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Abstract. In this paper, we construct a Besicovitch set, prove that Besicov-

itch sets must have Hausdorff dimension equal to 2, and show that there does
not exist an analogous set in R3. We then discuss the Kakeya problem and

construct a Kakeya set of arbitrarily small area.
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1. Introduction

In 1917, the Russian mathematician Abram Besicovitch was working on a prob-
lem in Riemann integration: if f : R2 → R is Riemann integrable, then are there
orthogonal coordinate axes such that the Riemann integral

∫
f(x, y)dx exists for

all y and such that
∫
f(x, y)dx is Riemann integrable as a function of y? The

answer is no, and a counterexample is based on the fact that there exists a set of
measure zero in the plane which contains a unit line segment in every direction. In
1919, Besicovitch constructed such a set, and this set would come to be known as
a Besicovitch set.

Also in 1917, the Japanese mathematician Sōichi Kakeya asked the following
question: what is the smallest area of a convex planar set in which a needle can be
rotated by 180 degrees? Sets in which a unit line segment can be rotated by 180
degrees are known as Kakeya sets. In 1921, Pál showed that a convex Kakeya set of
smallest area must be an equilateral triangle. However, Kakeya’s problem without
the convex condition was still an open question. When Besicovitch later found out
about this question, he realized that he could construct a Kakeya set of arbitrarily
small area by adapting his construction of a Besicovitch set.

Besicovitch and Kakeya sets are not just interesting from a geometric perspective.
They are also related to harmonic analysis, solutions to the wave equation, and
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additive combinatorics (the interested reader can see [4] and [7]). In this paper, we
will not focus on such applications, but instead, we will provide an introduction to
Besicovitch and Kakeya sets. We will begin by constructing a Besicovitch set, and
then we will prove that Besicovitch sets must have Hausdorff dimension equal to
2. We will discuss how there does not exist an analogue of a Besicovitch set in R3.
Finally, we will construct a Kakeya set of arbitrarily small area.

Throughout the paper, we will assume that the reader has an understanding of
basic real analysis and measure theory. The following is a list of notation we will
use:

Notation

Ln n-dimensional Lebesgue measure

Hs s-dimensional Hausdorff measure or outer measure

dim(E) Hausdorff dimension of E

E closure of E

∥ · ∥ Euclidean norm

· dot product

Br(x) closed ball of radius r centered at x

Gr(n, k) Grassmanian of k-dimensional linear subspaces of Rn

2. Constructing a Besicovitch set

A Besicovitch set is a subset of R2 with Lebesgue measure zero which contains a
unit line segment in every direction. To construct a Besicovitch set, we will follow
the construction given in Falconer’s book [1, p. 96-99]. The basic idea behind the
construction is the following geometric argument.

Lemma 2.1. Consider a triangle T whose base lies along a line L. Suppose T
has base length 2b and height h. Split the triangle T into subtriangles T1 and T2

with base length b by connecting a median from the apex of T to the base of T (see
Figure 1). Fixing some α ∈ (1/2, 1), we slide T2 along L by a distance of 2b(1−α)
in order to overlap T1 such that the resulting figure F consisting of the overlapped
triangles has area L2(F ) = (α2 + 2(1 − α)2)L2(T ). The reduction in area is then
L2(T )− L2(F ) = (1− α)(3α− 1)L2(T ).

Proof. Note that the figure F contains a triangle T ′ that is similar to T (see Figure
1). T ′ has a base length of

2b(1− α) + 2(b− 2b(1− α)) = 2b− 2bα+ 2b− 4b+ 4bα = 2bα.

Thus, we find that the similarity ratio is α. It follows that the area of T ′ is
L2(T ′) = α2L2(T ). Now consider the triangles A,B,C, and D, as indicated in
Figure 1. We see that A and D are similar to triangle T2, and B and C are similar
to triangle T1. Because each of the triangles A,B,C and D has base length b(1−α),
we find that the similarity ratio is 1−α for A and D as well as B and C. Therefore,
we have L2(A) = L2(D) and L2(B) = L2(C), and we can compute these areas:

L2(A) = L2(D) = (1− α)2L2(T1) =
1

2
(1− α)2L2(T ),

L2(B) = L2(C) = (1− α)2L2(T2) =
1

2
(1− α)2L2(T ).
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Figure 1

Putting this all together, we find that the area of figure F is given by

L2(F ) = L2(T ′) + L2(A) + L2(B) + L2(C) + L2(D) = (α2 + 2(1− α)2)L2(T ).

Then the reduction in area is

L2(T )− L2(F ) = (1− α2 − 2(1− α)2)L2(T ) = (1− α2 − 2 + 4α− 2α2)L2(T )

= (−3α2 + 4α− 1)L2(T )

= (1− α)(3α− 1)L2(T ).

□

Using this lemma, we can obtain the following theorem.

Theorem 2.2. Consider a triangle T whose base lies along a line L. For k ∈ N, we
can divide the base of T into 2k equal pieces that form the bases of 2k subtriangles
of T sharing an apex with T (see Figure 2(a)). For large enough k, we can slide
these 2k subtriangles along L such that the resulting figure F has arbitrarily small
area. Moreover, if we have T ⊆ U for some open set U , we can also ensure that
F ⊆ U .

Proof. Fix α ∈ (1/2, 1) and k ∈ N, which we will determine later. Divide the base
of T into 2k equal pieces to form the bases of 2k subtriangles T1, . . . , T2k which
share an apex with T . For 1 ≤ i ≤ 2k−1, we slide T2i towards T2i−1 along L as

in Lemma 2.1 to produce a figure F
(1)
i . We can do this such that F

(1)
i contains a

triangle T
(1)
i which is similar to T2i−1∪T2i with similarity ratio α, by the argument

in Lemma 2.1. By Lemma 2.1, we also have the following reduction in area:

L2(T2i−1 ∪ T2i)− L2(F
(1)
i ) = (1− α)(3α− 1)L2(T2i−1 ∪ T2i).

We then repeat this process by sliding F
(1)
2i−1 and F

(1)
2i towards each other to produce

a figure F
(2)
i for 1 ≤ i ≤ 2k−2. Note that the triangles T

(1)
2i−1 and T

(1)
2i contained

in F
(1)
2i−1 and F

(1)
2i have sides that are parallel to each other and have equal length.

Therefore, applying Lemma 2.1, we can ensure that F
(2)
i contains a triangle T

(2)
i
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which is similar to T
(1)
2i−1 ∪ T

(1)
2i with similarity ratio α. This allows us to place a

lower bound on the reduction in area due to forming F
(2)
i from F

(1)
2i−1 and F

(1)
2i :

L2(F
(1)
2i−1 ∪ F

(1)
2i )− L2(F

(2)
i ) ≥ (1− α)(3α− 1)L2(T

(1)
2i−1 ∪ T

(1)
2i )

= (1− α)(3α− 1)α2L2(T4i−3 ∪ T4i−2 ∪ T4i−1 ∪ T4i).

We proceed in this way for another k − 2 steps. The final figure is F
(k)
1 , which we

denote by F . Figure 2 shows this process when k = 3. In the jth step, we create

the figures F
(j)
i by sliding F

(j−1)
2i and F

(j−1)
2i−1 towards each other for 1 ≤ i ≤ 2k−j .

Note that when j = 1, F
(0)
2i−1 and F

(0)
2i are T2i−1 and T2i, respectively. We have the

following lower bound on the reduction in area due to forming F
(j)
i from F

(j−1)
2i

and F
(j−1)
2i−1 :

L2(F
(j−1)
2i−1 ∪ F

(j−1)
2i )− L2(F

(j)
i ) ≥ (1− α)(3α− 1)L2(T

(j−1)
2i−1 ∪ T

(j−1)
2i )

= (1− α)(3α− 1)α2(j−1)L2(Ti2j−2j+1 ∪ · · · ∪ Ti2j ).

From this, we obtain a lower bound on the total reduction in area in the jth step:

2k−j∑
i=1

(L2(F
(j−1)
2i−1 ∪ F

(j−1)
2i )− L2(F

(j)
i )) ≥ (1− α)(3α− 1)α2(j−1)L2(T1 ∪ · · · ∪ T2k)

= (1− α)(3α− 1)α2(j−1)L2(T ).
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We then add up the following j inequalities:

2k−1∑
i=1

(L2(T2i−1 ∪ T2i)− L2(F
(1)
i )) ≥ (1− α)(3α− 1)L2(T ),

2k−2∑
i=1

(L2(F
(1)
2i−1 ∪ F

(1)
2i )− L2(F

(2)
i )) ≥ (1− α)(3α− 1)α2L2(T ),

· · ·

L2(F
(k−1)
1 ∪ F

(k−1)
2 )− L2(F

(k)
1 ) ≥ (1− α)(3α− 1)α2(k−1)L2(T ).

We obtain

2k−1∑
i=1

L2(T2i−1 ∪ T2i)− L2(F
(k)
1 ) ≥ (1− α)(3α− 1)(1 + α2 + · · ·+ α2(k−1))L2(T ).

Equivalently, we have

L2(F ) ≤ L2(T )− (1− α)(3α− 1)(1 + α2 + · · ·+ α2(k−1))L2(T )

= L2(T )− (1− α)(3α− 1)(1− α2k)

1− α2
L2(T )

=

(
1− (3α− 1)(1− α2k)

1 + α

)
L2(T ).

We will now find a choice of k and α that makes L2(F ) arbitrarily small. Let ε > 0
be given. Let ε′ = ε

L2(T ) . Then there exists δ > 0 (we can assume δ < 1/2) such

that for all 1− δ < α < 1, we have

1− 3α− 1

1 + α
<

ε′

2
.

For any α such that 1− δ < α < 1, by picking k ∈ N large enough, we also have

3α− 1

1 + α
− (3α− 1)(1− α2k)

1 + α
<

ε′

2
.

Thus, for any α ∈ (1− δ, 1) and large enough k, we have

L2(F ) ≤
(
1− (3α− 1)(1− α2k)

1 + α

)
L2(T )

=

(
1− 3α− 1

1 + α

)
L2(T ) +

(
3α− 1

1 + α
− (3α− 1)(1− α2k)

1 + α

)
L2(T )

<
ε

2
+

ε

2
= ε.

This shows that by picking α and k appropriately, we can make L2(F ) arbitrarily
small.

Now suppose T ⊆ U for some open set U . Because T and UC are disjoint, T is
compact, and UC is closed, we have

dist(T,UC) = inf{∥x− y∥ : x ∈ T, y ∈ UC} > 0.

Choose η < dist(T,UC). Note that in the procedure above, none of the subtriangles
of the original triangle move more than the base length of the original triangle after
we fix the position of the first subtriangle and move all other subtriangles relative
to the first one. Now divide T into subtriangles with base length b < η. We may
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then perform the procedure above on each subtriangle of T such that the resulting
figure F has arbitrarily small area. Furthermore, we have F ⊆ U because all of the
subtriangles of each subtriangle of T have moved less than η. □

Theorem 2.3. There exists a Besicovitch set.

Proof. Let F1 be an equilateral triangle whose base lies along the x-axis and whose
height is equal to 1. Let U1 be a bounded open set such that F1 ⊆ U1 and such
that L2(U1) ≤ 2L2(F1). By Theorem 2.2, we can divide F1 into subtriangles and
move them to form a new figure F2 ⊆ U1 that satisfies L2(F2) ≤ 2−2. We can then
find a new open set U2 satisfying F2 ⊆ U2 ⊆ U1 and L2(U2) ≤ 2L2(F2). Again,
applying Theorem 2.2, we divide each of the triangles moved to create F2 into
further subtriangles and move these subtriangles to create a new figure F3 ⊆ U2

that satisfies L2(F3) ≤ 2−3. We then find an open set U3 satisfying F3 ⊆ U3 ⊆ U2.
Continuing this process, we obtain figures {Fi}∞i=1 with L2(Fi) ≤ 2−i for all i ∈ N
as well as open sets {Ui}∞i=1 with

Fi ⊆ Ui ⊆ Ui−1

and

L2(U i) ≤ 2L2(Fi) ≤ 2−i+1

for all i ∈ N.
Let E =

⋂∞
i=1 U i. We must have L2(E) = 0 because for all i ∈ N, we have

L2(E) ≤ L2(U i) ≤ 2−i+1.

Now note that for all i ∈ N, we have that Fi, and therefore also U i, contains a unit
line segment in any direction ρ such that the angle between the positive x-axis and
the line segment is between π/3 and 2π/3. This is true because it is true for the
original equilateral triangle F1. We will show that E also satisfies this property.
Let ρ be a given direction that makes an angle between π/3 and 2π/3 with the
positive x-axis. For each i ∈ N, there exists a unit line segment γi ⊆ U i in the
direction ρ. For all i ∈ N, we have that γi is a subset of U1, which is compact. Let
xi be the lowermost endpoint of γi for each i ∈ N (lowermost meaning closest to the
x-axis). Then because U1 is compact, by passing to a subsequence if necessary, we
can assume that {xi}∞i=1 converges to some x. Consider the unit line segment γ in
the direction ρ with lowermost endpoint x. Since all the γi are unit line segments
in the same direction, we must have that the γi converge to γ pointwise. Given
j ∈ N, since {U i}∞i=1 is decreasing, we have γi ⊆ U j if i ≥ j, and because U j

is closed, we must have γ ⊆ U j . We thus have γ ⊆ U j for all j ∈ N, and so
γ ⊆ E. This means that E contains a unit line segment in the direction ρ. Let
B = E ∪ E′ ∪ E′′, where E′ and E′′ are counterclockwise rotated copies of E by
π/3 and 2π/3, respectively. Then B is a set of measure zero which contains a unit
line segment in every direction. □

It is possible to construct an even better Besicovitch set that contains a line in
every direction. See [1, p. 103] for such a construction.

3. Hausdorff Measure and Properties of Besicovitch sets

Although we know that Besicovitch sets have measure zero, we can ask how
“large” they are in comparison to other sets of measure zero in the plane. To
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investigate this, we can examine the dimension of Besicovitch sets. Intuitively, the
dimension of a set is a reflection of its scaling behavior. For a one-dimensional set,
like a line segment, scaling the set by n ∈ N results in a set which is composed of n
copies of the original set. Scaling a two-dimensional set, like a square, by n results
in a set which is composed of n2 copies of the original set. Extending this idea, we
could imagine that an s-dimensional set scaled by n would result in a set which is
composed of ns copies of the original set. We might guess that the dimension of
Besicovitch sets is between 1 and 2. Since they contain unit line segments in every
direction, they contain one-dimensional subsets, and so their dimension cannot be
less than 1. On the other hand, they are planar sets, so their dimension cannot
exceed 2. However, it is not immediately clear what value between 1 and 2 their
dimension must be. The way to make this discussion formal is to introduce the
notion of Hausdorff measure and dimension.

3.1. Hausdorff Measure and Dimension.

Definition 3.1. Let a subset A ⊆ Rn and a non-negative real number s be given.
For δ > 0, let Hs

δ (A) be the following:

Hs
δ (A) = inf

{ ∞∑
i=1

(diam(Ei))
s
: A ⊆

∞⋃
i=1

Ei, diam(Ei) ≤ δ for all i ∈ N

}
.

Then the s-dimensional Hausdorff outer measure of A is given by

Hs(A) = lim
δ→0

Hs
δ (A).

Notice that as δ decreases to 0,Hs
δ (A) increases, soHs(A) = limδ→0 H

s
δ (A) exists

(although it is possibly infinite). It can be shown that Hs is a metric outer measure
[2, p. 326-327]. From this, it follows that Hs is a measure when restricted to the
sigma algebra of Borel sets [2, p. 267-269]. We call this measure the s-dimensional
Hausdorff measure. Hs has the following regularity property.

Proposition 3.2. Let A ⊆ Rn be a subset. Then there is a Gδ-set G such that
A ⊆ G and such that Hs(A) = Hs(G). Furthermore, if A is Hs-measurable and
Hs(A) < ∞, then there is an Fσ-set F such that F ⊆ A and such that Hs(A) =
Hs(F ).

For a proof of this, see [1, p. 8-9]. Another important property of the Hausdorff
measure is that for any Borel set A, Hs(A) is infinite for small values of s, and it
is 0 for large values of s. There exists some cut-off value of s called the Hausdorff
dimension of A at which Hs(A) switches from being infinity to being 0.

Proposition 3.3. Let A ⊆ Rn be a Borel set. Then there exists a unique value α
such that for all s < α, we have Hs(A) = ∞, and for all s > α, we have Hs(A) = 0.
We call α the Hausdorff dimension of A, which we denote by dim(A).

Proof. We first show that if Hβ(A) < ∞ for some β, then we have Hs(A) = 0
for all s > β. Let s > β be given. Consider a covering of A by sets {Ei}, where
diam(Ei) ≤ δ for all i ∈ N. For i ∈ N, we have

(diam(Ei))
s
= (diam(Ei))

β
(diam(Ei))

s−β ≤ (diam(Ei))
β
δs−β .

Therefore,

Hs
δ (A) ≤ δs−βHβ

δ (A).
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Note that Hβ
δ (A) is finite, and note that s − β > 0, so that δs−βHβ

δ (A) tends to
0 as δ tends to 0. Taking the limit as δ tends to 0 of both sides of the above
inequality, we obtain Hs(A) = 0. Furthermore, we have that if Hβ(A) > 0 for
some β, then we have Hs(A) = ∞ for all s < β. This follows immediately from
the above because if we had Ht(A) < ∞ for some t < β, then we would have
Hs(A) = 0 for all s > t, which in particular means Hβ(A) = 0, in contradiction.
Set α = sup{s : Hs(A) = ∞}. From the above results, it follows that for all s < α,
we have Hs(A) = ∞, and for all s > α, we have Hs(A) = 0. □

Using the regularity property of Hs, we can prove the following useful proposi-
tion.

Proposition 3.4. Let A ⊆ Rn be any subset. Then there is a Gδ-set G containing
A such that dim(G) = dim(A).

Proof. Let s be the Hausdorff dimension of A. For each i ∈ N, by Proposition 3.2,
there exists a Gδ-set Gi containing A such that

Hs+1/i(Gi) = Hs+1/i(A) = 0.

Let G =
⋂∞

i=1 Gi. Note that G is Gδ and contains A. Consider any t > s, and pick
k ∈ N such that s+ 1/k < t. Then we have

Ht(G) ≤ Ht(Gk) = 0.

On the other hand, for any t < s, we have

Ht(G) ≥ Ht(A) = ∞.

It follows that dim(G) = s. □

3.2. Properties of Besicovitch Sets.
We will now prove that Besicovitch sets must have Hausdorff dimension equal to 2.
Informally, this means that among sets of measure zero in R2, Besicovitch sets are
the “largest” of them in some sense. To prove this, we follow Mattila [3, p. 144].
We first need the result that projection does not increase Hausdorff measure.

Lemma 3.5. Let Gr(k, n) denote the Grassmanian of k-dimensional linear sub-
spaces of Rn. Suppose W ∈ Gr(n, k) is a subspace. Let πW : Rn → Rk be the
orthogonal projection map onto W , and let A ⊆ Rn be a subset. Then we have

Hs(πW (A)) ≤ Hs(A).

Proof. First note that for a, b ∈ A, we have

∥πW (a)− πW (b)∥ ≤ ∥a− b∥.
Let {Ei} be a cover of A with diam(Ei) ≤ δ for all i ∈ N. Then {πW (Ei)} is a
cover of πW (A) with diam(πW (Ei)) ≤ diam(Ei) ≤ δ for all i ∈ N. We have

∞∑
i=1

(diam(πW (Ei)))
s ≤

∞∑
i=1

(diam(Ei))
s,

and so it follows that
Hs

δ (πW (A)) ≤ Hs
δ (A).

Taking the limit as δ tends to 0, we obtain

Hs(πW (A)) ≤ Hs(A).

□
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We also require the following proposition which states that if a Borel set has
dimension less than or equal to one, dimension is preserved under projection onto
almost all lines through the origin, and if a Borel set has dimension greater than
one, the one-dimensional Hausdorff measure of projections onto almost all lines
through the origin is positive.

Proposition 3.6. Let A ⊆ Rn be a Borel set. For e ∈ Sn−1 (the (n− 1)-sphere),
let proje : Rn → R be the orthogonal projection map onto the line {te : t ∈ R}. If
dim(A) ≤ 1, then

dim(proje(A)) = dim(A) for almost all e ∈ Sn−1.

If dim(A) > 1, then

H1(proje(A)) > 0 for almost all e ∈ Sn−1.

Note that in the second case, we have dim(proje(A)) = 1 for almost all e ∈ Sn−1.
A proof of this proposition requires some Fourier analysis which is not directly
related to the main topics in this paper, so we will not give one. See [3, p. 56] for
a proof. Finally, we need a result about the Hausdorff measure of intersections of
a set with translated linear subspaces.

Proposition 3.7. Let A ⊆ Rn be a set with Hs(A) < ∞. Then for k ∈ N with
k ≤ s and for any W ∈ Gr(k, n), we have

Hs−k(A ∩ (W⊥ + x)) < ∞ for Hk almost all x ∈ W.

The proof of this result is an application of Fatou’s lemma, but because the proof
does not involve techniques directly relevant to this paper, we will omit it for the
sake of space. For a proof, see [3, p. 94]. We can now prove our desired result
about the Hausdorff dimension of Besicovitch sets. The main idea of the proof is
the concept of duality, which means that for a certain line segment in R2, we can
associate with it a unique point in R2. For example, a line segment of the form
{(t, at + b) : 0 ≤ t ≤ 1/2} for a, b ∈ R can be associated with the point (a, b).
Given a set A in R2, it is often useful to consider the dual set of line segments
that are associated with A. There is somewhat of a continuity property in that
varying points in A by a small amount results in a variation of line segments by a
small amount in the dual set. Furthermore, we can also use duality in the opposite
direction by considering a set of line segments and looking at properties of the set
of points with which those line segments are associated. This is what we do in the
proof of the following theorem.

Theorem 3.8. Besicovitch sets have Hausdorff dimension equal to 2.

Proof. Let B ⊆ R2 be a Besicovitch set. By Proposition 3.4, we can assume without
loss of generality that B is a Gδ-set. For a ∈ (0, 1), b ∈ R, and q ∈ Q, let γ(a, b, q)
denote the line segment {(q + t, at + b) : 0 ≤ t ≤ 1/2}, that is, the line segment
beginning at (q, b) and ending at (q+1/2, a/2+ b). For q ∈ Q, define the set Eq as

Eq = {(a, b) : a ∈ (0, 1), b ∈ R, γ(a, b, q) ⊆ B}.
Note that for any open set U , the set

{(a, b) : a ∈ (0, 1), b ∈ R, γ(a, b, q) ⊆ U}
is open. Since B is Gδ, it follows that each Eq is Gδ. Because each γ(a, b, q) is of
length less than 1, given any a ∈ (0, 1), there exists b ∈ R and q ∈ Q such that
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γ(a, b, q) ⊆ B, by definition of a Besicovitch set. Let πx : R2 → R be the orthogonal
projection onto the x-axis. Then we see that we must have πx(

⋃
q∈Q Eq) = (0, 1). I

now claim that there must exist q0 ∈ Q such that H1(Eq0) > 0. To see why this is
the case, suppose for the sake of contradiction that H1(Eq) = 0 for all q ∈ Q. Then
H1(

⋃
q∈Q Eq) = 0. By Lemma 3.5, this implies that H1(0, 1) = 0, in contradiction.

Thus, there exists q0 ∈ Q with H1(Eq0) > 0, and so dim(Eq0) ≥ 1.
By Proposition 3.6, we have dim(pt(Eq0)) = 1 for almost all t ∈ R, where

pt : R2 → R is the map given by pt(x, y) = tx + y. Note that for 0 ≤ t ≤ 1/2, we
have

{q0 + t} × pt(Eq0) = {(q0 + t, at+ b) : (a, b) ∈ Eq0} ⊆ B ∩ {(x, y) ∈ R2 : x = q0 + t}.

For t ∈ R, consider the vertical section Bt = {(x, y) ∈ B : x = q0 + t}. Because
dim(pt(Eq0)) = 1 for almost all t ∈ R, and {q0 + t}× pt(Eq0) ⊆ Bt for 0 ≤ t ≤ 1/2,
we see that the set

A = {t ∈ [0, 1/2] : dim(Bt) = 1}
has positive measure. This means that for all α ∈ [1, 2), we must have Hα−1(Bt) =
∞ on a set of t of positive measure. By the contrapositive of Proposition 3.7, this
implies that Hα(B) = ∞ for all α ∈ [1, 2). Hence, dim(B) = 2. □

Another question we can ask about Besicovitch sets is how essential is the fact
that we are working in two dimensions? It turns out that this is important, as we
will see in the following theorem. We follow Falconer [1, p. 105-106]. Again, we
use the concept of duality, and we associate planes in R3 with points.

Theorem 3.9. Let A ⊆ R3 be a subset of Lebesgue measure zero. Then A cannot
contain a translate of every plane.

Proof. Before beginning the proof, we will set up some notation. For a, b, c ∈ R,
let P (a, b, c) be the plane given by

P (a, b, c) = {(x, y, z) ∈ R3 : z = a+ bx+ cy}.

For a subset E ⊆ R3, we define P (E) to be the union of planes given by

P (E) =
⋃

(a,b,c)∈E

P (a, b, c).

Now suppose that a subset A ⊆ R3 contains a translate of every plane. By outer
regularity of the Lebesgue measure, we may assume without loss of generality that
A is Gδ so that the set

Ω = {(a, b, c) ∈ R3 : P (a, b, c) ⊆ A}

=

∞⋂
r=1

{(a, b, c) ∈ R3 : P (a, b, c) ∩Br(0) ⊆ A ∩Br(0)}

is Gδ and hence Borel. Let V be the yz-plane and let πV be the orthogonal pro-
jection map onto V . Because A contains a translate of every plane, for every
(b, c) ∈ R2, there exists a ∈ R such that the plane P (a, b, c) is contained in A.
Thus, πV (Ω) = V . Note that H2(V ) = ∞. Therefore, by Lemma 3.5, we have that
H2(Ω) = ∞, which implies that dim(Ω) ≥ 2.
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We will now show that the L1 measure of P (Ω) intersected with a line perpen-
dicular to the xy-plane is positive for almost all such lines. Given d, e ∈ R, we
define γd,e to be the line given by

γd,e = {(x, y, z) ∈ R3 : x = d, y = e}.
Note that for a, b, c, d, e ∈ R, we have

γd,e ∩ P (a, b, c) = {(d, e, a+ bd+ ce)} = {(d, e, (a, b, c) · (1, d, e))}.

For E ⊆ R3 and d, e ∈ R, we obtain

γd,e ∩ P (E) = {(d, e, (a, b, c) · (1, d, e)) : (a, b, c) ∈ E}.

Let ℓd,e be the line given by {α(1, d, e) : α ∈ R}, and let projd,e : R3 → R be

the orthogonal projection map onto the line ℓd,e. We find that L1(projd,e(E)) = 0

if and only if L1(γd,e ∩ P (E)) = 0. For u ∈ S2, let proju : R3 → R be the
orthogonal projection map onto the line {tu : t ∈ R}. By Proposition 3.6, we
have L1(proju(Ω)) > 0 for almost all u ∈ S2, which implies that L1(γd,e ∩P (Ω)) >
0 for almost all (d, e) ∈ R2.

Note that if a set E ⊆ R3 is open, then P (E) is also open, so that if E ⊆ R3 is
Gδ, then P (E) is also Gδ. Thus, P (Ω) is L3-measurable, so we may apply Fubini’s
theorem to obtain that L3(P (Ω)) > 0. Because P (Ω) ⊆ A, we see that A must
have positive Lebesgue measure. □

4. The Kakeya problem

Very much related to a Besicovitch set, a Kakeya set is a set such that a unit
line segment in the set can be rotated and translated continuously to its original
position with its endpoints reversed without leaving the set. The Kakeya problem
is the problem of determining whether or not there exists some minimum area that
a Kakeya set must have. Note that being able to rotate a line segment inside a
Kakeya set forces the set to have positive area. However, it turns out that there
exist Kakeya sets of arbitrarily small area. To prove this fact, we follow Falconer
[1, p. 100-101]. We require the following lemma.

Lemma 4.1. Consider parallel lines L1 and L2 in R2. Let ε > 0 be given. Then
there exists a set A containing L1 and L2 such that a unit line segment γ ⊆ L1 can
be moved continuously onto L2 without leaving A and such that L2(A) < ε.

L1

L2

x1

x2

Γ

Figure 3

Proof. Consider points x1 ∈ L1 and x2 ∈ L2 as well as the line segment Γ connecting
x1 and x2. Let A be the set composed of L1, L2, and Γ as well as the sector of
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radius 1 between L1 and Γ centered at x1 and the sector of radius 1 between L2

and Γ centered at x2 (see Figure 3). By choosing x1 and x2 to be very far apart,
we can make the angles of the sectors arbitrarily small such that L2(A) < ε. To
move γ continuously onto L2 without leaving A, we move γ along L1 to the first
sector, rotate it to line up with Γ, translate it along Γ, and rotate it in the second
sector to line up with L2. □

We combine this lemma with Theorem 2.2 to construct a Kakeya set of arbitrarily
small measure.

Theorem 4.2. Let ε > 0 be given. Then there exists a Kakeya set K with L2(K) <
ε.

F

Figure 4

Proof. Let T be an equilateral triangle with its base along the line L and with a
height equal to 1. By Theorem 2.2, we can divide T into subtriangles T1, . . . , T2k

and move these subtriangles along L to new positions S1, . . . , S2k to create a new
figure F with L2(F ) < ε/12. For 1 ≤ i ≤ 2k − 1, triangles Si and Si+1 have
sides that are parallel to each other. In Figure 4, one such pair of parallel sides is
highlighted in the case when k = 3. Using Lemma 4.1, for 1 ≤ i ≤ 2k − 1, we can
then add a set Ai of measure less than ε

12(2k−1)
that allows a unit line segment to

be moved continuously from Si to Si+1. This results in a set K1 = F ∪
(⋃2k−1

i=1 Ai

)
with measure L2(K1) < ε/6 in which a unit segment can be moved continuously
to a position at an angle of π/3 with its original position. We may take the initial
segment to be along the leftmost side of S1 and move the segment in K1 to reach
the rightmost side of S2k . Let K2 and K3 be counterclockwise rotated copies of K1

by angles of π/3 and 2π/3, respectively. Using Lemma 4.1, we may add sets A′
1,A

′
2,

and A′
3 with combined measure less than ε/2 in which we can move the segment

from K1 to K2, from K2 to K3, and from K3 to K1, respectively. Note that we
can move the segment from the rightmost side of S2k in K1 to the leftmost side of
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the rotated copy of S1 in K2. Similar movements take the segment from K2 to K3

and from K3 to K1. Let K = K1 ∪K2 ∪K3 ∪A′
1 ∪A′

2 ∪A′
3. Then we see that we

have L2(K) < ε. Furthermore, we can move a line segment inside K such that it
returns to its original position with reversed endpoints (we rotate the segment by
π/3 in each Ki for 1 ≤ i ≤ 3). □
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