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Abstract. This paper starts by introducing the concepts of p-adic numbers

and p-adic absolute value. It then discusses three di↵erent interpretations of

the field of p-adic numbers and how they correspond to each other. Finally,

it will present two versions of Hensel’s Lemma based on knowledge from pre-

ceding sections. It will also explain briefly the di↵erence between the versions

and provide examples of applications for both.
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1. Introduction

The main goal of this paper is to introduce Hensel’s Lemma. Formulated by
Kurt Hensel, it predicts the existence of roots to a polynomial in the ring of p-
adic integers given an initial approximated solution modulo prime p. For example,
a typical question would be “given a polynomial f(x) = x2 � u and an integer
approximation u, does there exist v close to u such that f(v) = 0?”

Hensel’s Lemma also can be used to answer questions about properties of p-adic
numbers, such as when a p-adic number u is a square or a pth power in the field
of p-adic numbers. An example will be given after the proofs of the basic version.
Also note the proofs of the general version of Hensel’s Lemma assume at least some
familiarity with real analysis.

To introduce Hensel’s Lemma, we will first need to build the notion of the field
of p-adic numbers Qp and the p-adic absolute value. An explanation of the three
interpretations of Qp sheds light on the structure of the field and the p-adic integers,
which in turn elucidates the mechanisms of Hensel’s Lemma.
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2. p-adic Absolute Value

Definition 2.1. (p-adic valuation) Let p be a prime number. Define p-adic valua-
tion ordp : Q! Z [ {1},

ordp(a) =

(
m, if a = pm · u

v

0, if a = 0

where u, v,m 2 Z, u, v 6⌘ 0 mod p.

In other words, p-adic valuation indicates the power of p that divides a. We
consider a, b 2 Q to be close in the p-adic sense if ordp(a � b) is large in value.
In fact, as we will see in the next section, a sequence of rational numbers (xn)
converges to a 2 Q p-adically if ordp(xn � a)!1 as n!1.

Remark 2.2. (Properties of p-adic valuation) For any a, b 2 Q, a, b 6= 0, we have
(1) ordp(ab) = ordp(a)+ ordp(b),
(2) ordp(a+ b) � min(ordp(a), ordp(b)),
(3) if ordp(a) 6= ordp(b), then ordp(a+ b) = min(ordp(a), ordp(b)).

Note that if one of a, b does equal 0, properties (1) and (3) do not hold.

Proof. Let a = pmu
v , b = pn w

z . By Definition 2.1, ordp(a) = m and ordp(b) = n.
(1) Then ab = pm+n uw

vz , where uw, vz 6⌘ 0 mod p. Hence

ordp(ab) = m+ n = ordp(a) + ordp(b).

(2) Assume without loss of generality that m � n, then

a+ b = pn(
pm�nuz + wv

vz
).

By Definition 2.1, the denominator is not divisible by p, but we cannot say the
same for the numerator because there is a chance that m = n. Therefore,

ordp(a+ b) � n = min(ordp(a), ordp(b)).

(3) If m 6= n, then the numerator itself is not divisible by p. The proof here
remains largely the same as (2) except now ordp(a+ b) = n. ⇤

Definition 2.3. (p-adic absolute value) For any rational number a, a 6= 0, its
p-adic absolute value |a|p is defined by

|a|p = p�ordp(a).

Hence |a|p represents the size of a in the p-adic sense. We will present a simple
example below.

Example 2.4. Observe that

|p|p =
1

p
and |1

p
|p = p,

so as a p-adic number, p is smaller compared to 1

p .

Also note |0|p = 0 because ordp(0) =1.
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Remark 2.5. (Properties of p-adic absolute value) For any a, b 2 Q, we have
(1) |ab|p = |a|p · |b|p,
(2) |a+ b|p  max (|a|p, |b|p)  |a|p + |b|p,
where the first part of the inequality is the Archimedean Property in Qp, and

the latter part forms the Triangle Inequality.

Proof. The two statements come from Remark 2.2.
(1) By Definition 2.3 and an exponent product rule,

|ab|p = p�ordp(ab) = p�ordp(a) · p�ordp(b) = |a|p · |b|p.
(2) The latter part of the inequality follows naturally, so we only need to prove

the former part:

|a+ b|p = p�ordp(a+b)  p�min(ordp(a),ordp(b)) = max (|a|p, |b|p).
⇤

Furthermore, the p-adic absolute value function brings a sense of distance. For
instance, one can also interpret Example 2.4 as p being closer to the origin p-
adically than 1/p. Similarly, for any two rational numbers, we can calculate the
p-adic distance between them, and hence the p-adic absolute value forms a metric.

Definition 2.6. (p-adic metric) Given a prime number p, the p-adic metric is

dp(a, b) = |a� b|p
and dp satisfies the following three properties:

• dp(a, b) � 0, and dp(a, b) = 0 if and only if a = b,
• dp(a, b) = dp(b, a),
• dp(a, c)  dp(a, b) + dp(b, c).

Note that Q is a metric space with respect to the p-adic metric, and a sequence
(xn) converges p-adically to a rational number a if and only if dp(xn, a)! 0.

In the rest of the paper, we will more often use the absolute value notation
instead of the metric one, but readers should bear this concept of distance in mind.

3. p-adic Number Fields Qp

There are in total three ways one can define the field of p-adic numbers. The
first definition can be understood better in the light of the relationship between R
and Q, so we need to examine the latter first.

First notice that in R, a sequence of rational numbers (xn) may converge to a
number a /2 Q. For example, the sequence

3, 3.1, 3.14, 3.141, 3.1415...

converges to ⇡. This sequence would diverge if we take the domain to be Q. Hence,
R is simply an extension or a completion of Q in which all the Cauchy sequences
converge with respect to the Archimedean absolute value. The analogy here is that
for a fixed p, we can regard Qp as a completion of of Q in which all the p-adic
Cauchy sequences converge.

Definition 3.1. (p-adic Cauchy sequence) Given a sequence (xn) with xn 2 Q for
all n, we call (xn) a p-adic Cauchy sequence if for any ✏ 2 Q, ✏ > 0, there exists a
natural number N such that m,n � N implies dp(xm, xn) = |xm � xn|p < ✏.
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Therefore, we can create an injective map from Q to Qp by associating an element
a 2 Q with an element b 2 Qp given by the same p-adic Cauchy sequence. Hence
Q is dense in Qp.

A second definition of Qp involves Zp, or the p-adic integers.

Definition 3.2. (p-adic integers) Define

Zp = {z 2 Qp : |z|p  1} = {z 2 Qp : ordp(z) � 0}.

Note that Zp is a commutative subring of Qp. In fact, it is the unit disc in Qp.
Here is a related definition that we will see in later sections.

Definition 3.3. Define

Z⇥
p = {z 2 Qp : |z|p = 1} = {z 2 Qp : ordp(z) = 0}.

Note that Z⇥
p is a subset of Zp.

Definition 3.4. (Inverse limits) Given a sequence of sets Xn and maps fn :
Xn+1 ! Xn, the inverse limit is defined by

lim �
n

Xn = {(xn) 2
Y

n=1

Xn : fn(xn+1) = xn}.

If we set Xn to be Z/pnZ and fn to be the natural projection from Z/pn+1Z to
Z/pnZ, then we obtain lim �n

Z/pnZ. An element (xn) of lim �n
Z/pnZ is a sequence

composed of elements such that x1 2 Z/p, x2 2 Z/p2, and so on, which are com-
patible with each other (i.e. xn can be reduced to xn�1). The elements of this
sequence correspond to the coe�cients of the p-adic expansion of a number in Zp

(see Theorem 3.5 below), so there exists a bijection between Zp and lim �n
Z/pnZ.

As a detailed explanation would involve more advanced algebra, it will not be dis-
cussed here. Readers should consult Kato’s book [1, p.67-68] for a formal proof of
this bijection.

Since Qp is the quotient field of Zp, Qp can be seen as the quotient of inverse
limits. One can study p-adic integers mod pn for various n and get Qp.

The third and final way of defining Qp concerns p-adic expansion.

Theorem 3.5. Qp is the set of all numbers that can be written in the form of a

p-adic expansion, namely,

Qp = {
1X

n=m

anp
n : m 2 Z, an 2 {0, 1, ..., p� 1}}.

To associate a p-adic integer with its p-adic expansion, choose a p-adic integer z
and an integer m such that ordp(z) � m. Then p�mz is also a p-adic integer, and
p�mz ⌘ am mod p, for some am 2 {0, 1, ..., p � 1}. Therefore, z � pmam ⌘ 0 mod
pm+1, which means ordp(z � pmam) � m + 1. Repeating the step above, we will
get ordp(z � pmam � pm+1am+1) � m+ 2 for some am+1. Further repetition gives
the unique p-adic expansion. In this way, the three definitions are equivalent.

4. Hensel’s Lemma: Basic Version

As we will see in this section, Hensel’s Lemma implies that congruence in the
p-adic sense means approximation. Given a ⌘ b mod pn, we have

a� b ⌘ 0 mod pn,
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which is equivalent to

|a� b|p 
1

pn

by Definition 2.1 and 2.3. Again, the larger n is, the closer a and b are.

Theorem 4.1. (Hensel’s Lemma) Let f(x) 2 Zp[x] and a 2 Z/p for a fixed p.
Suppose f(a) ⌘ 0 mod p but f 0(a) 6⌘ 0 mod p. Then there exists a unique z 2 Zp

such that

• f(z) = 0,
• z ⌘ a mod p, or equivalently, |z � a|p  1/p.

To prove the theorem, we will need the lemma below.

Lemma 4.2. Let f(x) 2 F [x], where F is a field. Then

f(x+ y) = f(x) + f 0(x)y + g(x, y)y2

for some polynomial g(x, y) 2 F [x, y].

Proof. This polynomial identity follows from the Binomial Theorem and isolating
the first two terms. First, we know any polynomial can be written in the form

f(x) = a0 + a1x+ ...+ anx
n =

nX

i=0

aix
i

for n <1. Plugging in x+ y into the polynomial, we get

f(x+ y) =
nX

i=0

ai(x+ y)i

= a0 + a1x+ a1y +
nX

i=2

ai(x
i + ixi�1y + gi(x, y)y

2)

where gi(x, y) equals the sum of all terms of the expansion except for the first two
then divided by y2. By Binomial Theorem, each term after the first two in the
expansion has a yk component, where k � 2, so gi(x, y) is a polynomial for each
i � 2. Therefore,

f(x+ y) =
nX

i=0

aix
i +

nX

i=1

iaix
i�1y +

nX

i=2

gi(x, y)y
2

= f(x) + f 0(x)y + g(x, y)y2

where g(x, y) 2 R[x, y]. ⇤
Now we can prove the main theorem.

Proof. (Hensel’s Lemma) To show the existence of such a root z, we will first use
induction to construct a p-adic Cauchy sequence. Then we will show that the limit
of this sequence corresponds to the root we are looking for.

More specifically, we need to find a sequence (an) 2 Zp such that

• f(an) ⌘ 0 mod pn,
• an ⌘ a mod p

for all n. The base case is relatively straightforward, since setting a1 = a yields the
desired result. For the inductive step, we assume the nth case is true and we want
to find an+1 2 Zp such that
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• f(an+1) ⌘ 0 mod pn+1,
• an+1 ⌘ a mod p.

Since the nth case holds true, there exists a root an divisible by pn. For the sequence
to be Cauchy, the next term an+1 has to satisfy the condition an+1 ⌘ an mod pn or
|an+1 � an|  1/pn, which is equivalent to Definition 3.1. Note that this condition
also fulfills the second requirement, since by Remark 2.5,

|an+1 � a|p  max(|an+1 � an|p, |an � a|p) =
1

p

or an+1 ⌘ a mod p. Write an+1 = an + pntn for some tn 2 Zp. Now we want to
show f(an + pntn) ⌘ 0 mod pn+1. By Lemma 4.2, we get

f(an + pntn) = f(an) + f 0(an)p
ntn + g(an, p

ntn)p
2nt2n

⌘ f(an) + f 0(an)p
ntn mod pn+1,

or equivalently,

f 0(an)tn ⌘ �
f(an)

pn
mod p.

Note that �f(an)/pn 2 Zp since f(an) ⌘ 0 mod pn. Also, such tn 6= 0 exists
because f 0(an) ⌘ f 0(a) 6⌘ 0 mod p. Thus it is possible to find an+1 such that
f(an+1) ⌘ 0 mod pn+1, and we can complete the rest of the Cauchy sequence in
this way.

Next, let the limit of the Cauchy sequence be z. We want to show f(z) = 0
and z ⌘ a mod p. Since an+1 ⌘ an mod pn, am ⌘ an mod pn, for all m > n. As
m ! 1, we get z ⌘ an mod pn. As this holds true for all n, we set n = 1 and
z ⌘ a mod p.

We also note that z ⌘ an mod pn means that f(z) ⌘ f(an) ⌘ 0 mod pn, or
|f(z)|p  1/pn. Thus |f(z)|p = 0 as n!1, and f(z) = 0.

Next, we need to show the uniqueness of such a root z. Suppose there exists ↵
such that f(↵) = 0 and ↵ ⌘ z mod p. We will show that the two roots have the
same p-adic expansion, that is, ↵ ⌘ z mod pn for all n. The n = 1 case holds true
because both roots are congruent to a mod p. For n > 1, we know that ↵ ⌘ z mod
pn, so let ↵ = z + pnsn, sn 2 Zp. Applying Lemma 4.2 again, we get

f(↵) = f(z + pnsn) ⌘ f(z) + f 0(z)pnsn mod pn+1.

We know f(↵) = f(z) = 0, so cancelling them out, we get

�f 0(z)sn ⌘ 0 mod p.

Since f 0(z) 6⌘ 0 mod p, sn ⌘ 0 mod p, and we conclude ↵ ⌘ z mod pn for all n. ⇤
Example 4.3. Let f(x) = x2 � 11. We know f(1) ⌘ 0 mod 5 and f 0(1) ⌘ 2 6⌘ 0
mod 5. By Hensel’s Lemma, 11 has a unique square root in Z5 which is congruent
to 1 mod 5. The exact square root goes on indefinitely, and it can be found by
calculating its 5-adic expansion.

11 ⌘ 12 mod 5

11 ⌘ (1 + 5)2 mod 25

11 ⌘ (1 + 5 + 2 · 52)2 mod 125

...

So the exact solution is z = 1 + 5 + 2 · 52 + ... .
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In fact, for each n > 0 not divisible by p and u ⌘ 1 mod p, u is an nth power
in Z⇥

p . To prove this, let f(x) = xn � u. Then f(1) = 1 � u ⌘ 0 mod p, f 0(1) =
n(1)n�1 = n 6⌘ 0 mod p. Hence, by Hensel’s Lemma, there exists a unique solution
z such that zn = u and z ⌘ 1 mod p. Letting p = 5, u = 11, and n = 2, we obtain
the previous result.

Example 4.4. With Hensel’s Lemma, we can accurately describe when an element
of Qp is a square. Assume p > 2 and q 2 Q⇥

p . In order for q to be a square, its

p-adic valuation must be even, so let ordp(q) = 2k for some k 2 Z. Then q0 = q/p2k,
of order 0, must also be a square. Hence the question becomes when an element
u 2 Z⇥

p is a square. Since u is a p-adic square, we know there exists v such that
u ⌘ v2 mod p and |u|p = |v|2p = 1 (v 2 Z⇥

p ).
Let f(x) = x2 � u. Then we have f(v) ⌘ 0 mod p and f 0(v) = 2v 6⌘ 0 mod p.

We set p 6= 2, so by Hensel’s Lemma, f(x) has a root that can be reduced to v mod
p. Hence u 2 Z⇥

p is a square if and only if it can be reduced to a square mod p. In
other words, it is a square if and only if its image in Z/p is a square by the natural
map from Zp to Z/p. For a numerical example, we know from Example 4.3 that 1
is a square mod 5, so u 2 Z⇥

5
is a 5-adic square if u ⌘ 1 mod 5.

Note that the conclusion may not hold for p = 2, since f 0(v) = 2v ⌘ 0 mod 2.
For example, 3 is a square mod 2 but not a square mod 4, so it cannot be in Z2

and hence not in Q2.

5. Hensel’s Lemma: General Version

In this section, we present a more general version of Hensel’s Lemma.

Theorem 5.1. (Hensel’s Lemma) Let f(x) 2 Zp[x] and a 2 Zp for a fixed p.
Suppose |f(a)|p < |f 0(a)|2p. Then there exists a unique z 2 Zp such that the following

three conditions hold:

• f(z) = 0,
• |z � a|p = |f(a)/f 0(a)|p < |f 0(a)|p,
• |f 0(z)|p = |f 0(a)|p.

The main di↵erence between the two versions is that the given approximated
root has to be a simple root for the basic version, whereas the general version
allow roots with multiplicity greater than 1 to be used as the initial approximation.
To see this, note that since f(x) 2 Zp[x], f 0(x) 2 Zp[x] and f 0(a) 2 Zp, which
means |f 0(a)|p  1 by Definition 3.2. If |f 0(a)|p = 1, then f 0(a) ⌘ 0 mod p, and
a is at least a double root. This is clearly not allowed in Theorem 4.1. Another
important distinction between the two versions is that Theorem 5.1 gives a much
clearer description on the bound of the p-adic distance between the approximated
and the actual root.

Now we need yet another polynomial identity to prove the theorem.

Lemma 5.2. Let F be a field and f(x) 2 F [x]. Then

f(x)� f(y) = (x� y)g(x, y)

where g(x, y) 2 F [x, y].
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Proof. Note that x � y is always a factor of xn � yn for n � 1. If we write the
polynomial as f(x) =

Pn
i=0

aixi for n <1, then

f(x)� f(y) =
nX

i=0

ai(x
i � yi) = (x� y)

nX

i=0

ai

i�1X

j=0

xi�1�jyj = (x� y)g(x, y)

and g(x, y) 2 F [x, y]. ⇤

Here we will cover two di↵erent proofs of Theorem 5.1, one by Newton’s Method
and the other by Contraction Mapping Theorem. Both focus on constructing a
Cauchy sequence using certain iterations and then proving the limit of the sequence
is the root proposed by Hensel’s Lemma. We start with the version that uses
Newton’s Method.

Proof. (Hensel’s Lemma) This proof especially resembles the proof written for the
basic version, so we will omit some detailed calculations, which the readers can fill
in as an exercise.

To find the desired p-adic Cauchy sequence, we define (an) with a1 = a and

(5.3) an+1 = an �
f(an)

f 0(an)
.

We will show this sequence is Cauchy later on. For now, we want to show, by
induction, that all members of this sequence satisfy three properties:

(1) |an|p  1 or an 2 Zp

(2) |f 0(an)|p = |f 0(a)|p
(3) |f(an)|p  |f 0(a)|2pt2

n�1

where t = |f(a)/f 0(a)2|p. The base case is straightforward, as a is in Zp by given
and the last property turns out be an equality after cancelling out terms. Now we
proceed to the inductive step. Given n, assume the three properties hold. We want
to show they still hold for the n+ 1 case.

For property (1) to be true, both parts on the right of (5.3) have to be in Zp, so
we need to show f(an)/f 0(an) 2 Zp or |f(an)/f 0(an)|p  1. Using (2) and (3) from
case n, we have

| f(an)
f 0(an)

|p  |f 0(a)|pt2
n�1

< 1,

since t < 1 by brief calculation.
To show property (2), we apply Lemma 5.2 to the derivative of f(x) along with

(5.3) and (3) from n. We have

|f 0(an+1)� f 0(an)|p  |an+1 � an|p = |f(an)
f 0(a)

|p < |f 0(a)|p.

By Remark 2.5, |f 0(an+1)|p = |f 0(a)|p.
Finally, we use the polynomial identity in Lemma 4.2 to prove property (3).

Letting x = an and y = �f(an)/f 0(an), we get, by property (3) of case n,

|f(an+1)|p = |g(an,
�f(an)
f 0(an)

)(
�f(an)
f 0(an)

)2|p  |f(an)
f 0(a)

|2p 
|f(a)|4pt2

n�1

|f 0(a)|p
 |f 0(a)|2pt2

n�1

.
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With all three properties proven, now we want to show (an) is a Cauchy sequence
in Qp. By property (3), for any two adjacent terms in the sequence, we have

(5.4) |an+1 � an|p = | f(an)
f 0(an)

|p  |f 0(a)|pt2
n�1

,

so the upper bound of the distance gets smaller as n!1.
Let z be the limit of this sequence. Since property (1) holds true for all n, z is

also a p-adic integer. Letting n ! 1 in property (3), we get |f(z)|p  0, which
means f(z) = 0.

If we let n approach 1 for property (2), we get |f 0(z)|p = |f 0(a)|p, which proves
condition (3) in the theorem.

Thus it remains to show the second condition, |z�a|p = |f(a)/f 0(a)|p < |f 0(a)|p.
The inequality follows from the given, so we only need to prove the equality in the
front, which we divide into two cases. If f(a) = 0, then z = an = a. Both sides of
the equation equal1, and the equality follows naturally. If f(a) 6= 0, however, then
we want to show |an � a|p = |f(a)/f 0(a)|p for all n, using some simple induction.

Note that by (5.4),

|an+1 � an|p < |f 0(a)|pt = | f(a)
f 0(a)

|p.

So by properties of p-adic absolute value, if |an� a|p = |f(a)/f 0(a)|p, then |an+1�
a|p = |f(a)/f 0(a)|p. Induction is complete.

Lastly, we need to prove the uniqueness of root z. Assume ↵ is another root.
Then f(↵) = 0 and |z�↵|p < |f 0(a)|p by Remark 2.5, since both |z�a|p, |↵�a|p <
|f 0(a)|p. Let ↵ = z + c for some c 2 Zp, c 6= 0. By Lemma 4.2,

f(↵) = f 0(z)c+ g(z, c)c2 = 0,

so f 0(z) = �g(z, c)c, and
|f 0(z)|p  |c|p = |↵� z|p < |f 0(a)|p.

But |f 0(z)|p = |f 0(a)|p, and we reach a contradiction. Hence z is unique. ⇤
Before we move on to the second proof of Hensel’s Lemma, we need to review

the Contraction Mapping Theorem.

Lemma 5.5. (Contraction Mapping Theorem) Let (X, d) be a complete metric

space and f : X ! X be a contraction mapping, i.e. a map such that

d(f(x), f(y))  cd(x, y)

for some 0  c < 1 and any x, y 2 X. Then f has a unique fixed point in X.

Due to limited space, this paper will not state a detailed proof of the Contraction
Mapping Theorem. Readers who desire further information should consult Conrad’s
paper [3].

Proof. (Hensel’s Lemma) First note that this proof will leave out some steps in the
deduction of various inequalities, but all of them follows naturally from the given
conditions or p-adic absolute value properties. Readers are encouraged to trace
these steps themselves.

In this proof, we will use this iterative function

�(x) = x� f(x)

f 0(a)
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to construct the Cauchy sequence. But first, we have to show this function is a
contraction mapping on a ball of some radius r 2 (0, 1) around a. Thus for r yet
to be determined, let Ba(r) = {x 2 Qp : |x � a|p  r}. Note that this ball has to
be contained in Zp. The radius must be such that � maps Ba(r) back to itself and
forms a contraction, i.e.

|�(x)� �(y)|p = |x� y � f(x)� f(y)

f 0(a)
|p  c|x� y|p

for x, y 2 Ba(r), c < 1. We proceed to determine suitable r and c.
We know that we can write f(x) in terms of x � a using a change of variable

formula for polynomials, or

(5.6) f(x) =
nX

i=0

↵i(x� a)i

for some ↵i 2 Zp. Plugging a into the derivative of f(x), we get ↵1 = f 0(a).
Substitution gives

�(x)� �(y) = � 1

f 0(a)

nX

i=2

↵i((x� a)i � (y � a)i).

By properties of p-adic absolute value and proof of Lemma 5.2, we get

|(x� a)n � (y � a)n|p = |x� y|p|
n�1X

i=0

(x� a)n�1�i(y � a)i|p

= |x� y|pmax(|x� a|p, |y � a|p).
Since both x� a and y � a are p-adic integers, max(|x� a|p, |y � a|p)  1. Thus

|�(x)� �(y)|p 
|x� y|p
|f 0(a)|p

.

Note that this inequality takes c = 1, which does not satisfy the conditions of a
contraction mapping. In order to make � a contraction mapping, we have to choose
c < 1 such that |x� a|p, |y� a|p  c|f 0(a)|p in order for the terms to cancel out for
inequality to be |�(x) � �(y)|p  c|x � y|p. Note that � is a contraction mapping
means if |x� a|p  c|f 0(a)|p, then |�(x)� a|p  c|f 0(a)|p, i.e.

|x� a� f(x)

f 0(a)
|p  c|f 0(a)|p,

which implies

| f(x)
f 0(a)

|p  c|f 0(a)|p.

Substituting f(a) with the form in (5.6), we get

f(x)

f 0(a)
=

f(a)

f 0(a)
+ (x� a) +

nX

i=2

↵i

f 0(a)
(x� a)i.

For i � 2, we have

| ↵i

f 0(a)
(x� a)i|p 

|x� a|2p
|f 0(a)|p

 c2|f 0(a)|p  c|f 0(a)|p.

So |f(x)/f 0(a)|p  c|f 0(a)|p by Remark 2.5, and |f(a)/f 0(a)2|p  c. Since the de-
sired c is less than 1, we need |f(a)/f 0(a)2|p < 1. Yet this condition is already given
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in the theorem, so we are free to set c = |f(a)/f 0(a)2|p. After rapid calculation, we
get the desired radius r = |f(a)/f 0(a)|p.

All components of � determined, we can now construct the Cauchy sequence
(an) by setting a1 = a and an+1 = �(an). As we mentioned in Section 3, Qp

is complete, and by Contraction Mapping Theorem, � has a unique fixed point
z 2 Ba(|f(a)/f 0(a)|p) such that �(z) = z. Substitution gives f(z) = 0.

At this point, there are still three things left to prove. First, we need to show
that |z � a|p = |f(a)/f 0(a)|p. Note, by �(x), we have |a2 � a|p = |f(a)/f 0(a)|p.
Then for all n, we have

|an+1 � an|p = |�n(a)� �n�1(a)|p  cn�1|a2 � a|p < |f(a)/f 0(a)|p.

Thus by properties of p-adic absolute value, |an � a|p = |f(a)/f 0(a)|p, and we get
|z � a|p = |f(a)/f 0(a)|p as n!1.

Next, we need to prove |f 0(z)|p = |f 0(a)|p. We will use induction to show
|f 0(an)|p = |f 0(a)|p for all members of the sequence (an), and then take n ! 1.
The base case is straightforward, so it remains to show |f 0(an+1)|p = |f 0(a)|p given
|f 0(an)|p = |f 0(a)|p. Note that

|f 0(an+1)� f 0(an)|p  |an+1 � an|p  | f(a)
f 0(a)

|p,

where the first inequality arises by Lemma 5.2 and the second by the radius of the
ball. By Remark 2.5, |f 0(an+1)� f 0(an)|p < |f 0(a)|p, and |f 0(an+1)|p = |f 0(a)|p.

As for the uniqueness of the root z, we simply repeat the last part from the
Newton’s Method proof. ⇤

Before we proceed onto a numerical application of the general version of Hensel’s
Lemma, note the similarity of the iterative functions in the two proofs. The only
di↵erence is that the denominator of the fraction is fixed to be f 0(a) for the latter,
while it varies with an for the former. This distinction results in di↵erent rates
at which the Cauchy sequence converges. Interested readers should see Conrad’s
paper [2, p.13] for details.

Example 5.7. Let f(x) = x3 + 17. Note f(x) ⌘ (x � 1)3 mod 3, so let a = 1
be the approximated root. After some brief calculation, we know f(1) = 18 and
f 0(1) = 3, which means |f(1)|p 6< |f 0(1)|2p, thus the solution, if it exists, cannot
be approximated by 1. However, if we lift the root to a = 4, we find that the
conditions are satisfied, as f(4) = 81 and f 0(4) = 12. By Hensel’s Lemma, -17 has
a unique cube root in Z3 which is congruent to 4 mod 9. The exact cube root can
be written as z = 1 + 3 + 32 + ... .
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