension a multiple of 8, by the previous case we know that V ⊕s isKO-orientable.
It suffices to show that V is KO-orientable if and only if V ⊕ 1 is KO-orientable.
This follows from the commutative diagram

K̃O
k
(T (V ))

i∗x //

Σ o
��

K̃O
k
(T (Vx))

Σo
��

K̃O
k+1

(T (V ⊕ 1))
i∗x

// K̃O
k+1

(T (V ⊕ 1)x)

where the left vertical arrow is an isomorphism because K̃O
k+1

(T (V ⊕ 1)) =

K̃O
k+1

(ΣT (V )) ∼= K̃O
k
(T (V )).

"⇒": We follow [19] and use the Atiyah-Hirzebruch spectral sequence (AHSS)
to show this implication.

We first use AHSS to show that KO-orientation implies HZ-orientation. Let ko
be the connective cover of the real K-theory spectrum KO. Then the AHSS of
ko is single-quadrant and hence converges. The second page of the AHSS of T (V )
looks like

Ep,q2 = H̃p(T (V ); koq(pt)) = Hp(D(V ), S(V ); koq(pt)).

Since (D(V ), S(V )) is (k − 1)-connected, Ep,q2 = 0 for p < k. Hence, the edge
homomorphism

H̃k(T (V ); ko0(pt))
∼−→ koq(T (V ))
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is an isomorphism. Since ko0(pt) = Z, this isomorphism maps the ko-Thom class
maps to a HZ-Thom class, implying the HZ-orientability.

Now, consider the following diagram

Hp(X;π−q(ko))

Φ:−∪µ
π−q(ko)
V

o
��

+3 kop+q(X)

−·µVo
��

H̃p+k(T (V );π−q(ko)) +3 k̃o
p+q+k

(T (V ))

where the vertical arrows are the Thom isomorphisms, µπ−q(ko)V and µV are the
Hπ−q(ko) and ko-Thom classes respectively, and the horizontal arrows refer to the
convergence of the AHSS. Since V is both ko-orientable and HZ-orientable, the
HZ-Thom isomorphism on the E2 pages survives to the ko-Thom isomorphism on
the E∞ pages; hence, the diagram above commutes. Then by Leibniz rule, we see
that dk,q2 (µ

π−q(ko)
V ) = 0.

The differentials dk,q2 are clearly understood [22, Theorem 3.4]. In particular,
when q = −1, π1(ko) = Z/2 and dk,−1

2 is the k-invariant of ko inHk+2(K(Z/2, k);Z/2),
which is exactly the Steenrod square Sq2. Hence, the class Sq2(µ

Z/2
V ) = 0 implies

that w2(V ) = Φ−1Sq2(µ
Z/2
V ) = 0 where Φ is the HZ/2-Thom isomorphism; the

later one is equivalent to the existence of a Spin-structure. �

Then, by the Thom isomorphism theorem in realK-theory, we know that K̃O
∗
(T (V ))

is a free K̃O
∗
(X)-module generated by µV , where K̃O

∗
(X) =

⊕7
i=0 K̃O

i
(X). The

complex case is totally parallel if we replace Spin-groups by Spinc-groups and eight-
fold periodicity by two-fold periodicity.

5.2. Vector fields on spheres problem. We start our adventure to vector fields
on spheres problem from the well-known result in topology that there does not
exist a nowhere-zero vector field on Sn−1 for n odd and in particular, for S2 this
property is called the "hairy ball theorem". The reason follows by calculating the
degree of a map between spheres. Assume that there exists a nowhere-zero vector
field

v : Sn−1 → TSn−1.

We may normalize the vector field such that every vector attached to the point
on Sn−1 has length 1. Hence the vector field v is reduced to v : Sn−1 → Sn−1.
Consider the following homotopy

H(x, t) = x cosπt+ v(x) sinπt

between the identity map and the antipodal map α(x) = −x. This implies that
degα = deg id = 1. However, α is a composite of n (which is odd) reflections in Rn
and hence degα = (−1)n = −1, a contradiction.

On the other hand, when n is even, we construct a nowhere-zero vector field on
Sn−1 by regarding Sn−1 as the sphere in Cn/2 and consider v(x) = ix. We can
further ask the following question:

Question 5.3. What is the maximum number of linearly independent vector fields
on Sn−1?

This question has been completely answered by Hurwitz-Radon-Eckmann and
Adams in the following theorem.

Theorem 5.4 (Hurwitz-Radon-Eckmann, Adams). For any positive integer n,
write n = (2a + 1) · 2b and b = 4d + c, where a, b, c, d are nonnegative integers
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and 0 ≤ c ≤ 3, and set ρ(n) = 8d + 2c. Then the maximal number of linearly
independent vector fields on Sn−1 is ρ(n)− 1.

Definition 5.5. The number ρ(n) = 8d+ 2c is called the Radon-Hurwitz number.

Since ρ(n) only depends on the power of two in n, it grows very slowly. The
complete proof of vector fields on spheres problem splits into two parts: the proof of
the upper bound and the construction realizing the upper bound. The construction
is given by Hurwitz, Radon and Eckmann using Clifford algebras, and the proof of
the upper bound is given by Adams [1] using real K-theory.

5.2.1. Adams’ Proof of the upper bound.

Definition 5.6. RP k+n
k = RP k+n/RP k−1 is called a real stunted projective space

The name comes from the CW structure of RP k+n
k that it consists of one cell

in each dimension 0 and k, k + 1, · · · , k + n. The proof of the upper bound, which
is given by Adams [1], uses real K-theory and some stable homotopy theory, and
then is reduced to the following theorem concerning real stunted projective spaces.

Theorem 5.7. There is no map

f : RPn+ρ(n)
n → Sn

such that the composition with the inclusion map

(5.8) Sn = RPn/RPn−1 i−→ RPn+ρ(n)/RPn−1 f−→ Sn

has degree 1.

The proof uses Adams operations, which are a series of a ring homomorphisms

Ψk : KO(X)→ KO(X)

for each positive integer k mapping the line bundles to a power of them, and
computation of the real K-theory of real stunted projective spaces, to obtain a
contradiction that the composition of the induced maps of (5.8) on real K-theories

K̃O(Sn)
i∗←− K̃O(RPn+ρ(n)

n )
f∗←− K̃O(Sn)

cannot be an identity. The real K-theory of real stunted projective spaces is related
to Clifford modules by the following result.

Proposition 5.9 ([4, Proposition 15.7]). When X = pt, there is an exact sequence

(5.10) M(Ck)
i∗−→M(Cr)→ K̃O(RP k−1

r )→ 0

where r ≤ k. A similar result also holds in the complex case.

In particular, taking r = 1, we get K̃O(RP k−1) ∼= Z/ak. It also worth remarking
that the isomorphism

coker(M(Ck)
i∗−→M(Cr))

∼−→ K̃O(RP k−1/RP r−1)

actually comes from the Euler characteristic defined in Section 4.3.
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5.2.2. Constructing vector fields. We use the following proposition to relate the
vector fields on spheres with Clifford algebras.

Proposition 5.11. If Rn admits the structure of Ck-module, then Sn−1 admits k
linearly independent vector fields.

Proof. First of all, we may assume without loss of generality that Ck acts on Rn
orthogonally, i.e. there exists an inner product 〈− | −〉 on Rn such that 〈eix |
eiy〉 = 〈x | y〉 for any ei the generators of Ck by an averaging argument.

Then for any x ∈ Rn, x is orthogonal to eix because 〈x | eix〉 = 〈eix | e2
ix〉 =

〈eix | −x〉 = −〈x | eix〉. For i 6= j, eix is also orthogonal to ejx because 〈eix |
ejx〉 = 〈eiejeix | eiejejx〉 = 〈−ejeieix | −eix〉 = 〈ejx | −eix〉 = −〈eix | ejx〉.
Therefore, the k vector fields vi : x 7→ eix, 1 ≤ i ≤ k are orthogonal to each other
and hence linearly independent. �

Definition 5.12. Let nk be the R-dimension of the ungraded irreducible Ck-
module.

If M is a graded irreducible Ck-module, M0 will be an ungraded irreducible
C0
k-module and hence an ungraded irreducible Ck−1-module according to the iso-

morphism C0
k
∼= Ck−1 (Proposition 2.14 (2)). Thus

nk = ak+1,

where the computations of ak are listed in Table 2. For convenience, we rewrite the
values of nk in the following table.

k Ck nk

1 C 2

2 H 4

3 H⊕H 4

4 H(2) 8

5 C(4) 8

6 R(8) 8

7 R(8)⊕ R(8) 8

8 R(16) 16

Table 5.

It is worth noticing that the nk’s are actually all powers of 2. This follows from
the data listed in Table 5 and nk+8 = 16nk (2.18). Our next step towards realizing
the upper bound is to reduce the dimension of the spheres according to the following
lemma.

Lemma 5.13. If Sn−1 admits k linearly independent vector fields, then Smn−1

also admits k linearly independent vector fields for m any positive integer.

Proof. Let v1, · · · , vk be the k linearly independent vector fields. By Gram-Schmidt
argument we may assume that they are normalized and orthogonal to each other.
Consider

Smn−1 = Sn−1 ∗ · · · ∗ Sn−1︸ ︷︷ ︸
m times
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where ∗ denotes the join operation. For any x ∈ Smn−1, write x = (α1x1, · · · , αmxm)
where xi ∈ Sn−1, αi ≥ 0, and

∑q
i=m α

2
i = 1. Define

v∗i : Smn−1 → Rmn−1

x 7→ (α1vi(x1), · · · , αmvi(xm)).

Then 〈x | v∗i (x)〉 =
∑
j α

2
j 〈xj | vi(xj)〉 = 0 and

〈v∗i (x) | v∗j (x)〉 =
∑
k

α2
k〈v∗i (xk) | v∗j (xk)〉 =


∑
k α

2
k = 1, if i = j

0, if i 6= j.

These tell us that v∗1 , · · · , v∗k are orthonormal vector fields over on Smn−1 and hence
linearly independent. �

Now we are able to prove the following theorem which realizes the upper bound of
the main theorem of vector fields on spheres problem (Theorem 5.4) using Clifford
algebras.

Theorem 5.14. Sn−1 admits ρ(n)− 1 linearly independent vector fields.

Proof. First, write n = (2a+ 1) · 2b, where b = 4d+ c, a, b, c, d are all nonnegative
integers, and 0 ≤ c ≤ 3. By Lemma 5.13 it suffices to show that S2b−1 admits
ρ(n)− 1 = ρ(2b)− 1 linearly independent vector fields.

From our previous observation there exists an integer k such that 2b = nk.
Choose k to be the maximal such integer. Then Rnk has the structure of Ck-
module and Proposition 5.11 ensures that Snk−1 (equivalently, S2b−1) admits k
linearly independent vector fields.

The next step is to show that ρ(2k) − 1 = k. Write k = 8q + r, where q, r are
nonnegative integers and 0 ≤ r ≤ 7. Then

24d2c = 2b = nk = n8q+r = 16qnr = 24qnr.

Since 0 ≤ r ≤ 7, nr ≤ 8 according to the computations in Table 5, the only
possibility is {

d = q

2c = nr.

Thus k = 8d + r. Moreover, since k is the maximal choice that nk = 2b, r is also
the maximal choice that nr = 2c, where 0 ≤ c ≤ 3. Compute all the possibilities
by comparing with the data in Table 5 and we get the following result:

c 2c r

0 1 0

1 2 1

2 4 3

3 8 7

Table 6.

From Table 6 we conclude that r = 2c − 1. Hence, k = 8d + r = 8d + 2c − 1 =
ρ(2r)− 1. �
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5.2.3. Parallelizable spheres. A special case of the vector fields on spheres problem
is that Sn−1 is parallelizable if and only if n = 1, 2, 4, 8.

Definition 5.15. The sphere Sn−1 is parallelizable if its tangent bundle TSn−1

is trivial; this is equivalent to the existence of (n − 1) linearly independent vector
fields over Sn−1.

Theorem 5.16. Sn−1 is parallelizable if and only if n = 1, 2, 4, 8.

Proof. According to the main theorem of vector fields on spheres problem, Theo-
rem 5.4, Sn−1 is parallelizable if and only if we have the equation ρ(n)− 1 = n− 1,
or equivalently, ρ(n) = n.

Solving this equation, we get n = 1, 2, 4, 8. Recall that we write n = (2a+1)2b =
(2a + 1)24d+c = (2a + 1)16d2c, for a, b, c, d nonnegative integers, 0 ≤ c ≤ 3, and
ρ(n) = 8d+ 2c. Hence, ρ(n) = n is reduced to (2a+ 1)16d2c = 8d+ 2c; that is,

(5.17) 2c((2a+ 1)16d − 1) = 8d.

Then, as an odd integer, (2a+ 1)16d− 1|d, implying that (2a+ 1)16d− 1 ≤ d. This
only happens when d = 0. Hence, (5.17) is reduced to 2c+1a = 0, which implies
that a = 0. Therefore, n = 2c, where 0 ≤ c ≤ 3. �

5.3. Normed division algebras. Recall that a normed division algebra over R
is a not necessarily associative division algebra over R equipped with a norm ‖·‖
such that ‖xy‖ = ‖x‖‖y‖ for any two elements x, y. Using Clifford algebras and our
previous results on vector fields on spheres problem, we can prove that the possible
dimensions of finite dimensional normed division R-algebras are 1, 2, 4 or 8 [26].

The normed division algebras over R are related to Clifford algebras by the
following lemma.

Lemma 5.18. If there exists an n-dimensional normed division algebra over R,
then Rn admits a structure of a Cn−1-module.

Proof. Let K be an n-dimensional normed division algebra over R and let ‖·‖ be
the norm on K. We first show that ‖·‖ is induced by an inner product 〈−|−〉 on
K. As R-vector spaces, K ∼= Rn. Let (−|−) be the standard inner product on Rn;
it naturally becomes an inner product on K and induces a new norm ‖·‖′ on K.
Notice that K∗ = {k ∈ K|‖k‖ = 1} is a compact subspace. By averaging (−|−)
over K∗ we get an inner product 〈−|−〉 which is invariant under left multiplication
maps Lx where x ∈ K∗. Then, for any a ∈ K, a/‖a‖ ∈ K∗; hence

〈a | a〉 = ‖a‖2
〈

a

‖a‖

∣∣∣∣ a‖a‖
〉

= ‖a‖2.

Now, let ImK = {k ∈ K | 〈k | 1〉 = 0}. Then we have an R-vector space isomor-
phism ImK ∼= Rn−1. For any k ∈ ImK, we associate it with the left multiplication
map Lk. Then we can regard Lk as an element in Mn(R) under the identification
K ∼= Rn. This induces a linear map

L : ImK→Mn(R), k 7→ Lk.

Next, we show that L2
k = −1 for any k ∈ Im(K) with ‖k‖ = 1. Let k be such an

element and define l = (k + 1)/
√

2. Then ‖l‖ = 1 and Lk, Ll ∈ O(n). Since

1 = LlL
t
l =

1

2
(Lk + 1)(Ltk + 1) = 1 +

1

2
(Lk + Ltk),

we have Lk = −Ltk. Thus, L2
k = Lk(−Ltk) = −LkLtk = −1, as desired.

For any k ∈ ImK,
L2
k = L2

‖k‖· k‖k‖
= ‖k‖2L2

k
‖k‖

= −‖k‖2
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where the last equality follows from the fact that k/‖k‖ has norm one. Then, from
the universal property of Clifford algebras (2.4),

ImK //

L $$

Cn−1

L̄

��
Mn(R)

we have a map L̄ : Cn−1 →Mn(R) and this gives Rn a Cn−1-module structure. �

Using Lemma 5.18 and the maximum number ρ(n) of vector fields on spheres,
we prove the following theorem by Hurwitz [8],[21].

Theorem 5.19 (Hurwitz). The finite dimensional normed division algebras over
R have dimensions 1, 2, 4 or 8.

Proof. Again, let K be a finite dimensional normed division algebra over R and let
n = dimK. By Lemma 5.18, Rn admits a Cn−1-module structure. This implies that
Sn−1 admits n − 1 linearly independent vector fields by Proposition 5.11,. Then,
Theorem 5.4 reduces this theorem to solving the equation ρ(n) − 1 = n − 1. As
we have solved this equation in Theorem 5.16, we know that the only solutions are
n = 1, 2, 4, 8. On the other hand, we know that R,C,H,O are the normed division
algebras of dimensions 1, 2, 4, 8 respectively. �

One construction of n−1 linearly independent vector fields over Sn−1 when n =
1, 2, 4, 8 can be given by taking Sn−1 as the unit sphere in R,C,H,O respectively,
and use the division algebra structure.

One can further show that R,C,H,O are the only four possible normed division
R-algebras of dimension 1, 2, 4, 8. It is still true that the finite dimensional division
R-algebras which are not necessarily equipped with a norm can only have dimension
1, 2, 4 or 8, but they are not restricted to R,C,H,O anymore.

Appendix A. Obstruction theory and the relative lifting problem

One problem that we will encounter in Lemma B.1 can be abstracted as follows.

Question A.1 (The relative lifting problem). Given a CW pair (X,Y ), a fibration
E → B and a map X → B, does there exist a lift X → E extending the given lift
Y → E?

Y � _

��

// E

��
X //

>>

B

This problem reduces to the lifting problem when Y = ∅ and reduces to the
extension problem when B = pt.

The relative lifting problem is solved by obstruction theory which refers to a
procedure for defining a sequence of cohomology classes that are the obstructions
to finding a solution to the relative lifting problem.

Before we state the main theorem, let’s recall an important notion in homotopy
theory. Notice that since we are talking within the category of based finite CW
complexes, we denote πn(X) = πn(X, ∗) for (X, ∗).

Definitions A.2. For an integer n ≥ 1, a connected space X is said to be n-simple
if π1(X) is abelian and acts trivially on the homotopy groups πq(X) for q ≤ n.
X is said to be simple if it is n-simple for all n.
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Let (X,Y ) be a CW pair, p : E → B be a fibration where B is a path-connected
CW complex with fiber F n-simple. Let f : X → B be a map and g : Xn → E a
lift of f extending the given lift Y → E, where Xn refers to the relative n-skeleton
of (X,Y ).

Recall that if F is n-simple, then the fibration F ↪→ E → B defines a local
coefficient system over B with fiber πn(F ), or equivalently speaking, giving a group
homomorphism ρ : π1(B)→ Aut(πn(F )) [10, Proposition 6.62]. Pullback this local
coefficient system over X via f : X → B and we get a local coefficient system over
X, which we continue to denote by ρ; that is,

ρ : π1(X)
f∗−→ π1(B)

ρ−→ Aut(πn(F )).

Now we can state the main theorem for this section.

Theorem A.3. There exists a cohomology class

[θn+1(g)] ∈ Hn+1(X,Y ;πn(F )ρ),

which is called the obstruction class, such that if [θn+1(g)] vanishes, then g can be
redefined over Xn relXn−1 and then extended to Xn+1 such that the extended map
g : Xn+1 → E fits into the commutative diagram

Y � _

��

// E

��
Xn+1 f //

g
<<

B

In particular, the lift X → E of X → B which extends Y → E exists if all the
obstruction classes vanish.

Moreover, given two lifts g, g′ : Xn → E of f both extending the given lift Y → E,
and a homotopy relY of their restrictions to Xn−1, there exists another obstruction
class

dn(g, g′) ∈ Hn(X,Y ;πn(F )ρ)

such that if it vanishes, then the restriction of the given homotopy to Xn−2 extends
to a homotopy g ' g′ relY . In particular, if all these new obstruction classes vanish,
then the lift X → E is unique up to homotopy equivalence relY . [10, Chapter 7],
[14, Proposition 3.19].

Appendix B. Proofs in Section 3

B.1. Proof of Proposition 3.4. The proof of Proposition 3.4 is developed from
the following lemma.

Lemma B.1. Let E,F be vector bundles over X, and f : E → F be a monomor-
phism of vector bundles restricted over Y . If

dimF > dimE + dimX

where dimF and dimE are the dimensions of vector bundles, and dimX is the
dimension of a finite CW complex, then f can be extended as a monomorphism of
vector bundles over X. Moreover, any two such extensions are homotopic relY.

Proof. We will only prove the case for real vector bundles; the complex version
carries out similarly. Consider the fiber bundle Mon(E,F ) → X whose fiber at
x ∈ X is the space of all monomorphisms Ex → Fx between vector spaces (equipped
with compact-open topology). Consider the surjective map

GL(n,R)→ Mon(Ex, Fx)

A 7→ (A1, · · · , Am)
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where dimF = n, dimE = m,m ≤ n,Ai refers to the i-th column of the matrix
corresponding to A once we have fixed a set of orthonormal bases for Ex and Fx.
This passes to a homeomorphism

GLn(R)/GLn−m(R) ∼= Mon(Ex, Fx)

and hence gives us a fibration

GLn−m(R)→ GLn(R)→ Mon(Rm,Rn).

where we used the homeomorphism Mon(Ex, Fx) ∼= Mon(Rm,Rn). In particular,
we have the following fibration

GLn−m(R)→ GLn−m+1(R)→ Mon(R1,Rn−m+1).

Since Mon(R1,Rn−m+1) ∼= Sn−m, the long exact sequence of a fibration indicates
that GLn−m(R)→ GLn−m+1(R) is an (n−m−1)-equivalence. Hence GLn−m(R)→
GLn(R), which factors through GLn−m(R)→ GLn−m+1(R), is also an (n−m−1)-
equivalence, indicating that Mon(Ex, Fx) ∼= Mon(Rm,Rn) is (n−m−1)-connected.

Notice that a monomorphism E → F of vector bundles over X is the same
thing as a section X → Mon(E,F ), so it suffices to show that given a section
f : Y → Mon(E,F ), we can extend it over X. By considering the fibration

Mon(Ex, Fx)→ Mon(E,F )→ X,

the lemma is further reduced to the relative lifting problem

Y
f //� _

��

Mon(E,F )

��
X

id //

::

X

(Question A.1). We will apply the obstruction theory (Theorem A.3) to show the
existence and uniqueness (up to homotopy relY ) of the section X → Mon(E,F )
which extends f .

The computation of Hk+1(X,Y ;πk(Mon(Ex, Fx))ρ), where

ρ : π1(X)→ Aut(πk(Mon(Ex, Fx)))

gives the local coefficient system over X, can be divided into two cases:
(1) for k ≤ n−m−1, Hk+1(X,Y ;πk(Mon(Ex, Fx))ρ) = 0 because Mon(Ex, Fx)

is (n−m− 1)-connected;
(2) for k ≥ n−m, Hk+1(X,Y ;πk(Mon(Ex, Fx))ρ) = 0 because

dimX ≤ dimF − dimE − 1 = n−m− 1 ≤ k − 1 < k + 1.

Therefore, Hk+1(X,Y ;πk(Mon(Ex, Fx))ρ) is always zero and hence all the obstruc-
tion classes vanish, implying the existence of the lift X → Mon(E,F ) extending
f .

Such a lift X → Mon(E,F ) is unique up to homotopy equivalence relY as one
can argue similarly that Hk(X,Y ;πk(Mon(Ex, Fx))ρ) is zero for any k (here we use
dimF > dimE+ dimX). Hence all the obstruction classes for homotopy vanish as
well. �

Proof of Proposition 3.4. To show that jn : L1(X,Y )
∼−→ Ln(X,Y ) for each n ≥ 1,

it suffices to prove the isomorphism Ln(X,Y )
∼−→ Ln+1(X,Y ) for each n. To show

this, we will construct a map Ln+1(X,Y ) → Ln(X,Y ) and show that it is the
inverse.
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Define C̄n+1(X,Y ) = {E ∈ Cn+1(X,Y ) | dimEn > dimEn+1+dimX}. C̄n+1(X,Y )
is nonempty because for every E ∈ Cn+1(X,Y ), we can add an elementary se-
quence to E so that it lies in C̄n+1(X,Y ). Hence the natural map C̄n+1(X,Y ) →
Ln+1(X,Y ) is surjective.

Given E ∈ C̄n+1, by Lemma B.1 the monomorphism σn+1 : En+1 → En of
vector bundles over Y can be extended as a monomorphism of vector bundles over
X σ′n+1 : En+1 → En. Hence, let E′n = cokerσ′n+1, then E′n is a well-defined vector
bundle over X. Define

E′ = (0→ E′n
ρ′n−→ En−1

σn−1−−−→ · · · σ1−→ E0 → 0)

where ρ′n is defined by the following commutative diagram over Y

En // //

σn
""

E′n

ρ′n||
En−1

If σ′′n+1 is another extension of σn+1 leading to a sequence E′′, then Lemma B.1
ensures that E′n ∼= E′′n and the diagram

E′n
ρ′n //

��

En−1

id

��
E′′n

ρ′′n // En−1

is commutative over Y . Hence E′ ∼= E′′ in Cn. This gives us a well-defined map

(B.2) C̄n+1 → Cn, E 7→ E′.

Moreover, if

Q = (0→ Qn+1 → Qn → 0), R = (0→ Ri → Ri−1 → 0) (i ≤ n)

are elementary sequences, then (E ⊕Q)′ ∼= E′ and (E ⊕ R)′ ∼= E′ ⊕ R. Hence the
equivalence class of E′ in Ln only depends on the equivalence class of E in Ln+1.
Since C̄n+1 → Ln+1 is surjective, (B.2) induces a well-defined map

(B.3) Ln+1 → Ln, E 7→ E′.

The next step is to show that (B.3) is the inverse of

(B.4) Ln → Ln+1, E′ 7→ E′.

Consider the elementary sequence P with Pn+1 = Pn = En+1. Then the splitting
exact sequence of vector bundles over X

0→ En+1

σ′n+1−−−→ En → E′n → 0

gives us an isomorphism in Cn+1 P ⊕E′ ∼= E, so we see that the the composition of
(B.3) and (B.4) in either direction is the identity, which completes the proof. �

B.2. Proof of Theorem 3.5. We have already constructed the Euler character-
istic χ : L1 → K in Section 3.2. It suffices to show that this construction is unique
and is a natural isomorphism to finish the proof of Theorem 3.5.
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B.2.1. Uniqueness. We want to show that if χ, χ′ : L1 → K are two Euler char-
acteristics, then χ = χ′. Since χ is a natural isomorphism, it has a well-defined
inverse χ−1. Let T = χ′χ−1 : K(X,Y )→ K(X,Y ).

For Y = ∅, by definition of Euler characteristics we have χ(E) = χ′(E) =∑
i(−1)iEi, so T = χ′χ−1 = id. Hence T = id : K(X)→ K(X).
Now, consider the following commutative diagram

0 // K(X/Y, Y/Y ) //

T

��

K(X/Y ) //

T

��

K(Y/Y ) //

T

��

0

0 // K(X/Y, Y/Y ) // K(X/Y ) // K(Y/Y ) // 0

where the two horizontal lines are given by the long exact sequence of K-theory
of (X/Y, Y/Y ), and the last two vertical arrows are the identity by the discus-
sion above. Then we know that T = id : K(X/Y, Y/Y ) → K(X/Y, Y/Y ). Since
K(X/Y, Y/Y ) ∼= K(X,Y ), we conclude that T = id : K(X,Y ) → K(X,Y ); that
is, χ = χ′. �

B.2.2. Natural isomorphism. The Euler characteristic χ : L1(X,Y ) → K(X,Y )
connects a semi-group L1(X,Y ) with a group K(X,Y ). Indeed, L1(X,Y ) inherits
a natural group structure from χ in the following sense.

Lemma B.5. Let A be a semi-group with identity element 1, B a group, φ : A→ B
an epimorphism of semi-groups with φ−1(1) = {1}. Then A has the structure of a
group and φ is a group isomorphism.

Proof. Once we have shown that A is a group, φ is naturally an isomorphism by
our assumption. So now it suffices to find an inverse for every element in A.

Pick an arbitrary a ∈ A. Since φ is an epimorphism, there exists an element
a′ ∈ A such that φ(a′) = φ(a)−1. Hence φ(aa′) = φ(a)φ(a′) = φ(a)φ(a)−1 = 1. This
implies that aa′ ∈ φ−1(1) = {1}; that is, aa′ = 1. We denote a′ as the inverse of a,
so A becomes a group. �

Proposition B.6. L1(X) is a group and χ : L1(X) → K(X) is a group isomor-
phism.

Proof. Since χ : L1(X) → K(X) maps E to E0 − E1 and every element in K(X)
can be written as a difference of two vector bundles over X, we know that χ is an
epimorphism of abelian semi-groups.

Next we show that χ−1(0) = 0. Suppose E ∈ L1(X) satisfies χ(E) = 0. Then,
E0−E1 = 0 in K(X). This implies an F ∈ K(X) such that E0⊕F ∼= E1⊕F . Let
P = (0→ F → F → 0) be an elementary sequence. Then E⊕F ∼= (0→ E1⊕F →
E1 ⊕ F → 0) and the right hand side is an elementary sequence, implying that
E = 0 in L1(X). Then we can apply Lemma B.5 directly. �

Proposition B.7. L1(X,pt) is a group and χ : L1(X,pt) → K(X,pt) is a group
isomorphism.

Proof. By Lemma B.5, it suffices to show that χ : L1(X,pt)→ K(X,pt) is an epi-
morphism of abelian semi-groups and χ−1(0) = 0. Consider the follwoing diagram

0 // L1(X,pt)
α //

χ

��

L1(X)
β //

χ

��

L1(pt)

χ

��

// 0

0 // K(X,pt) // K(X) // K(pt) // 0
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Since the middle vertical arrow is an isomorphism by Proposition B.6 and the
bottom horizontal sequence is exact, it suffices to show that the top horizontal
sequence is also exact, so by diagram chasing the left vertical arrow is also an
isomorphism.

The part imα ⊆ kerβ is trivial. For any E = (0 → E1 → E0 → 0) ∈
L1(X) which lies in kerβ, since in Proposition B.6 we have already proved that
χ : L1(pt)

∼−→ K(pt), β(E) = 0 is equivalent to χ ◦ β(E) = 0, and the latter one
is equivalent to dimE1|pt = dimE0|pt. This tells us that there is an isomorphism
σ : E1|pt → E0|pt, so 0→ E1

σ−→ E0 → 0 is an element in L1(X,pt) which maps to
E through α. This shows that E ∈ imα. Hence, kerβ ⊆ imα. We have proved the
exactness at L1(X).

Now we show that α is injective. Consider an element E = (0 → E1
σ−→ E0 →

0)in L1(X,pt) such that α(E) = 0 in L1(X). Then χ◦α(E) = E0−E1 = 0 inK(X).
Without loss of generality, we may assume that E1

∼= E0 as vector bundles over X;
otherwise we can replace them by adding a same vector bundle. Let τ : E1 → E0

be the isomorphism over X. Though τ |pt might not be equal to σ, we can consider
σ ◦ (τ−1|pt) ∈ Aut(E0|pt).

In the category of complex vector bundles, Aut(E0|pt) ∼= GLn(C)is path-connected,
where n = dimCE0. Hence σ ◦ (τ−1|pt) is homotopic to id in Aut(E0|pt), and we
can use this homotopy to extend σ ◦ (τ−1|pt) to an element ρ ∈ Aut(E0). In the
category of real vector bundles, Aut(E0|pt) ∼= GLn(R) has two path components: if
σ ◦(τ−1|pt) has positive determinant, it lies in the component of id so the argument
above still applies; otherwise, we may replace Ei by Ei ⊕ 1 where 1 is the trivial
bundle, and consider σ⊕1 and τ ⊕ (−1) instead to get an element with positive de-
terminant, and repeat the argument above. In summary, we still get the extension
ρ ∈ Aut(E0).

Now, the map ρ ◦ τ : E1 → E0 is an isomorphism of vector bundles over X
extending σ, so E = 0 in L1(X,pt). This shows that kerα = 0. �

Proposition B.8. L1(X,Y ) is a group and χ : L1(X,Y ) → K(X,Y ) is a group
isomorphism.

Proof. Observe that χ is a natural transformation, so it suffices to fix a (X,Y )
and prove that χ : L1(X,Y ) → K(X,Y ) is a group isomorphism. Consider the
following commutative diagram

L1(X/Y, Y/Y )
χ //

φ

��

K(X/Y, Y/Y )

ψ

��
L1(X,Y )

χ // K(X,Y )

where the maps φ, ψ are induced by the natural quotient map (X,Y )→ (X/Y, Y/Y ).
By definition of relative K-groups, ψ is an isomorphism. By Proposition B.7, the
top horizontal map χ is an isomorphism as well. Hence χ ◦ φ = ψ ◦ χ is an isomor-
phism, implying that φ is a monomorphism and χ is an epimorphism.

It suffices to show that φ is an epimorphism. If that is true, then χ−1(0) = 0

and we can apply Lemma B.5 to get the result. For any element E = (0→ E1
σ−→

E0 → 0) in L1(X,Y ), we may assume E0 to be trivial; otherwise we take the direct
sum of E with the elementary sequence (0→ E⊥0 → E⊥0 → 0). By definition of the
sequence E, σ : E1|Y

∼−→ E0|Y is an isomorphism and hence E1|Y is a trivial bundle
as well. Hence we are allowed to transform E1 to a vector bundle E′1 over X/Y by
pinching E1|Y to a vector bundle over a point. Let E′0 be the trivial bundle obtained
from E0 in the same way. Define E′ = (0→ E′1 → E′0 → 0) ∈ L1(X/Y, Y/Y ). Then
φ(E′) = E and so φ is an epimorphism. �
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B.3. Proof of Proposition 3.11. The surjectivity follows directly from the lemma
below.

Lemma B.9. Let E0, · · · , En be vector bundles over X. If

E = (0→ En
σn−−→ · · · σ1−→ E0 → 0)

where the σi’s are defined over Y that σi−1σi = 0, then the σi’s can be extended to
X and the extensions also satisfy that σi−1σi = 0.

Proof. We will show that this is true by induction on the cells of X − Y. Hence, it
suffices to consider the case when X is obtained from Y by attaching one cell. Let
X = Y ∪f ek where f : Sk−1 → Y is the attaching map.

Let π : Y t Dk → X be the quotient map. Then we have a pullback bundle
π∗Ei → Y tDk. Since Dk is contractible, the restriction π∗Ei|Dk is a trivial bundle
Dk × Vi, where Vi is the fiber of Ei → X. Hence, π∗Ei is the disjoint union
π∗Ei = Ei|Y t (Dk × Vi).

The vector bundle homomorphism σi : Ei|Y → Ei−1|Y is the same thing as a
section Y → Hom(Vi, Vi−1). Composing it with the map f : Sk−1 → Y , we get a
section

τi : Sk−1 f−→ Y → Hom(Vi, Vi−1).

We extend τi to Dk and the new section is still called τi

τi : Dk → Hom(Vi, Vi−1)

u 7→

 ‖u‖τi(u/‖u‖), u 6= 0

0, u = 0

Then we get a vector bundle homomorphism induced by τi (and again we call it τi)

τi : Dk × Vi → Dk → Vi−1.

Combining σi and τi gives us a vector bundle homomorphism Ei → Ei−1 over X
which extends σi. Since σi−1σi = 0, we have τi−1τi = 0 and hence the extended
vector bundle homomorphism also has this property. �

Proof of Proposition 3.11. Lemma B.9 shows us the surjectivity.
For injectivity, consider the pair (X × I,X × {0} ∪X × {1} ∪ Y × I). Suppose

that E,E′ ∈ Dn(X,Y ) satisfy that ϕ(E) ' ϕ(E′) in Cn(X,Y ); that is, there exists
F ∈ Cn(X × I, Y × I) such that ϕ(E) ∼= F |X×{0} and ϕ(E′) ∼= F |X×{1}. Since
both E and E′ lie in Dn(X,Y ), they have vector bundle homomorphisms defined
on X and hence we extend the vector bundle homomorphisms in F naturally to
X × {0} ∪X × {1} ∪ Y × I. Then F ∈ Cn(X × I,X × {0} ∪X × {1} ∪ Y × I).

Apply the similar argument in the previous paragraph to F , we can extend
F to be an element in Dn(X × I,X × {0} ∪ X × {1} ∪ Y × I). Moreover, we
have F |X×{0} ∼= E and F |X×{1} ∼= E′ in Dn(X,Y ). This shows that ϕ(E) being
homotopic to ϕ(F ) implies that E is homotopic to F ; that is, the injectivity. �

B.4. Proof of Proposition 3.16. By Proposition 3.12, χ(E ⊗ E′) = χ(E)χ(E′).
Although we have constructed an inverse of jn : L1(X,Y )→ Ln(X,Y ) in the proof
of Proposition 3.4, we introduce a different construction of j−1

n here which gives us
j−1
2 (E ⊗ E′) = F . Hence, χ(E ⊗ E′) = χ(F ).
Let E ∈ Cn(X,Y ). By introducing metrics we can define the adjoint sequence

of E by E∗ = (0→ E0
σ∗1−→ E1

σ∗2−→ · · · σ
∗
n−−→ En → 0). Consider the sequence

G = (0→ G1
τ−→ G0 → 0)
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where G0 =
⊕

iE2i, G1 =
⊕

iE2i+1 and

τ(e1, e3, e5, · · · ) = (σ1e1, σ
∗
2e1 + σ3e3, σ

∗
4e3 + σ5e5, · · · ).

Since we have the decomposition E2i = σ2i+1(E2i+1) ⊕ σ∗2i(E2i−1) by the exact-
ness on Y , τ is an isomorphism of vector bundles over Y , so G ∈ C1(X,Y ). This
gives us a map Cn(X,Y ) → C1(X,Y ), E 7→ G. Observe that this map preserves
the equivalence relations ∼ in Cn(X,Y ) and C1(X,Y ), so it passes to a map
Ln(X,Y ) → L1(X,Y ), which we denote as j−1

n . Notice that the construction of
G depends on the choice of metric on E, but j−1

n : Ln(X,Y )→ L1(X,Y ) turns out
to be independent of the choice of metric on E because two choices of metric on E
give homotopic results on G in C1(X,Y ), and hence gives the same element when
we pass to L1(X,Y ) (Proposition 3.10). Finally, it is a check by definition that j−1

n

is an inverse of jn, and particularly, j−1
2 (E ⊗ E′) = F . �
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