
RANDOM WALKS ON FINITE GROUPS

YUERONG ZHUANG

Abstract. This paper gives an overview of random walks and Fourier analy-

sis on finite groups. First, random walks are discussed on Zd, focusing on the

question of whether a walker returns to the origin walking randomly in finite
time in d different dimensions. Then, we recall the Fourier transform on R
and construct a corresponding theory for finite groups. Representation theory

and Fourier analysis simplify the computations needed in the convolution op-
erations that arise in multi-step random walks. Finally, we give an example of

random transpositions in the symmetric group, showing that it takes 1
2
k log k

steps to randomly mix k cards.
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1. Introduction

Random walks are the process in which an object takes random paths in a
space X from an origin. It is essential in various fields, such as recording the
Brownian motion of particles or tracing stock prices [1]. Fourier transforms are
also useful mathematical tools because they decompose complex functions into their
fundamental building blocks and speed up information processing.

In this paper, Section 2 introduces some basic properties of random walks on
integer lattices Zd and studies the problem of returning to the origin. Section
3 moves to the Fourier transform on R first and then on finite groups, further
including the idea of convolutions and representation theory. The card shuffling
example in Section 4 demonstrates an application of random walks and Fourier
analysis on the symmetric group Sn.

2. Random Walks in Zd

First, we formally define random walks.
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Definition 2.1. Let {Xk}∞k=1 be a sequence of independent and identically dis-
tributed discrete random variables. For all n ≥ 1, let Σn = X1 + X2 + · · · + Xn.
The sequence of partial sums {Σn}∞n=1 is called a random walk.

We first recall classical results for random walks in Zd and address the question
of if a walker will go back to the origin in finite time. We now directly compute the
probability of returning to the origin in Z, following [1].

Lemma 2.2. In Z, the probability of a return to the origin at time t is

Pr(Σt = 0) =

{(
2m
m

)
2−2m, t = 2m

0, t = 2m− 1
,

for m ≥ 1.

Proof. In a 1-dimensional lattice, the walker moves 1 unit to either the positive or
the negative direction: Pr(Xi = 1) = Pr(Xi = −1) = 1

2 for 1 ≤ i ≤ t. When t is
odd, the movements in the two directions can not cancel out. When t = 2m, the
walker needs to choose positive in m out of 2m steps. There are

(
2m
m

)
number of

ways of choosing this, each with the probability of 1
2 . Further, the m negative steps

are chosen with probability 1
2 each, giving us the required probability. �

We can further specify a random walk’s behavior by considering when it first
arrives at the origin.

Lemma 2.3. Let f2k denote the event that the walker first returns to the origin at
the 2kth step. Then, for m ≥ 1, we have

Pr(Σ2m = 0) =

m∑
k=0

Pr(f2k)Pr(Σ2m−2k = 0).

Proof. Consider the collection of all the cases with Σ2m = 0. We divide it into
classes according to when the first return occurs. The probability of choosing the
case that the first return happens at the 2kth step is

Pr(f2k)22kPr(Σ2m−2k = 0).

The total probability of returning at the 2mth step equals the sum of the probabil-
ities in each class, so

Pr(Σ2m = 0) =

k=m∑
k=0

Pr(f2k)Pr(Σ2m−2k = 0),

which immediately proves the result. �

Lemma 2.4. For m ≥ 1,

Pr(f2m) =
Pr(Σ2m = 0)

2m− 1
.

For this proof, we need to introduce the concept of generating functions. Namely,
given a countable set of values A = {a1, a2, . . .}, we define the function

A(x) = PA(x) :=

∞∑
i=1

aix
i

as the generating function corresponding to A.
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Proof. We first define generating functions corresponding to the sets

S = {Pr(Σ2m = 0) |m ∈ N}, F = {Pr(f2m) |m ∈ N} :

S(x) =

∞∑
m=0

Pr(Σ2m = 0)xm, F (x) =

∞∑
m=0

Pr(f2m)xm.

By the construction of the functions, we know that they are well-defined with
all coefficients in [0, 1]. Hence,

S(x) =

∞∑
m=0

(
2m

m

)
2−2mxm by Lemma 2.2

=

∞∑
m=0

(
2m

m

)(x
4

)m
=

1√
1− x

by Binomial Theorem.

Lemma 2.3 also gives the relationship between S and F :

S(x) = 1 + S(x)F (x).

Hence,

F (x) = 1− 1

S(x)
= 1−

√
1− x

= 1−
∞∑
m=1

( 1
2

m

)
(−1)m−1xm by Binomial Theorem

=

∞∑
m=1

(
2m
m

)
(2m− 1)22m

xm

=

∞∑
m=1

Pr(Σ2m = 0)

2m− 1
xm.

�

We are now in a position to prove that a random walker has probability 1 of
returning to the origin in finite time.

Theorem 2.5. In Z, the probability of a random walk returning to the origin in
finite time is 1.

Proof. Define a new generating function on [0, 1] to be FM (x) =
∑M
m=0 Pr(f2m)xm.

Because we know
∑∞
m=0 Pr(f2m) ≤ 1, the series

F (x) = lim
M→∞

FM (x)
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converges for any x ∈ [0, 1]. The probability of eventually returning to the origin
is:
∞∑
m=0

Pr(f2m) = lim
M→∞

lim
x→1

FM (x)

= lim
x→1

lim
M→∞

FM (x) by the convergence of the series

= lim
x→1

F (x) by the definition of F (x)

= F (1) by the continuity of F and the Weierstrass M test

= 1.

�

Remark 2.6. If A is a countable set with
∑
a∈A a = 1, then the corresponding

generating function A(x) has a fixed point at x = 1: A(1) = 1.

Now we may continue the discussion in higher dimensions. Let fd2m be the event
that the walker first returns to the origin on Zd at the (2m)th step, and let Σdi
be the walker’s position on Zd at the ith step. We can define similar generating
functions on [0, 1] as

S(d)(x) =

∞∑
m=0

Pr(Σd2m = 0)xm, F (d)(x) =

∞∑
m=0

Pr(fd2m)xm.

Previous results from 1D lattices generalize well:

Pr(Σd2m = 0) =

m∑
k=0

Pr(fd2k)Pr(Σd2m−2k = 0), F (d)(x) =
S(d)(x)− 1

S(d)(x)
.

Let rdi be the probability that the walker returns to the origin at least once in
the first i steps on Zd. When the walker ultimately returns to the origin, we have

rd∞ = lim
i→∞

rdi

= lim
i→∞

di/2e∑
m=0

Pr(fd2m)

= lim
i→∞

lim
x→1

di/2e∑
m=0

Pr(fd2m)xm

= lim
x→1

lim
i→∞

di/2e∑
m=0

Pr(fd2m)xm

= lim
x→1

F (d)(x)

= lim
x→1

S(d)(x)− 1

S(d)(x)

= 1− lim
x→1

1

S(d)(x)
.(2.7)
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Lemma 2.8.

lim
x→1

S(d)(x) =

∞∑
m=0

Pr(Σd2m = 0).

Proof. First, we use the convergence of the series and get

M∑
m=0

Pr(Σd2m = 0) = lim
x→1

M∑
m=0

Pr(Σd2m = 0)xm

≤ lim
x→1

∞∑
m=0

Pr(Σd2m = 0)xm

= lim
x→1

S(d)(x).

To prove the reverse direction, we use the fact that the coefficients in S(d) are
positive. The series is monotonic:

lim
x→1

S(d)(x) ≤
∞∑
m=0

Pr(Σd2m = 0).

�

We can now give results for returning to the origin in higher dimensions.

Theorem 2.9. In Z2, the probability of a random walk returning to the origin in
finite time is 1.

Proof. First, by Stirling’s formula,

n!→
√

2πn
(n
e

)n
, for n→∞.

So, since we have (
2m

m

)
→ 22m√

πm
,

we know from Lemma 2.2 that

Pr(Σ2
2m = 0) =

(
1

22m

(
2m

m

))2

=
1

42m

(
2m

m

)2

→ 1

πm
.

This means that the series
∑∞
m=0 Pr(Σ2

2m = 0) diverges to infinity. Then, from
previous results,

r2∞ = 1− lim
x→1

1

S2(x)
by 2.7

= 1− 1∑∞
m=0 Pr(Σ2

2m = 0)
by 2.8

= 1.

�

Theorem 2.10. In Z3, the probability of a random walk returning to the origin is
less than 1.
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Proof. As in the proof of Theorem 2.9 , we have:

Pr(Σ3
2m = 0) =

1

22m

(
2m

m

) j+k≤m∑
j,k≥0

1

3m
m!

j!k!(m− j − k)!
.

Letting

K := max
j,k

{ m!

j!k!(m− j − k)!

}
,

we have that

Pr(Σ3
2m = 0) ≤ 1

22m

(
2m

m

) j+k≤m∑
j,k≥0

K

3m
m!

j!k!(m− j − k)!
.

By Stirling’s formula, we have K → C
m for some constant C. We also know that

j+k≤m∑
j,k≥0

1

3m
m!

j!k!(m− j − k)!
= 1.

Thus, by the previous inequality,
∑∞
m=0 Pr(Σ3

2m = 0) can be compared to a p−series
and thus converges to a finite number. Now,

r3∞ = 1− 1∑∞
m=0 Pr(Σ3

2m = 0)
< 1.

�

Corollary 2.11. The probability of returning to the origin is less then 1 for Zd
with d > 3.

Proof. We claim that the probability of returning to the origin in Zd+1 is less than
that in Zd for d ≥ 2. The statement is true when d = 2, and induction is needed
for higher dimensions. We now think of Σdm as a vector of d + 1 components,
with the last component being 0. Σd+1

m can also be thought of as a vector with
d + 1 components. Thus, all the events that the walker returns to the origin in
d + 1 dimensions are included in the events where they return to the origin in d
dimensions, which proves the claim. As the probability of returning to the origin
in Z3 is less than 1, the claim proves the corollary. �

3. Fourier Analysis on Finite Groups

When calculating the probability of reaching a certain point n after k steps,
we use the idea of convolution because although each step is independent, the final
position depends on every random choice. We now define convolutions for functions
on finite groups.

Definition 3.1. Let G be a group, and P,Q : G→ C be arbitrary functions. The
convolution ? is defined as

P ? Q(g) :=
∑
h∈G

P (h)Q(gh−1).

In general, we can repeatedly convolve a function with itself:

P ?n(g) = P ? P ?(n−1)(g) =
∑
h∈G

P (h)P ?(n−1)(gh−1).
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Remark 3.2. The definition above requires the convolution to be associative. We
will assume this property here and in the following proofs.

The convolution operation makes intuitive sense; each term in the convolution
operation represents a potential movement taken in a random walk. For example,
if we move towards g in 2 steps, then the first movement goes to h, and the second
movement cancels h by h−1 and then approaches g. However, because of the sum-
mation, the practical calculation is hard. We need to use some nicer methods to
simplify this process, and this is where the Fourier transform helps. We recall the
definitions from classical function spaces to give intuitions for the analogs we will
build for finite groups.

Definition 3.3. The L2 norm of a function f : X → C is defined as

||f ||2 :=

(∫
X

|f |2
)1/2

,

assuming the above integral is finite.

Definition 3.4. The inner product 〈·, ·〉2 on L2(X) is a map from L2(X)×L2(X)
to C given by

〈f, g〉2 :=

∫
X

fg.

We denote two functions f, g : X → C as equal almost everywhere if ||f−g||2 = 0,
written as f ∼ g. We can now let L2(X) equal the set of equivalence classes under∼,
and use the inner product described above to give L2(X) a Hilbert space structure.
Let’s now take a closer look at the functions

ek(x) = e2πikx

on the interval [0, 1].

Theorem 3.5. The set E = {ek|k ∈ Z} of functions defined above is an orthogonal
topological basis of L2([0, 1]).

Proof. See [2]. �

Remark 3.6. E being an orthogonal topological basis means that it satisfies two
properties. First, it satisfies orthogonality: 〈em, en〉2 = 0 for m 6= n, and 〈en, en〉 =
1. Second, it is a basis: any function from L2([0, 1]) can be written as a weighted
sum of elements of E.

Now, we can define the Fourier transform on [0, 1] for any f as a function f̂ :
Z→ C such that:

f̂(k) =

∫ 1

0

f(x)e−2πikxdx.

With some effort, we can generalize to Fourier transforms on R, which are defined
as

f̂(y) =

∫ ∞
−∞

f(x)e−2πixydx, f(x) =

∫ ∞
−∞

f̂(y)e2πixydy.

Now, we can expand Fourier analysis to finite groups. The following example
introduces an important function on abelian groups.
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Example 3.7. Define a delta function to be:

δg(x) =

{
1 x = g

0 otherwise
.

For every function f ∈ L2(G), we have

f =
∑
g∈G

f(g)δg,

so the set {δg|g ∈ G} spans L2(G). Also, for g 6= h, 〈δg, δh〉 = 0, meaning the delta
functions are orthogonal. As the set is orthogonal with the order |G|, it forms a
basis of L2(G) as a complex vector space.

Besides the special case of abelian group, Fourier transforms can be defined for
non-abelian groups as well, but the proofs require some extra representation theory.

Definition 3.8. Let V be a finite-dimensional vector space over C. A representa-
tion (ρ, V ) of a group G is a group homomorphism ρ : G→ GL(V ). The dimension
of the representation is denoted by dρ = dim(V ).

Definition 3.9. Let (ρ, V ) be a group representation. A subrepresentation (π,W )
is a representation of G where W ⊆ V such that for all w ∈ W and g ∈ G,
ρ(g)w ∈W , and ρ agrees with π when restricted to W : ρ(g)|W = π(g).

Definition 3.10. Let (ρ, V ) be a group representation. It is irreducible if its only
subrepresentations are (ρ, V ) and (π, {0}).

Definition 3.11. Let (ρ, V ) and (π,W ) be two representations of G. The direct
sum of the representations is a map φ : G→ GL(V ⊕W ) such that:

φ(g)(v, w) = (ρ(g)(v), π(g)(w))

for (v, w) ∈ V ⊕W .

To illustrate the above definitions, we may take a look at the non-abelian group
S3.

Example 3.12. The trivial representation is a function sending all group elements
to the identity.

1 : G→ GL(C) = C×,
1(g) = 1.

Example 3.13. There exists a map L : S3 → GL(C3) which represents every
element of S3 as a permutation matrix. The map is called a permutation represen-
tation, and one example of it can be

L ((1, 3)) =

0 0 1
0 1 0
1 0 0

 .

We can check that this representation is reducible. Specifically, the subspace
spanned by v = (1, 1, 1) is preserved under the action of S3. It thus forms an
irreducible subrepresentation isomorphic to the trivial representation.

Consider now the vector space W = C3/〈v〉 = SpanC {(1,−1, 0), (0, 1,−1)}.
Using the new basis of C3

B = {v, (1,−1, 0), (0, 1,−1)},
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we can rewrite the permutation representation in a block-diagonal matrix. The up-
per block is a trivial representation, and the bottom block is another representation
called the standard representation.

ρ((1, 3)) =

1 0 0
0 0 −1
0 −1 0

 ∈ GL(Cv ⊕W ) ∼= GL(C3).

In this example, we see that reducible representations can be built from smaller
representations. The following theorem shows that it is true for any representation
of any group.

Theorem 3.14 (Maschke’s Theorem). Let (ρ, V ) be a representation of a finite
group G. Then, we can write (ρ, V ) as a direct sum of a finite number of irreducible
representations (π1,W1), . . . , (πn,Wn).

Proof. Let G and (ρ, V ) be as given. The proof is by induction on the dimension
of the representation. When dρ = 1, (ρ, V ) must be irreducible. Assume that
the theorem is true for all dρ < k. Then, when dρ = k, the proof is done if the
representation itself is irreducible. If it is not, there exists some subrepresentation
(π,W ) with W ⊂ V and W 6= {0}. Since the dimension of (π,W ) is less than k by
assumption, (π,W ) can be written as a direct sum of irreducible representations.

Consider now the quotient space V/W . Let the cosets of the space be {v+W} and
let g · (v +W ) = ρ(g)(v) +W for all g ∈ G. Because (π,W ) is a subrepresentation
of (ρ, V ), ρ(g) preserves W . Hence, from ρ, we can define a new representation
(ρ′, V/W ) with a dimension lower than k.

Therefore, we have V = W ⊕V/W , with dim(W ) and dim(V/W ) both less than
dim(V ), so we can apply the inductive hypothesis to finish the proof. �

Now we see how representations can interact.

Definition 3.15. Let (ρ, V ) and (π,W ) be two representations of G. A map
L : V →W intertwines ρ and π if

Lρ(g) = π(g)L.

Two representations are equivalent if there exists an intertwining isomorphism L.

Lemma 3.16. Let L : V → W intertwine (ρ, V ), (π,W ). The restriction of ρ to
the kernel of L is a subrepresentation of ρ. Similarly, the restriction of π to the
image of L gives a subrepresentation of π.

Proof. See [2]. �

Lemma 3.17 (Schur’s Lemma). Let (ρ, V ), (π,W ) be irreducible representations,
and let L be as stated in the previous lemma. Then, L is either the 0 map or an
isomorphism.

Proof. Suppose L 6= 0, so Ker(L) 6= V . By the previous lemma, Ker(L) is a
subrepresentation of ρ. Hence, Ker(L) = {0} and L is injective. Similarly, Im(L) =
W . L is also surjective and is an isomorphism. �

Lemma 3.18. Let (ρ, V ) be an irreducible representation and L : V → V intertwine
ρ with itself. Then, L is a scalar product of the identity linear transformation

L = xI.
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Proof. Let x be an eigenvalue of L, and let W be the corresponding eigenspace.
We have

L(ρ(g)w) = ρ(g)xw = xρ(g)w,w ∈W
because L intertwines ρ with itself. Also, since L(w) = xw,

ρ(g)L(w) = ρ(g)xw = xρ(g)w.

W has a subrepresentation of ρ because W is closed under the action of G. Since
ρ is irreducible, W = {0} or W = V , so L = xI. �

Our next goal is to define the Fourier transforms on any finite groups. To do
so, we can show that the matrix entries of irreducible representations of a group G
form a basis of L2(G), leading to the definition of the Fourier transforms.

Theorem 3.19. Let (ρ,Ca) and (π,Cb) be distinct irreducible representations of
a finite group G. Let ρn,m : G → C be a function mapping each element g ∈ G to
the element in the n-th row and m-th column of ρ(g), with πi,j defined in a similar
way. Then,

〈ρn,m, πi,j〉 =
∑
g∈G

ρn,m(g)πi,j(g) = 0.

Proof. For a linear map M : Cb → Ca, define a function N :

N :=
∑
g∈G

ρ(g)Mπ(g−1).

For a group element y, because ρ is a homomorphism, we have

ρ(y)N = ρ(y)
∑
g∈G

ρ(g)Mπ(g−1).

Using a bijection from G to G defined by left multiplication by y, we have:

ρ(y)N =
∑
yg∈G

ρ(yg)Mπ((yg)
−1
y)

=

∑
yg∈G

ρ(yg)Mπ
(
(yg)−1

)π(y)

= Nπ(y)

This implies that the map N intertwines (ρ, V ) and (π,W ). N is thus either the 0
map or an isomorphism. Because we assume that the two representations are not
equivalent, L is not an isomorphism. As M is an arbitrary map from V to W , let
it be the map with 1 in the mth row and the jth column, and 0 else. Therefore,∑

g∈G
ρn,m(g)πi,j(g) = 〈ρn,m, πi,j〉 = 0.

�

Theorem 3.20. Let (ρ,Ca) be an irreducible representation of G. Then,

〈ρnm, ρij〉 =

{
1, n = i and m = j

0, else
.
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Proof. Use the same definition of M and N as above. N intertwines the represen-
tation with itself, and by Lemma 3.18, N is a scalar product of the identity matrix.
Because the trace of a matrix is preserved under intertwining, we know that

|G|Tr(M) = Tr(xI) = x · dρ.
Again, let M be the map with 1 in the mth row and the jth column, and 0

else. Then, we see that Tr(M) 6= 0 if and only if m = j, and in that case, the only
non-zero entries of N are the diagonal entries. Thus, the inner product is not 0 if
and only if n = i and m = j. �

Lemma 3.21 (Plancherel’s Formula). Let P be a function from G to C, let Ĝ be
the set of irreducible representations of G, and let ρ be a representation of G. Then,∑

π∈G
|P (π)|2 =

1

|G|
∑
ρ∈Ĝ

dρTr(ρ(P )ρ(P )∗),

where
ρ(P ) =

∑
g∈G

P (g)ρ(g).

Corollary 3.22. Let G be a finite group. Then,∑
ρ∈Ĝ

d2ρ = |G|.

The proof of the lemma and its corollary is in [7]. With all these theorems, we
have shown that the matrix entries of irreducible representations of a finite group
G are orthogonal and have the same size as G. Hence, the matrix entries form a
basis of L2(G). We can now define the Fourier transform of a finite group.

Definition 3.23. Let f : G → C be a function, and let ρ : G → GL(V ) be a
representation. We now define

f̂ : Hom(G,GL(V ))→ GL(V ),

f̂(ρ) :=
∑
g∈G

f(g)ρ(g).

Remark 3.24. The quantities ρ(f) and f̂(ρ) are distinct in principle, but are equal
in definition. As they represent the same expression, we will treat the two as
interchangable in this paper.

We now compute the Fourier transform of the delta function for concreteness.

Example 3.25.

δ̂g(ρ) =
∑
h∈G

δg(h)ρ(h) = ρ(g)

because δg(h) is zero unless g = h.

We can now go back to our original goal: to calculate convolutions in a simpler
way. The following lemma does the job.

Lemma 3.26 (Convolution-Multiplication Theorem). Let G be a finite group, let
f, g : G→ C, and let ρ be a group representation. Then,

(3.27) f̂ ? g(ρ) = f̂(ρ)ĝ(ρ)
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Proof.

f̂ ? g(ρ) =
∑
k∈G

(f ? g)(k)ρ(k) by Fourier transform

=
∑
k∈G

(∑
h∈G

f(kh−1)g(h)

)
ρ(k) by convolution

=

( ∑
kh−1∈G

f(kh−1)ρ(kh−1)

)(∑
h∈G

g(h)ρ(h)

)
by swapping the order of summation

= f̂(ρ)ĝ(ρ) by definition of the Fourier Transform.

�

4. Card Shuffling and Random Walks

We now have random walks and Fourier transforms as our mathematical tools,
so let’s use them in a real-life problem: shuffling cards. Unlike our interest in
returning to the origin point in random walks on Zd, we now want the cards to be
as far from the initial state as possible after the shuffle.

Suppose we have n labelled cards to shuffle, using a random transposition model.
In this model, one shuffle consists of choosing two cards at random and swapping
their positions, and we repeatedly iterate this shuffle k times. The question is: how
large should k be to ensure that the cards are randomly arranged?

Definition 4.1. Let G be a group. A probability distribution P is a function
P : G→ [0, 1] such that

∑
g∈G P (g) = 1.

We can model random transpositions by the probability distribution T on the
group Sn, defined as:

T (e) =
1

n
if e is the identity

T (π) =
2

n2
if π is a transposition

T (σ) = 0 otherwise.(4.2)

To formalize the phrase ‘randomly arranged’, we will compare distributions
against the normal distribution U :

(4.3) U(π) =
1

n!
for all π ∈ Sn,

Intuitively, as people shuffle more, which we can model as convolving T with
itself repeatedly, the cards get more mixed, which should mean T ?k → U as k gets
larger. Actually, Theorem 4.5 shows that after a certain number of transpositions,
depending on the number of cards, the probability distribution of the cards will be
almost the uniform distribution.

Definition 4.4. Let G be a group, and let P and Q be two probability distributions
on G. The variation distance is defined as:

||P −Q|| :=
∑
g∈G
|P (g)−Q(g)| = 2 sup

A⊂G
|P (A)−Q(A)|.
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Theorem 4.5. Let c be a constant. Then, for k > 1
2n log n+ cn, we have

||T ∗k − U || ≤ 6e−2c.

Definition 4.6. The character χρ of the representation ρ is a function χρ : G→ C
such that for g ∈ G,

χρ(g) = Tr(ρ(g)).

Note that, due to the properties of trace, equivalent representations have identical
characters, and characters are constant on conjugacy classes.

Lemma 4.7. Let G be a finite group, and let ρ be an irreducible representation of
G. Further, let P be a function P : G → C that is constant on conjugacy classes.
Let Pi be the value of P, let ni be the cardinality, and let χi be the value of χρ on

the ith conjugacy class. Then, P̂ (ρ) = CI, with

C =
1

dρ

∑
i

Piniχi.(4.8)

Proof. Let Mi be the sum of ρ(g) for all g in the ith conjugacy class. We have

P̂ (ρ) =
∑
g∈G

P (g)ρ(g) =
∑
i

PiMi.

By conjugacy, the matrix Mi satisfies ρ(g)Miρ(g−1) = Mi for all g. Thus, by
Theorem 3.18, Mi = CiI for some Ci.

To find the value of Ci, we calculate the trace:

Tr(Mi) = niχi = Cidρ,

which leads to the result. �

Corollary 4.9. Let T be as defined in 4.2, let ρ be a representation on Sn.Then,

T̂ (ρ) =

(
1

n
+
n− 1

n

χρ(σ)

dρ

)
I,

where σ is any transposition.

Proof. By the definition of T , we know that T = 1
n on the conjugacy class [e] of

the identity, 2
n2 on the conjugacy class [σ] of transpositions, and 0 on all other

conjugacy classes. We can then plug in the values of dρ and χρ to Equation 4.8 to
obtain the result. �

Lemma 4.10 (Upper Bound Lemma). Let G be a finite group, P be a probability
distribution, and ρ be any G-representation. Then,

4||P ∗k − U ||2 ≤
∑
ρ 6=1

dρ||P̂ (ρ)||2k.(4.11)
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Proof.

4||P ∗k − U ||2 =
(∑
g∈G
|P ∗k(g)− U(g)|

)2
by definition

≤ |G|
∑
g∈G
|P ∗k(g)− U(g)|2 by Cauchy-Schwarz inequality

=
∑
ρ

dρTr(P̂ (ρ)k(P̂ (ρ)k)∗) by Plancherel’s Formula

≤
∑
ρ

dρ||P̂ (ρ)||2k.

�

Definition 4.12. A partition λ = (λ1, λ2, · · · , λm) of n is a sequence λ1 ≥ λ2 ≥
· · · ≥ λm of positive integers with n = λ1 + λ2 + · · ·+ λm.

Remark 4.13. There exists a one-on-one correspondence between each partition of
n and an irreducible group representation of Sn. The exact representation can be
found in [5], but will not be constructed here considering the length of this paper.

Lemma 4.14. The character of the irreducible representation of Sn corresponding
to the partition λ, evaluated at a transposition g satisfies:

χρ(g)

dρ
=

1

n(n− 1)

m∑
j=1

(λ2j − 2jλj + λj).

The proof of this lemma is in [4].

Proof of Theorem 4.5. We will only prove that the difference between T ∗k and U
is bounded, but will not show the detailed explanation for its precise value. More
explicit calculations can be found in [5].

By its definition, we know that T is invariant under conjugation: T (g) =

T (g−1hg). As T̂ is the Fourier transform of T , it satisfies

ρ(g−1)T̂ (ρ)ρ(g) = T̂ (ρ)

for all g. By Theorem 3.18, T̂ (ρ) = cI for some c. We can compute

c =
1

n
+
n− 1

n

χρ(g)

dρ

by taking traces of matrices. Plugging this value of c into Equation 4.11, we have

4||T ?k − U ||2 ≤
∑
ρ6=1

dρ

(
1

n
+
n− 1

n

χρ(g)

dρ

)2k

.

We then take a partition of n and the corresponding irreducible representations
of Sn. The case that the cards are farthest from the uniform distribution is when
they are in the original order, which means they preserve the identity map in Sn.
This leads us to consider the partition (n−1, 1). By Lemma 4.14, the corresponding
term in the previous summation is less than

(n− 1)2
(

1− 2

n

)2k

.



RANDOM WALKS ON FINITE GROUPS 15

In all other possible partitions, the difference can only be less than this value.
Therefore, by the fact that 1−x ≤ e−x, the result is that ||T ?k−U || is bounded. �
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