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Abstract. We develop the fundamental notions of symplectic geometry, in-

cluding symplectic vector spaces and symplectic manifolds, in order to show
some fundamental results in the dynamics of Hamiltonian systems and sym-

plectic manifolds. With this background, we finally introduce the set of in-

variants called symplectic capacities, particularly the Hofer-Zehnder capacity,
and finally prove Gromov’s Nonsqueezing theorem.
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1. Introduction

Symplectic geometry is born as a grand mathematical generalization of classical
mechanics (in particular, it is born from the Hamiltonian formulation of mechanics),
and in this way becomes its underlying mathematical formalism. More particularly,
the fundamental tool of symplectic geometry, the symplectic form, together with the
Hamiltonian function of a system, control the underlying physics of any given phase
space (in the classical sense). The generalization of this tools has helped develop
many important mathematical results, such as Gromov’s Nonsqueezing theorem.
We begin by defining the properties of a symplectic form, in order to develop the
notion of symplectic vector spaces.

2. Fundamental notions

Definition 2.1. Let V be a real vector space such that dim V = m, and let
ω : V × V → R be a bilinear form. If ω(v, u) = −ω(u, v) for all v, u ∈ V we say ω
is skew-symmetric.
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Note that a consequence of this definition is that ω(v, v) = −ω(v, v), which
means that ω(v, v) = 0 for all v ∈ V .

Theorem 2.2. (Standard Form for skew-symmetric bilinear forms) If ω
is a skew-symmetric bilinear form on R, then there exists a basis
x1, . . . , xk, e1, . . . , en, f1, . . . , fn in V such that

ω(xi, v) = 0 for all i and all v ∈ V ,

ω(ei, ej) = ω(fi, fj) = 0 for all i and j,

ω(ei, fj) = δij for all i and j (and δij is the Kronecker delta).

Proof. Let U := {u ∈ V : ω(u, v) = 0 ∀ v ∈ V }. Also, let W be a subspace of V
such that V = U ⊕W . We can choose e1 ∈ W, e1 6= 0, and by definition of W we
can find f1 ∈W such that ω(e1, f1) 6= 0. By taking care of the necessary constants,
we can safely assume that ω(e1, f1) = 1. Let us define

W1 := span{e1, f1}

and

Wω
1 := {w ∈W : ω(w, v) = 0 ∀ v ∈W1}.

If we consider some v ∈W1 ∩Wω
1 , we know that v = ae1 + bf1, and we find that{

ω(v, e1) = ω(ae1 + bf1, e1) = a · ω(e1, e1) + b · ω(f1, e1) = −b,
ω(v, f1) = ω(ae1 + bf1, f1) = a · ω(e1, f1) + b · ω(f1, f1) = a

since v ∈ Wω
1 , it follows that a = b = 0, and therefore v = 0. This means that

W1 ∩Wω
1 = {0}. Hence, for some v ∈ W assume ω(v, e1) = c and ω(v, f1) = d.

Thus, (−cf1 + de1) ∈W1 and (v + cf1 − de1) ∈Wω
1 , and we can write

v = (−cf1 + de1) + (v + cf1 − de1) .

Therefore, W = W1 ⊕ Wω
1 . Similarly, we can find a vector e2 ∈ Wω

1 such that
e2 6= 0, and there exists f2 ∈Wω

1 such that ω(e2, f2) 6= 0. Call

W2 := span{e2, f2},

and again

Wω
2 := {v ∈Wω

1 : ω(v, w) = 0 ∀ w ∈W2}.
We can continue this process as in the first step by further decomposing the sub-
spaces, as it will eventually end since V is finite-dimensional. Finally, we find that

V = U ⊕W1 ⊕W2 ⊕ · · · ⊕Wn,

where each Wi has a basis ei, fi, and ω(ei, fi) = 1. �

Note that this result is independent of the choice of basis of the subspace U
defined above. Moreover, from the proof we see that dim V = k + 2n, where 2n is
the rank of ω and k :=dim U .

Definition 2.3. The linear map ι : V → V ∗ is defined by (ι(v))(w) = ω(v, w), and
is usually called the interior product.

Note that the subspace U defined in the proof of Theorem 2.2 is the kernel of
the interior product. We can now state the following, fundamental definition.



THE NONSQUEEZING THEOREM. A JOURNEY THROUGH SYMPLECTIC GEOMETRY 3

Definition 2.4. A symplectic form on a finite-dimensional real vector space V
is a skew-symmetric bilinear form ω : V × V → R such that the interior product
ι is an isomorphism; that is, U = {0}. In other words, a symplectic form is a
skew-symmetric bilinear form which is non-degenerate: for any v ∈ V , v 6= 0,
there exists w ∈ V such that ω(v, w) 6= 0.

In this way, a symplectic vector space is a pair (V, ω), where V is a infinite-
dimensional real vector space and ω is the symplectic form we just defined. Because
ω is non-degenerate, it follows that dim U = k = 0, which means that dimV =
2n. Therefore, any symplectic vector space V is necessarily even-dimensional.
In this spirit, a basis in the symplectic vector space as defined in Theorem 2.2
(e1, . . . , en, f1, . . . , fn) is called a symplectic basis.

3. Symplectic geometry vs. Euclidean geometry

Let us denote by ω0 the standard symplectic form in R2n, such that

ω0 =

n∑
j=1

dxj ∧ dyj .

Recall that in euclidean geometry there exists a natural bilinear form often called
the dot product, defined in the euclidean space Rn by v · w = |v| · |w| cos θ, for
v, w ∈ Rn and θ the angle between v and w. Generally, this product is naturally
associated to the length of a vector when projected onto a certain direction. In
particular, v · v = |v|2, where |v| is the length (or norm) of the vector itself.

Figure 1.

In contrast, since we saw that ω0(v, v) = 0 for any v ∈ V = R2n, it is clear that
contrary to the dot product, the symplectic form cannot measure lengths. However,
because it is skew-symmetric and nondegenerate, it is natural to associate it to the
measurement of a signed-area.

Figure 2.

For example, in R2, ω0 = dx ∧ dy, where indeed dx ∧ dy is an area form. More
particularly, we can see that ω0(v, w) = det(v, w), as in Figure 2.

Likewise, in R4, with coordinates (x1, x2, y1, y2), ω0 = dx1 ∧ dy1 + dx2 ∧ dy2,
which is a sum of area forms. In this sense, for some surface S embedded in R4,
ω0(S) is the sum of the areas of its projections onto the x1 − y1 plane and x2 − y2
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plane, as in Figure 3. Moreover, a surface in the x1 − x2 plane only projects a line
onto the x1 − y1 and x2 − y2 planes, and thus ω0(S) = 0.

Figure 3. Surface in R4 as measured by ω0.

4. Linear symplectic geometry and the affine Nonsqueezing theorem

Definition 4.1. A linear symplectomorphism of a symplectic vector space
(V, ω) is an isomorphism ϕ : V → V such that

ϕ∗ω = ω,

where ϕ∗ is the pullback of ϕ. That is, ϕ preserves the symplectic structure.

The set of linear symplectomorphisms of (V, ω) forms a group which is usually
denoted by Sp(V, ω). In particular, we write Sp(2n) = Sp(R2n, ω0).

In terms of matrices, we define

Sp(2g,R) := {A ∈ GL(2g,R) : A∗ω = ω}.

Definition 4.2. A map ψ : R2n → R2n such that

ψ(x) = Ψx+ x0,

where Ψ ∈ Sp(2n) and x0 ∈ R2n, is called an affine symplectomorphism. We
denote by ASp(2n) the group of affine symplectomorphisms.

Given the standard basis e1, . . . , en, f1, . . . , fn in R2n, we denote the symplectic
cylinder with radius R > 0 by

(4.3) Z2n := B2(R)× R2n−2 = {x ∈ R2n : 〈x, e1〉2 + 〈x, f1〉2 ≤ R2},

where B2 is the standard ball in R2, and 〈·, ·〉 denotes the standard inner product
in R2n. Now we can state the affine version of the main theorem in the paper.

Theorem 4.4. (Affine Nonsqueezing theorem) Let ψ ∈ ASp(2n). If ψ is such
that ψ(B2n(r)) ⊂ Z2n(R), then r ≤ R.
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Proof. Consider an affine symplectomorphism ψ(z) as it was just defined. Without
loss of generality, let us assume r = 1. Given a symplectic basis e1, . . . , en, f1, . . . , fn
in R2n, we shall consider the supremum of the radii of the balls B2n obtained from
the symplectic splitting of a cylinder Z2n as we did in (4.3):

sup
|x|=1

(〈e1, ψ(x)〉2 + 〈f1, ψ(x)〉2) = sup
|x|=1

(
〈e1,Ψx+ x0〉2 + 〈f1,Ψx+ x0〉2

)
= sup
|x|=1

(
(〈e1,Ψx〉+ 〈e1, x0〉)2

+ (〈f1,Ψx〉+ 〈f1, x0〉)2
)

= sup
|x|=1

((
〈ΨT e1, x〉+ a

)2
+
(
〈ΨT f1, x〉+ b

)2)
= sup
|x|=1

(
(〈v, x〉+ a)

2
+ (〈w, x〉+ b)

2
)
≤ R2

where we let v := ΨT e1, w := ΨT f1, a := 〈e1, x0〉, and b := 〈f1, x0〉. Given such
v and w, we know that Ψ,ΨT ∈ Sp(2n), and therefore ω0(v, w) = 1. Moreover,
1 = ω0(v, w) ≤ |v| · |w|, which implies that either v or w must have norm greater
than or equal to 1. Without loss of generality, let us assume that |v| ≥ 1, and a
natural choice for x is ±v/|v|, with the sign depending on a. Hence,

sup
|x|=1

(
(〈v, x〉+ a)

2
+ (〈w, x〉+ b)

2
)

= sup
|x|=1

(
(±|v|+ a)

2
+ (〈w, x〉+ b)

2
)
≤ R2.

This means that (±|v|+ a)
2 ≥ 1, and thus R ≥ 1. �

5. Symplectic manifolds. Where does symplectic geometry come
from?

First, let us introduce introduce the notion of a manifold alongside some of its
key concepts. Put in a few words, a manifold is a space which is locally euclidean.

Definition 5.1. Let M be a topological space. Then M is a (topological) man-
ifold of dimension n if it satisfies:

• for any two distinct points p, q in M , there exist disjoint open neighbor-
hoods U, V ⊂ M with p ∈ U and q ∈ V ; that is, M is a Hausdorff
space,

• there exists a countable basis for the topology of M ; that is, M is second-
countable,

• for any point in M , there exists an open neighborhood of each point that
is homeomorphic to some subset V ⊂ Rn; we say that M is locally eu-
clidean.

In this sense, the fundamental property of a manifold M is the third: for any
point p ∈M , there exists an open neighborhood U of p and a subset V ⊂ Rn, such
that there exists a homeomorphism φ : U → V .

Definition 5.2. The pair (U,ϕ) is called a coordinate chart, and in general, we
call the homeomorphism ϕ a chart. Moreover, a collection of charts whose domains
cover M is called an atlas (for M).

Definition 5.3. Given two subsets U, V ⊂ M with charts ϕ : U → Û ⊂ Rn and
ψ : V → V̂ ⊂ Rn, we call the map ψ ◦ ϕ−1 : Û → V̂ a transition map. It is a
composition of homeomorphisms and is therefore a homeomorphism.
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Intuitively, a transition map acts like a function that allows you to ”read page-
to-page” the sections of such manifold through the atlas. See Figure 5.

Figure 4.

Given two charts (U,ϕ) and (V, ψ), these are said to be smoothly compatible
if either U ∩V = ∅ or the transition map ψ ◦ϕ−1 is a diffeomorphism. In this spirit,
we say that any atlas A is a smooth atlas if any given two charts contained in A
are smoothly compatible. Furthermore, if any such atlas is maximal (that is, for
any chart that is smoothly compatible with every other chart in A, such chart is
already in A), we say that this atlas is a smooth structure on the manifold M .

Definition 5.4. The pair (M,A), where M is a manifold and A is a smooth
structure on M , is called a smooth manifold.

Finally, to produce some of the results later in the paper, we will briefly use
the notion of a Riemannian manifold, so it is encouraged to see [2] for a brief
introduction.

In the spirit of the ”linearization of a manifold”, we proceed to briefly introduce
the notion of a tangent space. For the notion of derivations, see [2] pg. 52.

Definition 5.5. Given a point p ∈M , the set of all derivations in C∞(M) at p is
a vector space called the tangent space to M at p, and is denoted by TpM . Any
element in TpM is called a tangent vector at p.

To help develop a geometric intuition, the tangent space is usually associated to
the set of velocity vectors of a curve t 7→ c(t), and the velocity vector of c at t0,
given by dc/dt|t0 is defined to be the vector dct0 ∈ TpM .

For the rest of this section, let us assume that M is a connected C∞-smooth
manifold.

Definition 5.6. A symplectic structure on a smooth manifold M is a 2-form
ω ∈ Ω2(M)

ω : TpM × TpM → R,
(where TpM is the tangent space of M at a point p ∈M) such that ω is nondegen-
erate and closed, that is, dω = 0.
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Nondegeneracy implies that (TpM,ω) is a symplectic vector space. The pair
(M,ω) is the called a symplectic manifold.

Now, recall that from Classical Mechanics we learn that given a Hamiltonian
function (a function that measures the energy in a given system) H(x, y) : R2n →
R, there are two equations (Hamilton’s equations) that uniquely determine the
equations of motion of the system (given the proper initial conditions). Here, the
symplectic manifold is identified with the phase space R2n. These equations can be
written as:

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
.

Compactly, these equations give rise to a Hamiltonian vector field

XH := −J0∇H(z) = −
(

0 −I
I 0

)(∂H
∂x
∂H
∂y

)
=

( ∂H
∂y

−∂H∂x

)
=

(
ẋ
ẏ

)
,

where J0 is called a complex structure because J2
0 = −I; and it geometrically

corresponds to a π/2 rotation. As we will introduce later, the solution operator to

this system is denoted by φt,t0H if given the solution z(t) of the system we know that

z(t0) = z0. In this case, φtH(z0) = z(t), and φt,t0H is called the Hamiltonian flow
of H since given the Hamiltonian vector field, its solution resembles a fluid flow.

Note that given Hamilton’s equations, we can write

ω =
∑
i

∂xi ∧ ∂yi,

which naturally gives rise to the definition of a symplectic form and its properties
(most easily, notice the skew-symmetric relation between xi and yi in Hamilton’s
equations), which in turn give back Hamilton’s equations in the form of a Hamil-
tonian vector field. In other words: ω and H control the underlying physics of the
system!

In this spirit, the significance of symplectomorphisms is the idea that whenever
ω is preserved, the physics should remain the same.

6. Periodic solutions on Hamiltonian trajectories

Throughout this and the following sections, we closely follow the proofs presented
in [1]. Consider some symplectic manifold (M,ω), and let us define the set

H(M) := {H ∈ C∞0 (M) : H ≥ 0, supp(H) ⊂M, H|U = supH for some open set U} ,
that is, the set of nonnegative Hamiltonian smooth functions defined on M with
compact support and which attain their maximum on some open set. For any
H ∈ H(M) let us denote by φtH the solution operator or flow of the Hamiltonian
vector field XH . If a solution x(t) = φtH(x0) is such that x(t+ T ) = x(t) for some
period T and for very t ∈ R, we call it a T -periodic orbit.

Definition 6.1. The symplectic action functional of a loop z in R2n with
period T is defined by

A(z) =

∫ 1

0

(〈y, ẋ〉 −H(x, y)) ,

where z(t) = (x(t), y(t)).
Let us denote by H0 : Z2n(1)→ R a Hamiltonian function satisfying:

I π < supH0 <∞ and 0 ≤ H0(z) ≤ supH0 ∀ z ∈ Z2n(1),



8 GABRIEL AGUILAR PEREZ

II There is a compact set K ⊂ int Z2n(1) such that for z 6∈ K, H0(z) =
supH0,

III There exists an open set U ⊂ K such that H0(z) = 0 for z ∈ U .

Definition 6.2. We say a function H0 has quadratic growth if∥∥d2H(z)
∥∥ ≤ c

for some constant c > 0, for all z ∈ R2n.

Throughout the rest of the section we will also denote by Per(H) the set of
1−periodic solutions of ż = XH(z), and by Fix(φ1

H) the set of fixed points of the
time-1-map of the Hamiltonian flow of H. Note that Per(H) ∼= Fix(φ1

H).

Lemma 6.3. For a function H0 : Z2n → R satisfying (I), (II), and (III), there
exists a corresponding Hamiltonian H : R2n → R satisfying:
(i) There exists R > 0 such that K ⊂ B2n(R) and H(z) = H0(z) whenever z ∈
Z2n(1) ∩B2n(R),
(ii) H has quadratic growth,
(iii) There is some constant c > 0 such that if |z| > c, then

∣∣φ1
H − z

∣∣ ≥ 1,
(iv) If z ∈Per(H) and A(z) > 0, then z(t) is not a constant function and z(t) ∈ K
for any t.

Proof. Consider some ε > 0 such that ε < π/2 and M > π + ε. We can find a
smooth function f : [0,∞)→ R such that

f(s) = M, 0 ≤ s ≤ 1,

f(s) = (π + ε)s, s ≥M,

f(s) ≥ (π + ε)s, ∀ s,
π + ε ≥ f ′(s) ≥ 0, ∀ s.

Also, we can find R ≥ 1 such that for z 6∈ B2n(R), H0(z) = M . Consider the
smooth function g : [0,∞)→ R

g(s) = 0, 0 ≤ s ≤ R2,

g(s) = πs/2, s ≥ 3R2,

0 ≤ g′(s) ≤ π, ∀s.

Finally, consider z = (z1, w) ∈ R2n, with z1 ∈ R2 and w = (z2, . . . , zn) ∈ R2n−2.
We can write Z2n(1) := {|z1| ≤ 1}. The hamiltonian H we look for is now given by

H(z) =

{
H0(z) z ∈ Z2n(1) ∩B2n(R),

f(|z1|2 + g(|w|2), otherwise.

Therefore, H(z) has quadratic growth because f and g have quadratic growth,
and it also satisfies (i) by its definition. To show that H(z) also satisfies (iii), note
that we can split the Hamiltonian vector field ż = −J0∇H(z) into the systemż1 = −2if ′

(
|z1|2

)
z1,

ẇ = −2ig′
(
|w|2

)
w,

whenever |z1| ≥ 1 or |w| ≥ R. We can solve it and thus obtain the flow φtH of the
system. By setting t = 1 to obtain the time-1 map, we find that in the domain
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{max{|z1|, |w|/R} ≥ 1},

φ1
H(z1, w) =

(
e−2if ′(|z1|2)z1, e

−2ig′(|w|2)w
)
.

So |z|2 = |z1|2 + |w|2 ≥ c2 ≥ 2 max
{
M, 3R2,

∣∣1− e−2iε
∣∣−2
}

, and we have two cases:

• |z|21 ≥ c2/2 ≥M , and hence e−2if ′(|z1|2) = e−2iε 6= 1,

• |w|2 ≥ c2/2 ≥ 3R2 and thus e−2ig′(|w|2) = −1.

For the first case
∣∣φ1
H − z

∣∣ ≥ ∣∣1− e−2iε
∣∣ · |z1| ≥

∣∣1− e−2iε
∣∣ · c/√2 ≥ 1. For the

second case, we obtain that
∣∣φ1
H − z

∣∣ ≥ 2|w| ≥ 1. This proves (iii).
To prove (iv), notice that the symplectic action of a constant solution z(t) ≡ z0

is A(z) =
∫ 1

0
0−H(z) = −H(z0) ≤ 0, which is a contradiction. Thus z(t) must be

nonconstant. Similarly, if we assume that the conditions in (iv) hold, and we also
assume that z(t) 6∈ K, we obtain that A(z) ≤ 0, which is once more a contradiction.
This proves (iv). Now the proof is complete. �

Lemma 6.4. Consider a Hamiltonian H : R2n → R that has quadratic growth.
There exists sufficiently small ε > 0 such that there exists a function Vε : R2n → R
satisfying
(i) (x1, y1) = φεH(x0, y0) if and only if

x1 − x0

ε
=
∂Vε
∂y

(x1, y0),
y1 − y0

ε
= −∂Vε

∂x
(y1, y0).

(ii) Vε converges to H in the C∞−topology as ε→ 0. Furthermore, Vε has quadratic
growth and there exists some c > 0 such that

sup
z∈R2n

|Vε(z)−H(z)| ≤ cε
(
|z|2 + 1

)
.

(iii) Crit(H) = Crit(Vε) = Fix(φtH) and thus H(z) = Vε for every critical point
z ∈Crit(H).
(iv) There exists a unique solution z(t) = z(t;x1, y0, ε) to the boundary value prob-
lem

ż = XH(z), x(ε) = x1, y(0) = y0,

for all x1, y0 ∈ Rn. The action A(z) of this solution on [0, ε] is given by

A
[0,ε]
H (z) = 〈y0, x1 − x0〉 − ε · Vε(x1, y0).

Any function Vε with these properties is called a generating function of type Vε.

Proof. See [1] (pg. 493) for a proof. �

Now, let us choose some ε = 1/N for large enough N ∈ N. Let us denote by
R2nN the space of discrete loops z = (zj)j∈Z, where zj+N = zj for all j. We define
the discrete symplectic action AεH : R2nN → R by

(6.5) AεH(z) =

N−1∑
j=0

(〈yj , xj+1 − xj〉 − εVε(xj+1, yj)) ,

where Vε is the generating function defined in Lemma 6.4. In this discrete sense,
the critical points of AεH are the sequences zj ∈ R2n such that

zj+1 = φεH(zj), zj+N = zj .
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Corollary 6.6. The map C∞(R/Z,R2n) → R2nN : z 7→ {z(j/N)}j∈Z, identifies
the critical points of AH with those of AεH for ε = 1/N . Furthermore, for every
z ∈Per(H),

AH(z) = AεH({z(j/N)}j∈Z).

Proof. This is a direct consequence of Lemma 6.4. �

Now, consider a Riemannian manifold X. Let Φ : X → X be a smooth function
such that the vector field ∇Φ : X → TX is complete, in the sense that for any
x0 ∈ X, the flow φt : X → X (with x(t) = φt(x0) whenever x(0) = x0) is the
unique solution the system

ẋ = −∇Φ(x).

Definition 6.7. We say that Φ satisfies the Palais-Smale condition if any se-
quence xν ∈ X satisfying

lim
ν→∞

‖∇Φ(xν)‖ = 0

has a convergent subsequence. This implies that the set Crit(Φ) is compact.

Lemma 6.8. Consider a function Φ satisfying the Palais-Smale condition. Let
c ∈ R be a regular (non-critical) value of Φ. Then, for any T > 0 there exists some
δ > 0 such that

Φ(x) ≤ c+ δ ⇒ Φ(φT (x)) ≤ c− δ.

Proof. We can argue by contradiction. That is, there exists a sequence xν ∈ X
such that Φ(xν)→ c and Φ(φT (xν))→ c, which is the same as having
Φ(xν)− Φ(φT (xν))→ 0.

Therefore, since
d

dt
Φ(φt(xν)) = −‖∇Φ(φt(xν))‖2,

it follows that ∫ T

0

‖∇Φ(φt(xν))‖2dt = Φ(xν)− Φ(φT (xν)

which means that
∫ T

0
‖∇Φ(φt(xν))‖2dt→ 0. Hence, there must exist some sequence

tν ∈ [0, T ] such that

lim
tν→∞

∇Φ(φtν (xν)) = 0.

Since Φ satisfies the Palais-Smale condition, the sequence φtν (xν) has a conver-
gent subsequence and the limit point x of this subsequence satisfies ∇Φ(x) = 0
and Φ(x) = c. This is a contradiction because c is a regular point. The proof is
complete. �

We can now show that AεH satisfies the Palais-Smale condition.

Lemma 6.9. Consider a Hamiltonian that has quadratic growth and assume there
exist constants c, δ > 0 such that

|z| > c ⇒
∣∣φ1
H − z

∣∣ ≥ δ.
Then, for any sufficiently small ε > 0, AεH : R2nN → R satisfies the Palais-Smale
condition.

Proof. See [1] (pg. 497) for a proof. �
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We need to prove that the discrete symplectic action has a critical point z such
that AεH(z) > 0. Notice that AεH is a perturbation of the functional

Aε(z) =

N−1∑
j=0

〈yj , xj+1 − xj〉 =
1

2
〈z, Lεz〉ε,

that is, when H = 0 in (6.5), which implies that Vε → 0. Lε denotes the Hessian
of Aε, which is a self-adjoint operator on R2nN that maps a path ζ = {ζj}j∈Z to
the path (or sequence) ζ ′ = {ζ ′j}j∈Z, where we denote the variations in a path by
ζ = (ξ0, . . . , ξN , η0, . . . , ηN ), and

ξ′j+1 =
ηj − ηj+1

ε
, η′j =

ξj+1 − ξj
ε

.

Lemma 6.10. The smallest positive eigenvalue of Lε is less than or equal to 2π,
and for each eigenvalue there exists a corresponding eigenvector ζ = {ζj}j∈Z such
that ζj ∈ R2 × 0 ⊂ R2n. Furthermore,

λ ∈ σ(Lε) ⇐⇒ −λ ∈ σ(Lε),

where σ(Lε) denotes the spectrum of Lε.

Proof. Consider the eigenvalues of Lε. Let us notice that Lε(ξ, η) = λ(ξ, η) is
equivalent to

λξj+1 =
ηj − ηj+1

ε
, ληj =

ξj+1 − ξj
ε

.

We can combine these expressions into(
ξj+1

ηj+1

)
=

(
1 λ/N

−λ/N 1− (λ/N)2

)(
ξj
ηj

)
.

Then, the eigenvalues of Lε are given by

det(I −AN (λ)N ) = 0, AN (λ) =

(
1 λ/N

−λ/N 1− (λ/N)2

)
and the eigenvectors have the form ζ = {ζj}j∈Z, where ζj = (ζj1, . . . , ζjn) ∈ R2n.

Notice that det(AN (λ)) = 1 and trace(AN (λ)) = 2− λ2

N2 ∈ [−2, 2] if λ2/N2 ≤ 4. If
|λ|/N > 2, then the eigenvalues would not be coherent with the determinant of the
matrix. Thus, it must be the case that |λ|/N < 2. It follows that the eigenvalues
are given by e±iβN (λ), where βN : [−2N, 2N ] → R is a continuous function such
that βN (0) = 0 and

cosβN (λ) = 1− λ2

2N2
, −2N ≤ λ ≤ 2N.

Taking its derivative, we see that

Nβ′N (λ) =
1√

1− λ2/4N2
≥ 1,

which means that NβN (λ) ≥ λ ≥ 0. Therefore, the smallest positive eigenvalue
λN > 0 of Lε is such that NβN (λN ) = 2π. This shows that λN ≤ 2π. Finally, we
can check the last assertion by noticing that the following two are equivalent:

Lε(ξ, η) = λ(ξ, η) ⇐⇒ Lε(ξ,−η) = −λ(ξ,−η).

The proof is complete. �
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Having described the eigenvalues of Lε, consider the eigenspace decomposition

R2nN = E+ ∪ E0 ∪ E−

such that E0 = kerLε, the eigenvalues of Lε|E+ are positive, and the eigenvalues
of Lε|E− are negative. Notice that E0 consists of the constant paths or sequences.
We can finally state and prove the lemma on which the proof of the Nonsqueezing
theorem rests.

Lemma 6.11. Consider H0 : Z2n(1) → R satisfying (I), (II), and (III) from
definition 6.1. Then the flow of H0 has a nonconstant 1-periodic solution.

Proof. Let us assume without loss of generality that the open set U from (III) is
a neighbourhood of 0. Let H be the extension of H0 found in Lemma 6.3. Let Vε
from Lemma 6.4 be the corresponding generating function Vε of H, for sufficiently
small ε = 1/N . We wish to prove that AεH has a critical point with AεH > 0.

Let us define Γ := {z ∈ E+ : ‖z‖ε = α}. In this way, if α > 0 is sufficiently small,
then infΓA

ε
H > 0. By Lemma 6.4, Vε vanishes near zero. Thus AεH becomes the

unperturbed functional Aε near zero. By Lemma 6.10, there exists some eigenvector
ζ ∈ E+ of Lε with a corresponding eigenvalue λ ≤ 2π. We define

Σ = {z + sζ : z ∈ E− ⊕ E0, ‖z‖ε ≤ T, 0 ≤ s ≤ T}.

In this way, if T is sufficiently large, then sup∂ΣA
ε
H ≤ 0. By the definition of H,

there exists some C > 0 such that

H(z1, w) ≥ (π + ε)|z1|2 +
π

2
|w|2 − C.

Once more by Lemma 6.4 (ii), we see that for small enough ε,

Vε ≥ (π +
ε

2
)|z1|2 +

π

4
|w|2 − 2C.

Let z = z− + z0 ∈ E− ⊕ E0 and s ∈ R. Thus,

AεH(z + sζ) = Aε(z−) + s2Aε(ζ)− 1

N

N−1∑
j=0

Vε(xj+1 + sξj+1, yj + sηj)

≤ λs2

2
‖ζ‖2ε −

(
π +

ε

2

)
‖z1 + sζ‖2ε −

π

4
‖z‖2ε + 2C

≤ −εs
2

2
‖ζ‖2ε −

π

4
‖z‖2ε + 2C,

where we have used the fact that Aε(z−) ≤ 0 and Aε(ζ) = λ
2 ‖ζ‖

2
ε (as one can check

from the definition), and that λ ≤ 2π. Therefore, ∂Σ consists of those points of the
form z + sζ ∈ Σ that satisfy one of the following:
(i) ‖zε‖ = T , 0 ≤ s ≤ T ,
(ii) ‖zε‖ ≤ T , s = T ,
(iii) ‖zε‖ ≤ T , s = 0.

Next, we show that AεH : R2nN → R has a positive critical value. We define the
linking number as the intersection number of any ball in the sphere ∂Σ with Γ.
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In this way, ∂Σ and Γ have linking number 1. Let us denote by Σt := φt(Σ) the
image of Σ under the gradient flow of AεH for t ≥ 0. Also, let us define

c := inf
t≥0

sup
Σt

AεH ,

and we wish to show that c > 0 and that it is a critical value of AεH . From the
estimate obtained above it follows that

sup
∂Σt

AεH ≤ 0, ∀ t ≥ 0.

This implies that ∂Σt ∩Γ = ∅ for every t ≥ 0 and thus the linking number remains
1. For every t ≥ 0, Σt ∩ Γ 6= ∅, and therefore

sup
Σt

AεH ≥ inf
Γt
AεH > 0,

which means that c > 0. Finally, assume c is not a critical value of AεH . By Lemma
6.3, H satisfies the condition (iii) in the Lemma. Therefore, by Lemma 6.9, AεH
satisfies the Palais-Smale condition. Furthermore, by Lemma 6.8, there exists δ > 0
with T = 1 such that the assertion of the same lemma holds. Hence, we can choose
t∗ ≥ 0 such that

sup
Σt∗

AεH ≤ c+ δ,

and therefore, since we assume c is a regular value,

sup
Σt∗+1

AεH ≤ c− δ.

However, this is a contradiction to the definition of c. Therefore c is positive and a
critical value of AεH . By Corollary 6.6, this gives a 1−periodic solution z ∈Per(H)
with AH(z) > 0. By Lemma 6.3, this is not a constant function, and it is also a
periodic solution of the flow of H0. Now the proof is complete. �

7. Symplectic capacities and Gromov’s Non-squeezing theorem

One of the most important invariants in symplectic geometry is that of capac-
ity. We understand capacities as the 2-dimensional size of symplectic manifolds,
and in its development lies a proof for the invariant (coordinate-free) version of the
Nonsqueezing theorem. Before going further, let us state a final theorem before the
Nonsqueezing theorem.

Recall from Section 6 that we defined the set H(M) as the set of nonnegative
Hamiltonian smooth functions defined on M with compact support and which at-
tain their maximum on some open set. This gives rise to the following definition.

Definition 7.1. A function H ∈ H(M) is called admissible if every nonconstant
periodic orbit of its corresponding flow φtH has period T > 1. We denote the set of
admissible Hamiltonian functions by Had(M,ω).

Theorem 7.2. Consider a Hamiltonian H ∈ H(Z2n(1)) with supH > π. The
Hamiltonian flow of H has a nonconstant periodic orbit of period 1.

Proof. Given such H, notice that the function H0 = (supH)−H satisfies conditions
I, II, and III from definition 6.1. Hence, by Lemma 6.11, the flow of H0 has a
nonconstant 1−periodic solution, and therefore so does the flow of H (recall the
proof of the Lemma). �
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Now we proceed to define capacities and show their full power.

Definition 7.3. A symplectic capacity is a map that assigns to every symplectic
manifold (M,ω) a number c(M,ω) such that

• (monotonicity) If there exists an embedding (M1, ω1) ↪→ (M1, ω1), then
c(M2, ω2) ≤ c(M2, ω2). In particular, if two symplectic manifolds are sym-
plectomorphic, then c(M1, ω1) = c(M2, ω2).
• (conformality) Let a be a scalar. Then c(M,aω) = a · c(M,ω)
• (nontriviality) c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) <∞.

For the purpose of this paper, we shall restrict the study of capacities to R2n. Now,
a symplectic capacity is a map that assigns a number c(Ω) to some arbitrary set
Ω ⊂ R2n such that:

• (monotonicity) If there exists an embedding ψ : Ω→ R2n such that
ψ(Ω) ⊂ B, then c(Ω) ≤ c(B),

• (conformality) Let λ be a scalar. The set c(λ ·Ω) consists of all the points
(λΩx, λΩy) with (x, y) ∈ Ω. Then, c(λΩ) = λ2 · c(Ω).
• (nontriviality) c(B2n(1)) > 0 and c(Z2n(1)) <∞.

Definition 7.4. The Hofer norm on the Lie algebra of a given Hamiltonian
H ∈ C∞0 (M) is defined by

‖H‖ := max
M

H −min
M

H,

with M being a noncompact symplectic manifold. If M is compact, any constant
function has norm zero and so the Hofer norm defines a norm on the space of
Hamiltonian vector fields.

We now introduce the Hofer-Zehnder capacity in order to prove the Nonzqueez-
ing theorem.

Definition 7.5. We define Hofer-Zehnder capacity by

cHZ(M,ω) := sup
H∈Had(M,ω)

‖H‖,

where ‖.‖ is the Hofer norm.

Theorem 7.6. The capacity cHZ is a symplectic capacity and

cHZ(Z2n(1)) = cHZ(B2n(1)) = π.

More generally, cHZ(Z2n(r)) = cHZ(B2n(r)) = πr2.

Proof. We want to show that cHZ satisfies the properties of a capacity. Let (M1, ω1)
and (M2, ω2) be symplectic manifolds of dimension 2n and let ψ : M1 → M2 be
an embedding. Given some Hamiltonian H1 ∈ C0(M1,R), there exists a unique
H2 ∈ C0(M2,R) such that H2 ≡ 0 on M2\ψ(M1) and H1 = H2 ◦ ψ. Due to ψ,
there is a one-to-one correspondence between the nonconstant periodic orbits of the
flows H1 and H2. Therefore,

cHZ(M1, ω1) = sup
H1∈Had(M1,ω1)

‖H1‖

= sup
H2∈Had(M2,ω2)

‖H2‖

≤ cHZ(M2, ω2).
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This proves monotonicity. To prove conformality, notice that Had(M,λω) = {λH :
H ∈ Had(M,ω)}.
Now, because the Hamiltonian(s) H ∈ Had considered by cHZ are admissible, it
follows that the flows have nonconstant periodic orbits with period greater than
1. Hence, by Theorem 7.2, cHZ(Z2n(1) ≤ π. By constructing a smooth func-
tion in a similar way as was done for the proof of Lemma 6.3, we obtain that
cHZ(B2n(1)) ≥ π (see [1] (pg. 484) for the complete proof). Therefore, having
proved the monotonicity axiom, we obtain that cHZ(B2n(1)) = cHZ(Z2n(1)) = π.
The proof is complete. �

For a grand finale, we can now show Gromov’s nonsqueezing theorem.

Theorem 7.7. Nonsqueezing theorem If there exists a symplectic embedding
(B2n(r), ω0) ↪→ (Z2n(R), ω0), then r ≤ R.

Proof. Assuming there exists a symplectic embedding ψ : B2n(r) ↪→ Z2n(R), we
obtain that

πr2 = cHZ(B2n(r)) = cHZ(ψ
(
B2n(r)

)
) ≤ cHZ(Z2n(R)) = πR2.

This shows that r ≤ R. �

Figure 5. A symplectic camel through the eye of a symplectic needle.
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