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Abstract. We survey the basic properties related to N∞ operads, equivariant

generalizations of E∞ operads. We show that the admissible sets of an N∞
operad capture the data of the norm maps of its algebra. The π0 of such

N∞ ring spectra are in general incomplete Tambara functors. We present the

detailed structures of these incomplete Tambara functors, both explicitly and
in a categorical way. We also show in the appendix that an operad pair induces

a self-pairing of the additive operad.
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1. Introduction

In the non-equivariant world, the study of E∞ operads and their algebras is
central to the study of the infinite loop spaces and commutative ring spectra. In
particular, May observed that all E∞ operads are equivalent up to some weak
equivalence, and they have homotopically equivalent categories of algebras [6]. A
similar story had been studied in the equivariant world. Interestingly, the situation
there is much more complicated: there are many different G-operads O that are
non-equivariantly E∞ but have different categories of algebras. Blumberg and Hill
provide a very nice counterexample for this phenomenon in [2, §1]. In particular, we
have an operad Etr with nth-space EΣn with trivial G-actions (we call it a “naive
E∞ G-operad”), and another operad EG with nth-space the universal space for all
subgroups of G×Σn (we call it a “genuine E∞ G-operad”). According to Blumberg
and Hill, these two E∞ G-operads have quite different categories of algebras: for
almost all positive cofibrant orthogonal G-spectra E,

Etr(n)+ ∧Σn E
∧n 6' EG(n)+ ∧Σn E

∧n
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Even more surprisingly, the structure of being a genuine equivariant commutative
ring spectra is not necessarily preserved under Bousfield localization, in contrast to
the case in the non-equivariant world. A counterexample can be found in Hill and
Hopkins’ paper [4, 6.1]. We provide another counterexample, suggested by Mike
Hill, of Bousfield localization that does not preserve the structure of an equivariant
commutative ring spectrum here:

Proposition 1.1. The commutative C2-ring spectrum S = Σ∞S0 localized with
respect to aσ : S0 → Sσ, the Euler class for the sign representation of C2, is no
longer a commutative C2-ring spectrum.

Proof. Consider the isotropy separation sequence [1, 2.7]:

EC2+ → S0 → ẼC2

We have in terms of fixed points:

ẼC2

C2 ' S0, ẼC2

e
' ∗

Denote the sign representation of C2 by σ, then we claim that ẼC2 ' a−1
σ S0 where

aσ : S0 → Sσ is the Euler class. In fact, we have

a−1
σ S0 ' ho lim

→
(S0 −∧aσ→ Sσ

∧aσ→ S2σ · · ·) ' S∞σ

Then
(S∞σ)C2 ' S0, (S∞σ)e ' S∞ ' ∗

We therefore have weak equivalences ẼC2 ' S∞σ ' a−1
σ S0. In terms of the corre-

sponding C2-spectra, we have

Σ∞ẼC2 ' a−1
σ S

On the other hand, via the above analysis of fixed points, we compute that π0(Σ∞ẼC2)
is the Mackey functor whose value at C2/C2 is Z and whose value at C2/e is 0. This
Mackey functor is a Green functor, but cannot be made into a Tambara functor.
In particular, there is no multiplicative unit map 0 → Z. Combining the remark
below Theorem 4.21 of this paper, the argument implies that there is no way to
give it a genuine equivariant commutative ring structure after this localization. �

A general Bousfield localization result in this context can be found in [4, §6];
however, it is not the primary focus of this paper.

Blumberg and Hill therefore introduced the notion of N∞ operads. An N∞ op-
erad has an underlying nonequivariant structure of an E∞ operad, but equivariantly
interpolates between the “naive E∞ G-operad” and the “genuine E∞ G-operad”
[2]. In terms of the underlying Mackey functor structures, the π0 of a “genuine”
E∞” G-ring spectrum has all norm maps that make it into a Tambara functor,
while the π0 of a “naive E∞” G-ring spectrum has no such kind of norm maps, and
is just a Green functor. For N∞ ring spectra, the structure of π0 also interpolates
between a full set of norms and non-existence of norms. Blumberg and Hill gives
a full description of these structures induced by N∞ operads, called incomplete
Tambara functors, in [3].

In this paper, mostly expository following [2] and [3], we will survey through the
ideas of N∞ operadic structures. Our goal is to understand how the N∞ operadic
structure induces an incomplete set of “norm” maps as discussed above. We will
tell a relatively general story: specifically, what structures an N∞ operad has in
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section 2, and what kinds of norm maps on its algebras are induced by a given N∞
operad in section 3. Section 4 then discusses the structures of incomplete Tambara
functors in detail. In particular, the notion of norm maps in section 3 further
descends into those purely algebraic structures after applying the functor π0, which
turns out to be an incomplete Tambara functors. There is a further remark about
operad pairs and the pairing of operads in the appendix. We will assume that the
readers have some knowledge of operads and basic equivariant homotopy theory.
(Readers that are only interested to see algebraic structures of incomplete Tambara
functors could skip section 3.)

2. N∞ operads and indexing systems

Definition 2.1. A family of subgroups for a group G is a collection of subgroups
closed under passage to subgroups and conjugation.

Definition 2.2 ([8], 2.1). A G-operad O consists of a sequence of G × Σn spaces
O(n), for n ≥ 0, such that:

(a) there is a G-fixed identity element 1 ∈ O(1),
(b) there exist G-equivariant maps:

γ : O(k)×O(n1)× · · · × O(nk)→ O(n1 + ...+ nk)

satisfying

γ(γ(c; d1, ...dk); e1, ...ei) = γ(c; f1, ...fk) (associativity)

where i = i1 + ...+ ik and fs = γ(ds; ei1+...+is−1+1, ..., ei1+...+is),

γ(1; d) = d for d ∈ Ok, γ(c; 1k) = c for c ∈ Ok (unit),

and for c ∈ O(k), ds ∈ O(is), σ ∈ Σk and τs ∈ Σis ,

γ(cσ; dσ(1), ..., dσ(k)) = γ(c; d1, ..., dk)σ(i1, ..., ik)

γ(c; d1τ1, ..., dkτk) = γ(c; d1, ..., dk)(τ1 ⊕ · · · ⊕ τk) (Σ−equivariant)

where if i = i1 + ...+ ik, then σ(i1, ..., ik) ∈ Σi permutes i letters in blocks
as σ permutes k letters, and τ1 ⊕ · · · ⊕ τk ∈ Σi is the evident permutation.

A map between G-operads O → O′ is a sequence of G × Σn-equivariant maps
compatible with the operadic structures. It is a weak equivalence if in addition
each map O(n)Γ → O′(n)Γ is an equivalence for all subgroups Γ ⊂ G× Σn and all
n ≥ 0.

An N∞ operad is a G-operad whose underlying nonequivariant operad is an E∞
operad [6, 3.5]. However, to make everything compatible, we need more conditions.

Definition 2.3. An N∞ operad is a G-operad such that

(a) O(0) is G-contractible,
(b) For n ≥ 1, Σn acts on O(n) freely,
(c) For n ≥ 1, O(n) is a universal space for a family Fn(O) of subgroups of

G× Σn which contains all subgroups of the form H × {1}, that is, for any
subgroup Γ ⊂ G× Σn,

O(n)Γ =

{
∗ Γ ∈ Fn(O)
∅ Γ /∈ Fn(O)
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Remark 2.4. It is immediate from the definition that the underlying nonequivariant
operad for any N∞ operad is an E∞ operad. Moreover, The condition that O(n) is
Σn-free implies if Γ ∈ Fn(O), then Γ ∩ ({1} × Σn) = {1}. There is an observation
that Γ ∩ ({1} × Σn) = {1} if and only if there is a subgroup H ⊂ G and a homo-
morphism H → Σn such that Γ is the graph of f [2, 4.2]. This is equivalent to
imposing an H-set structure on an n-element set. Further analysis with indexing
systems heavily relies on this fact.

Definition 2.5. Let O be an N∞ operad. An algebra over O, either in GT op (the
category of G-spaces) or SpG (the category of orthogonal G-spectra), is an object
X together with maps:

O(n)⊗Σn X
⊗n → X

compatible with the operadic structure. “⊗” denotes the symmetric monoidal prod-
uct in GT op or SpG.

Examples of N∞ operads and their algebras can be found in [2] and [9]. For the
purpose of this paper, we focus on the general structural theory of N∞ operads.

2.1. Indexing systems. We turn to the study of indexing systems. There is a
nice correspondence [2, 5.6] between N∞ operads and indexing systems, in that
there is a faithful embedding

C : Ho(N∞−Op)→ I

where the weak equivalence of N∞ operads are level-wise G×Σn-equivalences and
I denotes the poset of all indexing systems. Blumberg and Hill made a conjecture
that in fact this is an equivalence of categories, and it is later resolved by J.Rubin
[9], J.J. Gutiérrez and D. White [14], and P. Bonventre and L. A. Pereira in [15]. In
particular, the indexing system extracts the precise information about the family of
subgroups of G× Σn an N∞ operad encodes, which pinpoints the work of figuring
out the structures of norm maps.

Definition 2.6. A symmetric monoidal coefficient system (SMCS) is a contravari-
ant functor C from the orbit category of G to the category of symmetric monoidal
categories with morphisms the strong symmetric monoidal functors.

Definition 2.7. Let Set be the SMCS of finite sets, whose value at H ⊂ G is
Set(G/H) := SetH , the category of finite H-sets and H-maps. The symmetric
monoidal product is given by disjoint union of H-sets.

Definition 2.8. A full sub-SMCS F of Set is closed under self-induction if when-
ever H/K ∈ F(G/H) and T ∈ F(G/K), then we have H ×K T ∈ F(G/H).

Remark 2.9. Here “sub” means the value at each H ⊂ G is a subcategory of SetH .
Therefore, we have a natural poset structure on all sub-SMCS of Set ordered by
inclusions of subcategories at each orbit.

Definition 2.10. An indexing system is a sub-SMCS of Set that

(a) contains all trivial H-sets for all H ⊂ G
(b) is closed under passage to sub-objects (also called truncation subcategory)
(c) is closed under self-induction
(d) is closed under Cartesian product
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We now describe the functor C assigning an indexing system to a given N∞
operad. First notice that for any H-set T with |T | = n and a chosen ordering of its
elements, the H-set structure can be rewritten as a homomorphism H → Σn. Let
ΓT denote the graph of this map.

Definition 2.11. Given any N∞ operad O, an H-set T is admissible if ΓT ∈ Fn(O)
where O(n) is the universal space for the family Fn(O) as in Definition 2.3.

Remark 2.12. This is independent of the choice of ordering of T .

Theorem 2.13. Let C(O) denote the full sub-SMCS of Set whose value at H is the
full subcategory of SetH spanned by only the admissible H-sets. Then C(O) defines
an indexing system.

The detailed proof checking those four properties can be found in [2, §4]. It is
immediate to see it contains all trivial sets and is a truncation subcategory. The
other two are shown via careful analysis of operad structures and symmetric group
actions.

Theorem 2.14. Suppose there is a map of N∞ operads O → O′. Then C(O) ⊂
C(O′). If in addition the map is a weak equivalence, then C(O) = C(O′)

Proof. For any admissible set T of O with |T | = n, we have O(n)ΓT ' ∗ 6' ∅. Since
the map O(n)→ O′(n) is G×Σn-equivariant, we have in particular that O′(n)ΓT 6'
∅ which concludes the first statement. Now the weak equivalence between operads
gives an equivalenceO(n) ' O′(n), and thus they have the same admissible sets. �

Corollary 2.15. We have a well-defined functor

C : Ho(N∞−Op)→ I

Via the indexing system, we can also make precise what we mean by an N∞
operad interpolates between “naive” E∞ operads and “genuine” E∞ operads.

Proposition 2.16. The indexing system of the “naive E∞ G-operad” C(Etr) is the
initial object of I, and the indexing system of the “genuine E∞ G-operad” C(EG)
is the terminal object of I.

Proof. Since I is ordered via inclusion, by Corollary 2.15, it is equivalent to show
that Etr has the fewest admissible sets among all N∞ operads, and EG has the most.
By definition, the admissible sets for E are only the sets of the form H × {1} ⊂
G× Σn, while the admissible sets for EG are all possible subsets Γ ⊂ G× Σn with
Γ ∩ ({1} × Σn = {1}). The claim then follows. �

3. Norm maps of N∞ algebras

We now turn to the question about the extra structural maps an N∞ operad
induces on its algebras. For our purpose, we will consider the algebras on the
category of orthogonal G-spectra throughout the rest of this paper.

Proposition 2.16 provides an interpretation of N∞ operads interpolating between
the “naive” E∞ G-operad and the “genuine” E∞ G-operad. A similar interpolation
also appears in the structure of N∞ algebras in the following sense: there is a notion
of “norm” maps induced on N∞ algebras [2, §6] (not the same as but definitely
related to the norm maps of a Tambara functor). A “genuine” E∞ G-algebra
possesses all possible norms, while a “naive” E∞ G-algebra has no nontrivial norms.
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In general, an N∞ algebra may not have a full set of norms a “genuine” E∞ G-
algebra has, but should bear a sub-collection of norms that distinguishes it from a
“naive” E∞ G-algebra. We now discuss precisely how these norm maps naturally
arise and what this sub-collection of norms should be. Our central questions are for
which H-set T , and how, we can construct a norm map NTE → E on a given N∞
algebra E. Later our construction will be transformed appropriately to become a
multiplicative norm in a Tambara functor.

As previously mentioned, we here consider the N∞-algebra over orthogonal G-
spectra. Note in this case, the “naive” E∞ G-algebra structure at least guarantees
that there is a homotopy coherent multiplication on these equivariant spectra.

Definition 3.1. Given any H-set T with |T | = n, H a subgroup of G, and E an
orthogonal G-spectrum, we define the G-spectrum

NTE := (G× Σn/ΓT+) ∧Σn E
∧n

Remark 3.2. We have a potential conflict of notation here – NTE could also refer to
the Hill-Hopkins-Ravenel norm [1, 4.6.1]. The following fact resolves the ambiguity
[2, 6.2]: for T =

∐
iH/Ki,

(G× Σn/ΓT+) ∧Σn E
∧n ∼= G+ ∧H

∧
i

NH
Kires

∗
KiE

where NH
Ki

is the Hill-Hopkins-Ravenel norm. We will not discuss it in detail since
it is not our primary focus.

A norm on a G-spectrum E is a map

NTE → E

For general T it does not necessarily exist. The exact solution is that for admissible
H-sets we can construct such norm maps.

Construction 3.3. Consider T , an admissible H-set for an N∞ operad O with
|T | = n. This means by definition

O(n)ΓT ' ∗

where ΓT is the graph of the H-set structure of T . We also have a canonical
identification since an orbit space co-represents the fixed point space [1, 1.1.3]

O(n)ΓT ∼= FG×Σn((G× Σn)/ΓT ,O(n))

Therefore we have a contractible space of G× Σn maps

(G× Σn)/ΓT → O(n)

For E an orthogonal G-spectrum, smashing over Σn with E∧n gives a contractible
space of G-maps

(G× Σn/ΓT+) ∧Σn E
∧n = NTE → O(n)+ ∧Σn E

∧n

Then via the operation of O on E, O(n)+ ∧Σn E
∧n → E, we have a contractible

space of maps

NTE → E
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In general, for admissible G-sets T, S and a G-map T → S, then for any O
algebra E, we can construct a contractible space of maps NTE → NSE. The proof
proceeds by decomposing the G-map into orbits and then reducing to the case of
T = G/H, S = G/K, H ⊂ K. Since we have done for the case of K/H → K/K
(Construction 3.3 replacing G by K), we apply NG/K to get NG/HE → NG/KE
(detailed proof in [2, 6.8]).

Here is a punchline for the O-algebras over orthogonal G spectra.

Theorem 3.4. An O-algebra E has the same data as a G-spectrum with maps

(G× Σn/ΓT+) ∧Σn E
∧n = NTE → E

for all admissible H-sets T such that the following condition holds: for all admissible
G-sets S and T , we have homotopy commutative diagrams

NS
∐
TE ' NSE ×NTE E × E

E

NS×TE ' NSNTE NSE

E

and if in addition there is some K ⊂ G, such that i∗K(S) = i∗K(T ), then we have a
homotopy commutative diagram

i∗KN
SE ' N i∗KSi∗KE i∗KN

TE ' N i∗KT i∗KE

i∗KE

where i∗K : SetG → SetK denotes the restriction functor.

The idea is that given the above norm maps on X, we can define an O-algebra
on X as follows: if we decompose the G-spaces O(n) into orbits, then the structure
map on each orbit is induced from NTE → E. The first two diagrams ensure the
compatibility with the multiplication on E and other norms. The third one shows
that the structure is well-behaved upon passage to fixed points [2, 6.11].

4. Norm maps of π0 of N∞ ring spectra

In this section, we get into the central part of the discussions of this paper – the
structure of incomplete Tambara functors.

For any equivariant orthogonal spectrum, by applying π0 we get a natural
Mackey functor structure. Conversely, any Mackey functor M has a correspond-
ing equivariant Eilenberg-MacLane spectrum HM that realizes it [1, 3.3]. A Green
functor is a commutative monoid in Mackey functors with respect to the symmetric
monoidal box product [1, 4.2]. Correspondingly, any E∞ G-ring spectrum R has
the underlying structure of a Green functor, where the commutative multiplication
is induced by the multiplication of R. There is a special class of Green functors,
called the Tambara functors, which have the “richest” structures. (We will review
its definition in section 4.1.) The reason we single out this class is that Tambara
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functors can be realized by a “genuine” E∞ G-ring spectrum, and vice versa [4,
5.12].

The extra structures Tambara functors, but not Green functors, have are the
“norm” maps, a multiplicative version of “transfers” in contrast to the additive
version of transfer maps in the usual Mackey functor structure. By analogy, the
π0 of an N∞ ring spectrum should similarly “interpolate” between a Green functor
that has no such multiplicative transfers and a Tambara functor that has a full
set of multiplicative transfers. In other words, the π0 of an N∞ ring spectrum
only has a sub-collection of norm maps, determined by the admissible sets. This is
summarized in the following theorem:

Theorem 4.1. If O is an N∞ operad and R is an O algebra of orthogonal G-
spectra, then π0(R) is a commutative Green functor. If moreover the action O
interchange with itself (Appendix A.5), then for any admissible H-set H/K we
have a norm map

NH
K : π0(R)(G/K)→ π0(R)(G/H)

which is a homomorphism of commutative multiplicative monoids and NH
K satisfies

the multiplicative version of double coset formula.

Remark 4.2. The proof of the above theorem is provided in [2, 7.12]. In particular,
the norm maps

NH
K : π0(R)(G/K)→ π0(R)(G/H)

are induced by the canonical projection πHK : H/K → H/H: for admissible H-set
H/K, we have induced map

NH
KR→ R

Since NH
KR

∼= G+ ∧H NH
K res

∗
KR by Remark 3.2, applying π0 gives the desired

homomorphisms of commutative multiplicative monoids. This points out the rela-
tionship between the norm maps of an N∞ G-spectrum defined in Section 3 and
the norm maps of its corresponding π0 structure.

Later it will turn out that the information above essentially characterized an
incomplete Tambara functor – a Green functor having a partial collection of norm
maps. Later in Section 4.2, we will have an alternative description of the collection
of norm maps in Theorem 4.1.

4.1. Tambara functors. We give a formal review of Tambara functors first. Let
us begin with several relevant definitions.

Definition 4.3. (a) A locally Cartesian closed category is a category C whose
slice categories C /X are all Cartesian closed. In particular, this means for
any morphism f : X → Y , the pullback functor f∗ : C /Y → C /X has both
adjoints

Σf a f∗ a Πf

the left adjoint is called the dependent sum and the right adjoint the depen-
dent product. In the case of SetG, the dependent sum is simply “disjoint
union of the fibers over y”, while the dependent product is the “product of
the fibers over y” [3, §2].

(b) Specifically, in the case of SetG, for f : X → Y , if q : A → X is an object
of SetG/X, then its dependent product is q′ : ΠfA→ Y where

ΠfA := {(y, s)|y ∈ Y, s : f−1(y)→ A such that q ◦ s = id}



MULTIPLICATIVE STRUCTURES INDUCED BY N∞ OPERADS 9

(c) If C is a locally Cartesian closed category, define PC to be the category
of “polynomials” in C with objects the objects of C and morphisms the
isomorphism classes of polynomials (or “bispans”)

X ← S → T → Y

where the isomorphisms are given by commutative diagrams

S T

X S′ T ′ Y

∼= ∼=

The compositions will be discussed in detail later.
(d) An exponential diagram in a locally Cartesian closed category C is an dia-

gram isomorphic to the one of the form

A X ×Y ΠfA

X ΠfA

Y

q

ev

π2

f
q′

Later a Tambara functor will be a contravariant functor out of PC . Of the
bispan,

X ← S → T → Y

the restriction “comes” from X ← S, the norm “comes” from S → T , and the trans-
fer “comes” from T → Y . We will make this precise later in defining compositions.
In particular, recall we want transfers to encode additivity and norms to encode
multiplicativity. The compatibility of restrictions and transfers, as in Mackey func-
tors, is via the additive version of the double coset formula, and the compatibility of
restrictions and norms is via the multiplicative version of the double coset formula
(Proposition 4.8(b)).

We need another compatibility condition (Proposition 4.8(c)) between transfers
and norms, and this motivates the definition of the exponential diagram as above.
Though there is no clue to see this at first sight, what an exponential diagram
actually packs together is a “distributivity” law. We intentionally write up the
diagram in such a way that the horizontal maps will later turn out to be restrictions,
vertical maps to be norms, and tilted maps to be transfers.

We exhibit an example, suggested by Foling Zou, explaining why this exponen-
tial diagram looks like a “distributivity” law before going into the definition of
composition of “bispans”.

Example 4.4. Consider X = {x1, x2}, Y = {y}, A = X
∐
{∗}. q : A → X is the

identity on X and maps ∗ to x1. f : X → Y is the only choice. By definition, we
see that

ΠfA = {(d, s)|s : {x1, x2} → {x1, x2, ∗} such that q ◦ s = id} ∼= {q̄, ∗̄} ∼= Y
∐
{∗}

where q̄, ∗̄ : {x1, x2} → {x1, x2, ∗} is such that q̄ sends x1 7→ x1 and x2 7→ x2, ∗̄
sends x1 7→ ∗ and x2 7→ x2. Then we compute

X ×Y ΠfA ∼= {(x1, q̄), (x2, q̄), (x1, ∗̄), (x2, ∗̄)}
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where the map ev : X ×Y ΠfA→ A is

ev(x1, q̄) = x1, ev(x2, q̄) = x2, ev(x1, ∗̄) = ∗, ev(x1, ∗̄) = x2

The vertical map π2 : X ×Y ΠfA→ ΠfA is the obvious map.

{x1, x2, ∗} {(x1, q̄), (x2, q̄), (x1, ∗̄), (x2, ∗̄)}

{x1, x2} {q̄, ∗̄}

{y}

q

ev

π2

f
q′

We now interpret the above diagram as follows (unrigorous but illuminating): the
tilted maps q, q′ will be denoted as Tr and thought as additive maps. The vertical
maps π2, f will be denoted as N and thought as multiplicative maps. We have

N−1(d) = {x1, x2}, or d ∼ x1 · x2, T r−1(d) = {q̄, ∗̄}, or d ∼ q̄ + ∗̄

Tr−1(x1) = {x1, ∗}, or x1 ∼ x1 + ∗, T r−1(x2) = {x2}

N−1(q̄) = {(x1, q̄), (x2, q̄)}, or q̄ ∼ x1 · x2 upon restriction (ev)

N−1(∗̄) = {(x1, ∗̄), (x2, ∗̄)}, or ∗̄ ∼ ∗ · x2 upon restriction (ev)

The final relation we get is

(x1 + ∗) · x2 ∼ d ∼ x1 · x2 + ∗ · x2

which is the distributivity law we usually see.

Definition 4.5 (Composition in PC ). We follow Blumberg’s notes for a concrete
exhibition: Given any two classes of bispans [X ← A → B → Y ] and [Y ← C →
D → Z], we first form pullbacks B′ = B ×Y C

X A

B B′ = B ×Y C

Y C

D

Z

f
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Then we can form an exponential diagram on the right

X A

B B′ C ×D ΠfB
′

Y C ΠfB
′

D

Z

f

Finally we take the pullback

X A A′ = A×B (C ×D ΠfB
′))

B B′ = B ×Y C C ×D ΠfB
′

Y C ΠfB
′

D

Z

f

and the composition is defined as

[Y ← C → D → Z] ◦ [X ← A→ B → Y ] = [X ← A′ → ΠfB
′ → Z]

It is routine to check it is well-defined and satisfies the associativity and identity
law of compositions. Hopefully, the reader are not overwhelmed by these giant
diagrams. Remember that the horizontal maps represent restrictions, vertical maps
represent norms, and tilted maps represent transfers. It may be helpful to see the
proof of Lemma 4.7 below to get a concrete sense.

Definition 4.5 is good for giving a feeling of what this category PC should be like.
For our purpose, there is a more concise way of describing the compositions and
figuring out the relationship with restrictions, transfers, and norms, as promised.

Definition 4.6 (Composition in PC , alternative). There are three kinds of gen-
erating morphisms, called basic polynomials: if f : S → T is a map in C , let

(a) Rf := [T
f← S

1→ S
1→ S] ∈PC (T, S),

(b) Nf := [S
1← S

f→ T
1→ T ] ∈PC (S, T ),

(c) Tf := [S
1← S

1→ S
f→ T ] ∈PC (S, T ).

Then according to Lemma 4.7 below, every “polynomial” is a composite of these
generating morphisms; Proposition 4.8 tells the rules of composing such generating
morphisms.
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Lemma 4.7. [X
f← S

g→ T
h→ Y ] = Th ◦Ng ◦Rf

Proof. We first show that [X
f← S

g→ T
id→ T ] = Ng ◦ Rf . Consider the below

diagram, we claim that ΠgS ∼= T . In particular, ΠgS is the space of functions
s : g−1(t) → S such that id ◦ s = id. This implies s = id, and it follows that
ΠgS ∼= T , and the claim follows.

X S S

S S S ×T ΠgS ∼= S

S S ΠgS ∼= T

T

T

f

g

Then we show that Th ◦ [X
f← S

g→ T
id→ T ] = [X

f← S
g→ T

h→ Y ]. Consider the
following diagram:

X S S

T T T ×T ΠidT ∼= T

T T ΠidT ∼= T

T

Y

f

g g

g

h

The result follows since ΠidT ∼= T . �

Proposition 4.8. We have further properties of T,N,R that are routine checks:

(a) (Composition of res/norm/tr)

Ng ◦Ng′ = Ng◦g′ , Th ◦ Th′ = Th◦h′ , Rf ◦Rf ′ = Rf ′◦f

(b) (Double coset formula) If

X ′ X

Y ′ Y

g′

f ′ f

g

is a pullback diagram, then

Rf ◦Ng = Ng′ ◦Rf ′ , Rf ◦ Tg = Tg′ ◦Rf ′
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(c) (Distributivity of exponential diagram) If

A X ×Y ΠfA

X ΠfA

Y

h

f ′

g′

g

h′

is an exponential diagram, then we have

Ng ◦ Th = Th′ ◦Ng′ ◦Rf ′

With the above set up, we can finally get into the definition of Tambara functors.

Definition 4.9. Let C = SetG, the category of finite G-sets. We take the

Grothendieck completion of PC (S, T ) [1, 4.3.19] to obtain a new category P̃C .
A Tambara functor is a functor

P̃C
op
→ Ab

4.2. Incomplete Tambara functors. We have the following definitions as set-up.

Definition 4.10. (a) A subcategory D of a locally Cartesian closed category
C is wide if it contains all of the objects.

(b) If C is a category that admits pullbacks, then a subcategory D is pullback
stable category if whenever we have a pullback

W Y

Z X

f g

with g ∈ D , then f ∈ D .
(c) If D is a wide subcategory, the polynomial in C with exponents in D , de-

noted PC
D , is the wide subcategory of PC with morphisms the isomorphism

classes of bispans

X ← S
g→ T → Y

where g ∈ D . The partial choices of g allude to the “incompleteness”.

Lemma 4.11. If D is a wide, pullback stable subcategory, then PC
D is a subcategory

of PC .

Proof. By decomposing morphisms into generating morphisms Rf , Ng, Th, it suf-
fices to show that the composite of any morphism is of the form

Th ◦Ng ◦Rf
with g ∈ D . Notice that Rf , Th are in PC

D for any morphisms f, h in C . Therefore,
we only need to show any composites with Ng for g ∈ D are again in PC

D .
Since D is a subcategory, Ng ◦Ng′ = Ng◦g′ is again in PC

D provided g, g′ ∈ D .
Ng ◦ Th = Th′ ◦Ng′ ◦Rf ′ where by pullback stability, g′ ∈ D if g ∈ D .
Rf ◦Ng = Ng′ ◦Rf ′ where g′ is the pullback of g along f , and is therefore in D

provided g ∈ D . This concludes the proof. �

We have an immediate corollary:
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Corollary 4.12. If D1 ⊂ D2 are wide, pullback stable subcategories of C , then we
have an inclusion of subcategories PC

D1
⊂PC

D2
.

The following lemma will be used later in Proposition 4.19.

Lemma 4.13 ([3], 3.1). If D is a pullback stable, symmetric monoidal subcategory
of SetG that contains ∅ → ∗, then D contains all monomorphims.

Proof. Since D is pullback stable and containing the terminal object ∗, for any
object S, we have a pullback diagram

S ∗

S ∗
id id

so that by pullback stability, S is in D , i.e. D is wide. Moreover, any monomor-
phism S → T can be written as ∅

∐
S → (T \ S)

∐
S. Since D is also symmetric

monoidal, it is then enough to show ∅ → S is in D for all S. Via pullback stability
of the following diagram,

∅ ∅

S ∗
we conclude the result. �

Our intuition should tell us that PC
D exactly picks out the norm maps that

originate in D . If given any N∞ operad O, or equivalently an indexing system (we
will use these two terms interchangeably), we can associate O to a wide, pullback
stable subcategory D of SetG, then a functor

PG
D
op → Ab

should have partial norm maps determined by O. We will head towards this goal.

Definition 4.14 ([3], 3.8). For an indexing system O, let SetGO denote the wide
subcategory of SetG where f : S → T is in SetGO if and only if for all s ∈ S,

stabG(f(s))/stabG(s) ∈ O(stabG(f(s)))

where stabG(s) is the stabilizer subgroup of s in G. Equivalently, f : S → T is in
SetGO if and only if for all s ∈ S

stabG(f(s)) · s ∈ O(stabG(f(s)))

We pack all the technical details into the following theorem:

Proposition 4.15 ([3], 3.11, 3.13). SetGO is a wide, pullback stable and finite co-
product complete subcategory of SetG, and thus the polynomials with exponents in
SetGO is a subcategory of PG.

Conversely, any wide, pullback stable and finite coproduct complete subcategory
D of SetG would determine an indexing system OD by

OD(G/H) := res∗H(D/(G/H))

the slice category over G/H in D then restricted to H-actions. Blumberg and Hill
check in detail that it is indeed a sub-SMCS of Set satisfying the four defining prop-
erties of indexing systems. We will not do the proof here. Instead, we summarize
several big results into the following theorem:
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Theorem 4.16 ([3], 3.26, 3.27). The above gives inverse order preserving functors
between the poset of indexing systems and the collection of wide, pullback stable,
finite coproduct complete, symmetric monoidal subcategories of SetG, namely

D = SetGOD
, and O = OSetGO

Proof. (a) To check D = SetGOD
, we need the fact that for D (and similarly

SetGOD
) in this case, it is the smallest subcategory having all finite coprod-

ucts containing OrbD , the full subcategory of D restricting to objects on
G/H that are contained in D ([2], 3.6). Since K/H ∈ OD(G/K) if and
only if G/H → G/K is in OrbD , and by definition, K/H ∈ OD(G/K) if
and only if G/H → G/K is in OrbO, we have OrbD = OrbO, and the result
follows.

(b) For the other equation, we note a fact that any object T → G/H in the slice
category is isomorphic to G ×H T ′ → G/H where T ′ → ∗ is the canonical
map. Using another fact that f : A→ B is in SetHres∗HO if and only if G×H f
is in SetGO ([3], 3.12), we have T → G/H is in SetGO if and only if T ′ → ∗ is
in SetHres∗HO. On the other hand, by definition T ′ → ∗ is in SetHres∗HO if and

only if T ′ ∈ res∗HO(G/H) = O(G/H). This gives the result.
�

We are finally ready to define the incomplete Tambara functors.

Definition 4.17 (Incomplete Tambara functors). Let D be a wide pullback stable,
symmetric monoidal subcategory of SetG. We take the Grothendieck completion

of PG
D (S, T ) to obtain a new category P̃G

D . A D-Tambara functor is an additive
product preserving functor

P̃G
D

op

→ Ab

Remark 4.18. In particular, if D = SetG, then the D-Tambara functor is just the
usual Tambara functor in Definition 4.9. Moreover, from Theorem 4.16 we see that
SetGEG = SetG, since the admissible sets of EG are all possible subgroups of G×Σn.
This means an EG-Tambara functor is in fact a Tambara functor.

Proposition 4.19. We have the following properties of particular D-Tambara func-
tors

(a) Any D-Tambara functor contains an underlying Mackey functor structure.
(b) A SetGmono-Tambara functor contains a Mackey functor together with a unit

map A→M , where A is the Burnside Mackey functor.
(c) A D-Tambara functor R contains a Green functor structure if ∅ → ∗ and
∗
∐
∗ → ∗ are in D . Thus for any indexing system, the O-Tambara functor

has a Green functor structure.
(d) A D-Tambara functor R has a norm map R(G/H) → R(G/K) if G/H →

G/K is in D satisfying the Tambara reciprocity relations 1. If G/K
∐
G/K →

G/K is in D as well, then this norm is a map of multiplicative monoids.
If ∅ → G/K is in D , then it is unital. In particular for any O-Tambara
functor, it has norm maps of multiplicative monoids

NK
H : R(G/H)→ R(G/K)

1See [13] and ([2] 3.10, 3.11)
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for all morphisms G/H → G/K ∈ OrbO satisfying the Tambara reciprocity
relations.

Proof. (a) By Lemma 4.12, for any D , SetGIso ⊂ SetGD . For any polynomials
with exponents in SetGIso, it has the form

X ← S
∼=→ S → Y

which can be identified with the “span”

X ← S → Y

and thus the incomplete Tambara functor SetGIso → Ab is the same infor-
mation as a Mackey functor.

(b) The pointed map comes from the distinguished monomorphism ∅ → T for
all T , which exists by Lemma 4.13.

(c) The map ∅ → ∗ gives the unit map and ∗
∐
∗ → ∗ encodes the multipli-

cation. Since for any indexing system O, SetGOtr ⊂ SetGO, and the trivial
indexing systems by definition contains the above two maps.

(d) Since any map in SetGO can be written as iterated fold maps and disjoint
unions of maps of the form G/H → G/K, the results follows.

�

Remark 4.20. There is also a notion of non-unital Tambara functor, basically a
SetGepi-Tambara functor. It has a non unital commutative Green functor structure
together with norm maps for all G/H → G/K satisfying the exponential formula.

Proposition 4.19 (d) is a concrete interpretation of the sub-collection of norms
we mentioned at the beginning of section 4. Let us also restate Theorem 4.1 here:

Theorem 4.21 ([2], 4.14). If R is an algebra in orthogonal G spectra over an N∞
operad O that interchanges with itself, then π0(R) is an O-Tambara functor.

Proof. Since SetGO is a wide, pullback stable, coproduct complete subcategory of
SetG, any O- Tambara functor is a Green functor plus norm maps. Then Propo-
sition 4.19 (d) shows that if G/H → G/K ∈ SetGO, then we have a norm map
satisfying the Tambara reciprocity relations. This implies an O- Tambara is essen-
tially a commutative Green functor M together with norm maps of multiplicative
monoids

NK
H : M(G/H)→M(G/K)

for each G/H → G/K ∈ SetGO. Then Theorem 4.1 is saying that π0(R) is just an
O- Tambara functor since it satisfies these characterizations. �

In particular, since an EG-Tambara functor is in fact a Tambara functor, Theorem
4.21 further implies π0 of a “genuine” G-E∞ ring spectrum is indeed a Tambara
functor.

5. Categorical reinterpretations

Our results in Section 4 can be packed into a more categorical description in terms
of the O-commutative monoids. We follow mostly [4] and reveal the relationships
in Theorem 5.6.
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We will focus on the symmetric monoidal structures. There is a symmetric
monoidal product on the category of symmetric monoidal coefficient systems (SMCS,
Definition 2.6) given by

C1 × C2(G/H) := C1(G/H)× C2(G/H)

The SMCS Set has multiplication map with respect to this product

Set× Set→ Set

induced by the Cartesian product on Set itself.
Let SetIso denotes the category of finite sets with morphisms only isomor-

phisms (bijections). We have a SMCS generalization, SetIso, defined by letting

SetIso(G/H) be the category of finite H-sets with morphisms H-equivariant iso-
morphisms.

Definition 5.1 (([4],3.3), G-symmetric monoidal structure). (a) Classically, a
symmetric monoidal structure on a category C is equivalent to a bilinear
map

−�− : SetIso × C → C

(T,M) 7→ T�M :=
⊗
T

M

(b) For a SMCS C, define a G-symmetric monoidal structure on C to be a
bilinear map

−�− : SetIso × C → C

such that
(i) for each H ⊂ G, when restricted to SetIso ⊂ Set(G/H) of trivial objects,
then this is just the map

(T,M) 7→
⊗
T

M

(ii) the following diagram commutes up to natural isomorphism

SetIso × SetIso × C SetIso × C

SetIso × C C

(−×−)×1

1×�

�

�

Remark 5.2. A G-symmetric monoidal structure is inequivalent to a symmetric
monoidal G-category.

Definition 5.3 (G-commutative monoid). (a) [4, 3.7] Classically, A commuta-
tive monoid M in a category C is equivalent to an extension:

SetIso C

Set

−�M
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(b) For SMCS, a G-commutative monoid is an object M ∈ C(G/G) together
with an extension:

SetIso C

Set

−�M

N(−)(M)

and a map between G-commutative monoids is a morphism f : M →M ′ ∈
C(G/G) such that for all T ∈ Set(G/H), we have

T�M M

T�M ′ M ′

NT

T�f f

NT

(c) Equivalently, a G-commutative monoid is a commutative monoid M in
C(G/G) together with commutative monoid maps:

NG
H : G/H�M → ∗�M ∼= M

By Proposition 2.19, the indexing system of the “naive” E∞ G-operad C(Etr) is
the initial object of all indexing systems. We write C(Etr) = Etr as indexing sys-
tems here. We can generalize the above characterization from Set to any indexing
systems O as follows.

Definition 5.4 (O-symmetric monoidal structure). An O-symmetric monoidal
structure on a SMCS C is an extension of the canonical map

Etr,Iso × C → C

to a bilinear map

−�− : OIso × C → C

Definition 5.5 (O-commutative monoid). If O and O′ are indexing systems with
O ⊂ O′, and if C is an O′-symmetric monoidal category, then an O-commutative
monoid is an object M ∈ C(G/G) with an extension

OIso O′Iso C

O

−�M

N(−)(M)

In other words, we have only norm maps for objects of O.

By unpacking Definition 5.3(c) and Definition 5.5, we have the following specific
examples of O-commutative monoids:

Theorem 5.6. ([4],§5)
(a) The category of G-Tambara functors is equivalent to the category of G-

commutative monoids in Mackey functors.
(b) The category of O-Tambara functors is equivalent to the category of O-

commutative monoids in Mackey functors.
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Appendix A. Operad pairs and pairing of operads

We discuss the relationship between operad pairs and pairing of operads, and
exhibit one of its applications, which is used in the proof of Theorem 4.1.

Definition A.1 (([11], 10.1), Pairings of operads). Let O,O′,O′′ be operads in a
symmetric monoidal category (C ,⊗). A pairing of operads

� : (O,O′)→ O′′

consists of maps

� : O(j)⊗O′(k)→ O′′(jk)

with the following properties: Let c ∈ O(j) and d ∈ O′(k)

(a) If µ ∈ Σj and ν ∈ Σk, then

cµ� dν = (c� d)(µ⊗ ν)

where the tensor product ⊗ : (Σj ,Σk)→ Σjk is the standard natural pair-
ings [11, §10].

(b) For j = k = 1, id� id = id.
(c) If cq ∈ O(hq) for 1 ≤ q ≤ j and dr ∈ O′(ir) of 1 ≤ r ≤ k, then

γ(c� d;×(q,r)cq � dr) · δ = γ(c;×qcq) � γ(d;×rdr)

where δ is the isomorphism of distributivity

δ :
∐
(q,r)

(hq × ir)→ (
∐
q

hq)× (
∐
r

ir)

Definition A.2 (([12], 1.8), Operad pairs). An action of an operad E on O consists
of maps

λ : E(k)×O(j1)× · · ·O(jk)→ O(ji · · · jk)

for k ≥ 1, jr ≥ 0 and λ(∗) = id ∈ O(1) for k = 0, where ∗ ∈ E(0) is the chosen base
point and id is the distinguished element of O(1). The maps λ satisfy for

e ∈ E(k), er ∈ E(jr), 1 ≤ r ≤ k

c ∈ O(j), cr ∈ O(jr), 1 ≤ r ≤ k

cr,q ∈ O(ir,q) 1 ≤ q ≤ jr, 1 ≤ r ≤ k
(i)

λ(γ(g;×kr=1gr);×kr=1 ×
jr
q=1 cr,q) = λ(g;×kr=1λ(gr;×jrq=1cr,q)) (I)

γ(λ(g;×kr=1cr);×Qλ(g;×kr=1cr,qr )) · δ = λ(g;×kr=1γ(cr;×jrq=1cr,q)) (II)

where Q runs through the lexicographically ordered set of sequneces (q1, ..., qk),
1 ≤ qr ≤ jr, and δ is the isomorphism of distributivity as in Definition 3.13,
(ii)

λ(id; c) = c (III)

λ(g; idk) = id (IV)

(iii)

λ(gσ;×kr=1cr) = λ(g;×kr=1cσ−1(r))σ(j1, ..., jk) (V)

λ(g;×kr=1crτr) = λ(g;×kr=1cr)(τ1 ⊗ · · · ⊗ τk) (VI)
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May observed that if we have an operad pair (O, E) and we fix any element
x ∈ E(2), this induces a map via the operad pair action

O(j)×O(k)→ O(jk)

We want to figure out whether it indeed gives a pairing of operad.

Proposition A.3. Given an operad pair (O, E), fix any x ∈ E(2), it induces a
self-pairing of operad

� := λ(x;−,−) : (O,O)→ O

Proof. We check the axioms in Definition 3.13 one by one:

(a) If µ ∈ Σj and ν ∈ Σk, then

cµ� dν := λ(x; cµ, dν)

= λ(x; c, d)(µ⊗ ν) (by VI)

= (c� d)(µ⊗ ν)

(b)

id� id = λ(x; id, id)

= id (by IV)

(c) If cq ∈ C(hq) for 1 ≤ q ≤ j and dr ∈ D(ir) of 1 ≤ r ≤ k, then

γ(c� d;×(q,r)cq � dr) · δ = γ(λ(x; c, d);×(q,r)λ(x; cq, dr)) · δ
= λ(x; γ(c;×qcq), γ(d;×rdr)) (by II)

= γ(c;×qcq) � γ(d;×rdr)

�

Remark A.4. The above proof uses only the three of six axioms of the operad pair,
namely (II), (IV), (VI). This makes sense since we are fixing an element in E and
considering the induced action on O. Axioms (I), (III), (V) are related to operations
in E , which play no role here.

As an application, we show that any opeard that can be made into an additive
operad in an opeard pair interchanges with itself.

Definition A.5 (Interchange of operads). Given an object X which is both an
O-algebra and an O′-algebra, the two actions exchange if for each o ∈ O(n), the

map X×n
o·→ X is a map of O′-algebras and vice versa. Diagrammatically,

(Xn)m (Xm)n Xn

Xm X

∼=

αm

βn

α

β

for all α ∈ O(n) and β ∈ O′(m).

Lemma A.6 ([10] §1). O and O′ actions interchange if and only if X is an O⊗O′-
algebra.

We have the following fact relating pairings of operads and tensor product of
operads as follows [11, 6.1]:
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Proposition A.7. The tensor product is the universal recipient for pairings, that
is, there is an extension

(O,O′) O′′

O ⊗O′

Combining A.3 and A.7, any additive operad O in an operad pair has a self-
pairing, and therefore there is a universal map O ⊗ O → O. This implies any
O-algebra is automatically an O ⊗ O-algebra, showing that O interchanges with
itself.

Once an N∞ algebra E has its O-action interchange with itself, then for any
surjective maps T → S of admissible H-sets, the structure maps

NT res∗HE → NSres∗HE

are maps of NSres∗HO-algebras [2, 6.28]. This is key to the proof of Theorem 4.1.
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