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Abstract. In this paper we present the Atiyah-Segal Completion theorem

and its proof. We will begin by introducing equivariant K-theory starting
from the definition of a vector bundle. Then we will state some important

theorems (Bott periodicity, Thom isomorphism) that are needed to understand

the statement of the Atiyah-Segal Completion theorem as well as its proof.
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1. Introduction

In this section, we introduce some preliminaries to K-theory.

1.1. Vector Bundle. A vector bundle is intuitively a continuous family of vector
spaces parametrized by another topological space pointwise. We associate a vector
space Vx to every point x of the base space X such that several axioms are satisfied.
We will introduce the idea of complex vector bundles, and the definition of real
vector bundles is completely analogous. Unless otherwise specified, all bundles are
assumed to be complex.

Definition 1.1. A complex vector bundle E is a topological space equipped with
a continuous map p : E → X called the projection map, that satisfies the following:

(1) Each fiber Ex = p−1(x), x ∈ X has a finite dimensional complex vector
space structure.
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(2) (Local triviality) There is an open covering {Uα} of X such that there exists
a homeomorphism hα : p−1(Uα) → Uα × Cn taking p−1(x) → x × Cn by
a vector space isomorphism for each x ∈ X. This hα is called the local
trivialization and p−1(x) is called the fiber. If n is a constant on all such
maps, we say that the vector bundle has dimension n.

In other words, we can view E as a space equipped with an addition map E×XE →
E and an action of C on E, that satisfies the conditions listed above.

We give a few examples of vector bundles.

Example 1.2. The trivial bundle E = X×Cn with p the projection map onto the
first factor.

Example 1.3. The tangent bundle over a manifold has the tangent space of a point
on the manifold as its fibers. This is a real vector bundle.

Example 1.4. The canonical line bundle p : E → RPn has its total space the
subspace of RPn × Rn+1 consisting of pairs (l, v) with v ∈ l and projection map
is the projection to the first factor. Trivialization can be defined by orthogonal
projection. Note that this is actually a real vector bundle.

Example 1.5. Let E be a complex vector bundle over X with fibers Cn. Then
there is an associated projective bundle p : P (E) → X with fibers CPn−1, where
P (E) is the space of lines in E. Note that over P (E) there is a canonical line bundle
H → P (E) consisting of the vectors in the lines of P (E). This is in some sense a
generalization of the complex version of Example 1.4.

Definition 1.6. A section of a vector bundle p : E → X is a map s : X → E such
that ps(x) = x for all x ∈ X.

An isomorphism between vector bundles p1 : E1 → X and p2 : E2 → X over the
same base space X is a homeomorphism between the two total spaces respecting
the structure map to X that restricts to an linear isomorphism on each fiber.
We then denote the isomorphism classes of vector bundles over the base space
X as V ectC(X), and let V ectnC(X) be the subset of isomorphism classes of n-
dimensional vector bundles over X. Note that under the direct sum operation which
is defined fiberwise, V ectC(X) is an abelian semi-group. We can then define the
tensor product operation fiberwise on this semi-group structure and make V ectC(X)
into a commutative semi-ring.

If given a continuous map f : Y → X and a vector bundle p : E → X, then we
can form a pullback vector bundle f∗E over X, shown in the following diagram:

f∗E = E ×X Y E

Y X

Remark 1.7. Vector bundles are homotopy invariant. In particular, if f0 and f1

are homotopic maps from Y to X, then the pullback bundles f∗0 (E) and f∗1 (E)
are isomorphic. Therefore, a homotopy equivalence f : Y → X of compact spaces
induces a bijection f∗ : V ectC(X)→ V ectC(Y ).

The notion of vector bundles can be generalized to the equivariant world.
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1.2. G-equivariant vector bundle.

Definition 1.8. Let G be a compact Lie group. A G-vector bundle E is a G-space
over another G-space X together with a G-map p : E → X (i.e. p(g.ζ) = g.p(ζ))
that satisfies the following:

(1) p : E → X has a vector bundle structure.
(2) for any g ∈ G and x ∈ X the group action g : Ex → Egx is a homomorphism

of vector spaces.

If G is a group of one element, then any vector bundle is a G-vector bundle.
On the other hand, if X is a space of one point, then G-vector bundles are simply

representations of G.
We give an example of a G-vector bundle.

Example 1.9. If E is any vector bundle on a space X, then the k-fold tensor
product E ⊗ E ⊗ · · · ⊗ E is naturally a Sk-vector bundle on X where Sk is the
symmetric group permuting the factors of the product and X is regarded as a
trivial Sk space. We can also do this over Xk where the vector bundle is the k-fold
external tensor product of E. This bundle is then a Sk-equivariant vector bundle
when we use the Sk action to permute the factors of Xk.

2. K-Theory

Roughly speaking, K-theory is a cohomology theory built from vector bundles on
topological spaces. In some regard, K-theory is largely about doing linear algebra
fiberwise over a base space; therefore it is often easier to do calculations in K-
theory than in normal generalized cohomology theory. Furthermore, it is a very
nice construction due to the fact many results of it can be easily generalized to
the equivariant world. In this section, we will define both the ordinary and the
equivariant K-theory.

Definition 2.1. Let X be a compact topological space. K(X) is the Grothendieck
group of V ectC(X), i.e. the group obtained by formally adding inverses to the
abelian monoid V ectC(X). Categorically, this is the initial abelian group that
the abelian monoid V ectC(X) maps to. Since V ectC(X) is a semi-ring by tensor
product, K(X) is a commutative ring.

We use [E] to denote the isomorphism class of vector bundles in K(X) repre-
sented by the vector bundle E. Note that by definition, every element in K(X) is
of the form [E]− [F ] where E,F are bundles over X.

Definition 2.2. The reduced K-theory of a pointed compact space X, denoted

K̃(X), is the kernel of the homomorphism α∗ : K(X) → K(∗) where α∗ is the
induced map of the inclusion from the base point ∗ into the space X. Note that

K(X) = K̃(X+) where X+ is the union of X with a disjoint base point. Let (X, ∗)
denote a pointed space X with its base point ∗.

Then for n ∈ N, we define the negative K-theory

K̃−n((X, ∗)) = K̃(Sn(X, ∗))

K−n(X) = K̃(SnX+)

K−n(X,Y ) = K̃(Sn(X/Y ))

where Sn denote the n-th suspension and Y is a closed pointed subset of a compact
Hausdorff space X.
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Since the K-theory of a point is simply Z (the dimension of the vector bundle),

K(X) ∼= K̃(X)⊕ Z by the isomorphism theorem.
To extend the definition of K-groups to positive integers, we have the periodicity

theorem.

Theorem 2.3. (Bott Periodicity) let L be a line bundle (bundle of dimension 1)
over X. Then as a K(X)-algebra, K(P (L⊕1)) is generated by [H] which is subject
to the single relation ([H]− 1)([L][H]− 1) = 0. Here [H] is the isomorphism class
of the canonical line bundle over P (L⊕ 1).

The proof is given in [1] Chapter 2.2. The general idea is to develop a correspon-
dence between homotopy classes of clutching functions and isomorphism classes of
vector bundles. Then we can use an analysis argument to reduce the clutching
function down to a Laurent clutching function, and then further down to a lin-
ear clutching function. Finally, relating it back to isomorphism classes of vector
bundles, we get the Bott periodicity.

The most commonly used formulation of this theorem is the following:

Proposition 2.4. For a compact space X and any n ≥ 0, the map K−2(∗) ⊗
K−n(X)→ K−n−2(X) induces an isomorphism β : K−n(X)→ K−n−2(X).

Hence it is natural to define the positive K-theory groups as Kn(X) = K0(X) if
2|n, and Kn(X) = K1(X) otherwise. Furthermore, we have the following statement
on K-theory.

Proposition 2.5. The following sequence is exact:

· · · → K−n(X,A)→ K−n(X)→ K−n(A)→ K−n+1(X,A)→ . . .

→ K(X,A)→ K(X)→ K(A)

Remark 2.6. A detailed proof is given in [1] Chapter 2. It is worth noting that the
functor K is indeed a representable functor [6] in the homotopy category, and we
have the following equivalence

K(X) ∼= [X+, BU × Z] ∼= colim[X+, BU(n)× Z]

where X is a compact space, Z is given the discrete topology.

The Bott Periodicity then reduces the sequence in Proposition 2.5 to the follow-
ing diagram:

K0(X,Y ) K0(X) K0(Y )

K1(Y ) K1(X) K1(X,Y )

As stated in remark 1.7, vector bundles are homotopy invariant, which im-
plies that K-theory is also homotopy invariant. This is one of the axioms of the
Eilenberg-Steenrod axioms for an ordinary cohomology theory. In fact, it can be
proved that K-theory actually satisfies all of them except for the dimension axiom.
[5] gives a detailed proof of this, and we will take this result for granted.
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2.1. Equivariant K-theory. Analogous to the non-equivariant case, we denote
V ectG(X) to be the isomorphism classes of G-vector bundles over X. This is
an abelian semi-group under the direct sum operation. We can then form the
associated abelian group by taking the Grothendieck group of this semi-group.
Denote it as KG(X). By definition the elements in this abelian group take on the
form [E1] − [E2] where [E1] and [E2] are isomorphism classes of G-vector bundles
over X. The tensor product of G-vector bundles then induces a commutative ring
structure on KG(X).

If φ : X → Y is a G-map of compact G-spaces, then there is an induced map
φ∗ : KG(Y ) → KG(X). Therefore, KG can be viewed as a contravariant functor
from the category of G-spaces to the category of commutative rings.

If G is the trivial group, then KG(X) = K(X). If X is the space of one point,
then KG(X) = R(G), the representation ring of the group G.

We then prove a few important propositions of equivariant K-theory that will
be used later in the proof of the Atiyah-Segal Completion theorem.

Proposition 2.7. If X is a compact H-space, we can form a compact G-space
X = (G×X)/H = G×H X, and KH(X) ∼= KG(X).

Proof. For any H-vector bundle E on X, we can always identify it with a G-vector
bundle on X by E 7→ G×HE. On the other hand, consider the inclusion φ : X → X
that sends x 7→ (1, x). φ∗, the induced map of φ, then pulls back a G-vector bundle
over X to a H-vector bundle over X. These maps are mutually inverse, and thus
define an isomorphism between the K-theory groups. �

Proposition 2.8. If X is a compact G-space with a base point, and A is a closed
G-subspace (with the same base point), then we have the following exact sequence

K̃G(X ∪A CA)→ K̃G(X)→ K̃G(A)

The proof of this proposition is given in [9] and is more or less the same as the
non-equivariant case. Note that if A→ X is a cofibration, then here we can identify
the equivariant K-theory of the mapping cone with the equivariant K-theory of the
quotient by homotopy invariance.

With this result, we can define the negative K-theory groups as the following.

Definition 2.9. If X is a compact G-space with a base point, A is a closed G-
subspace that contains the base point, define for any n ∈ N

K̃−nG (X) = K̃G(SnX)

K̃−nG (X,A) = K̃G(Sn(X ∪A CA))

For a locally compact G-space X not necessarily compact, we denote X+ as its
one-point compactification, which is a G-space with a base point. If X is already
compact, then define X+ = X ∪ ∗, the sum of X and a base point.

Definition 2.10. If X is a locally compact G-space and A is a closed subspace,

define K−nG (X) = K̃−nG (X+) and K−nG (X,A) = K̃−nG (X+, A+).

By Proposition 2.9, we have the following long exact sequence

· · · → K̃−nG (X,A)→ K̃−nG (X)→ K̃−nG (A)→ K̃−n+1
G (X,A)→ . . .

→ K̃G(X,A)→ K̃G(X)→ K̃G(A)



6 NAIMENG YE

Analogous to the non-equivariant case, there is a periodicity theorem that re-
duces this long exact sequence to a six term exact diagram.

Proposition 2.11. If X is a G-space and L a G-line bundle over X, then the map
t 7→ [H] induces an isomorphism of KG(X)-modules:

KG(X)[t]/(t[L]− 1)(t− 1)→ KG(P (L⊕ 1))

The proof is given in [1]. Notice that we could have assumed a G-action on ev-
erything in the proof of the non-equivariant periodicity theorem and the arguments
will still hold.

3. The Thom Isomorphism

In a general cohomology theory, we have the notion of an orientable bundle and
the Thom space of a bundle.

Definition 3.1. Let V be a vector bundle over X. If we choose a metric on the
vector bundle, then D(V ) is the sub-space of elements of norm ≤ 1 and S(V ) is
the sub-space of elements of norm = 1. A bundle V over X is orientable in the
cohomology theory E∗ if there exists a class µ ∈ E∗(D(V ), S(V )) such that µ|p,
the class restricting to the fiber at p, is a generator of E∗(D(Vp), S(Vp)) for each
p ∈ X. This is called the orientation class or the Thom class.

Definition 3.2. Given a vector bundle E over a compact space X, let Th(E) =
D(E)/S(E) = XE be the one point compactification of the vector bundle E. Note
that the Thom space is canonically a pointed space since it is a quotient.

The Thom space can also be identified with P (E ⊕ 1)/P (E) since P (E ⊕ 1)
amounts to compactifying fibers of E by gluing in projective hyperplanes at ∞,
and quotienting out P (E) sends all these hyperplanes to a point. This is exactly
the one point compactification (then the base point is the infinity point) of E.

In general, we have the following Thom Isomorphism theorem for general coho-
mology theories.

Theorem 3.3. Let E∗ be a generalized cohomology theory and let p : V → X be an
E-oriented n-dimensional vector bundle. If X can be covered by finitely many open
subsets on which the vector bundle V is trivial, then there exists an isomorphism

Φ : Ei(X)→ Ẽi+n(D(V ), S(V ))

given by Φ(b) = p∗(b) ∪ c, where c is the Thom class.

Proof. We can first prove this for the case where V is a trivial vector bundle over
X, then use a Mayer-Vietoris argument to extend to the general case. [8]

Lemma 3.4. Let A,B be open subsets of X on which the vector bundle is trivial
(local triviality of vector bundles). If the theorem is true on A,B, and A∩B, then
the theorem is also true on A ∪B.

Proof. This can be proved using the Mayer-Vietoris sequence. Consider the fol-
lowing commutative diagram (commutativity by the naturality of Mayer-Vietoris
sequence),

Ei−1(A)⊕ Ei−1(B) Ei−1(A ∩B) Ei−1(A ∪B) Ei(A)⊕ Ei(B) Ei(A ∩B)

Ẽi+n−1(Th(VA))⊕ Ẽi+n−1(Th(VB)) Ẽi+n−1(Th(VA∩B)) Ẽi+n−1(Th(VA∪B)) Ẽi+n(Th(VA))⊕ Ẽi+n(Th(VB)) Ẽi+n(Th(VA∩B))

Φ Φ Φ Φ Φ

where VU denote the pullback of V to U , U ⊂ X. By the assumption, we have
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that the vertical maps are isomorphisms except possibly for the middle one. The

five lemma then tells us that the middle map Ei−1(A ∪ B) → Ẽi+n−1(Th(VA∪B))
is also an isomorphism, which completes the proof of our lemma. �

Let {U1, . . . , Um} denote an open covering of X such that E is trivial on all of
Ui. When m = 1 this is the trivial bundle case. Then suppose the statement is
true for m− 1, we can then use Lemma 3.4 on U1 ∪U2 ∪ · · · ∪Um−1 and Um. This
proves the case of m, and hence the proof is completed. �

We now consider the case for K-theory. Atiyah-Bott-Shapiro proved in [3] that
a vector bundle is K-orientable if and only if it admits a spinc structure and that
every complex vector bundle admits a spinc structure. Hence every complex vector
bundle is K-orientable. This is equivalent to the following statement.

Proposition 3.5. For a compact space X, there is a canonical orientation class

λE ∈ K̃(Th(E)) that is compatible with the direct sum operation and the pull back
operation. We call this class the Thom class.

Proof. We can construct this Thom class explicitly using the Koszul complex.
First, define the support of a complex of vector bundles E· on X to be the closed

subset of X consisting of the points x for which E·
x is not exact. We then give the

following definition.

Definition 3.6. Let A be a closed subset of a compact space X. Let L(X,A)
be the set of isomorphism classes of complexes of vector bundles E· on X whose
support is a subset of X − A. This set is a semi-group under direct sum, and two
elements E·

0 and E·
1 of L(X,A) are called homotopic, ', if there is an object E· of

L(X × [0, 1], A× [0, 1]) such that E·
0 = E·|(X × 0) and E·

0 = E·|(X × 1). We then
introduce the equivalence relation ∼ in L(X,A) defined by

E·
0 ∼ E·

1 ⇐⇒ E·
0 ⊕ F ·

0 ' E·
1 ⊕ F ·

1

for some acyclic complexes F ·
0 and F ·

1 on X.

Proposition 3.7. L(X,A)/ ∼ is an abelian group naturally isomorphic to K(X,A).

Proof. This is proved in [1]. We note that when A = ∅, the desired isomorphism is
given by E· 7→ Σk(−1)kEk.

If E· and F · are complexes on X, then one can form their tensor product E·⊗F ·

by (E· ⊗ F ·)k = ⊕p+q=kEp ⊗ F q; this naturally gives a product structure in the
ring K(X), which can then be extended to make K∗(X) a graded ring. �

Lemma 3.8. If V is a finite dimensional vector space, then for v ∈ V , the following
sequence is exact if v 6= 0,

0→ C v→ V
∧v→

2∧
V
∧v→

3∧
V → . . .

This is a standard linear algebra fact which leads to the following definition.

Definition 3.9. If E is a vector bundle on X and s is a section of E, we can form
the Koszul complex

· · · → 0→ C d→
1∧
E

d→
2∧
E

d→ . . .
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where d is defined by d(ξ) = ξ ∧ s(x) if ξ ∈
∧i

Ex. By Lemma 3.6, this complex is
acyclic at all points x at which s(x) 6= 0 and thus its support is the set of zeros of
s.

Note that this definition can be applied when we have a vector bundle and a
section. However, if the required section is not given, there is also always a canonical
space on which we do have have a section given by pulling back the vector bundle.
Specifically, we consider the projection p : E → X and pull back the vector bundle
E along p, then we have a vector bundle p∗E with a canonical section. Namely,
there is a map δ : E → E ×X E = p∗E vanishing on the zero section of E. We
denote

∧·
E the Koszul complex on E formed from p∗E and δ, namely

· · · → 0→ C δ→ p∗
1∧
E

δ→ p∗
2∧
E

δ→ . . .

Now if we have a complex F · on X with compact support on X, then we have∧·
E ⊗p∗F · is a complex on D(E) with compact support on D(E)−S(E). We then

have that the assignment F · 7→
∧·
E ⊗p∗F · induces an additive homomorphism

φ∗ : K(X)→ K̃(D(E), S(E)) by proposition 3.7.
Considering the zero-section φ : X → E, we then have φ∗φ∗(F

·) is the alternating

sum of
∧i

E ⊗ F ·, and we define λ−1(E) to be φ∗φ∗(ξ) = ξ · λ−1(E) for any
ξ ∈ KG(X). Here, λ−1(E) is given by

λ−1(E) = Σ(−1)iλi[E]

The desired Thom class is given by φ∗(I) = λE , which is equivalently
∧·
E .

We also have the following proposition.

Proposition 3.10. If E and F are bundles on X, and p : E⊕F → E, q : E⊕F →
F are the projections, then

∧·
E⊕F

∼= p∗
∧·
E ⊗q∗

∧·
F

Proof. This follows directly from definition. Thus the direct sum of vector bundles
gives a tensor product of their Kozul complex. �

Now, we want to show that the Thom class we just defined indeed gives a gen-
erator when restricted to each fiber. This is proved in [1] Chapter 2.6 and 2.7.

Since we are considering the fibers, we can reduce the case down to when X is a
point. Let V be a complex vector bundle over X. Then V is just a complex vector
space. We consider the complex

∧·
V defined as

0→ C v→ V
∧v→

2∧
V
∧v→

3∧
V → · · · → 0

for some v in given by a fiber. When V is one-dimensional, this complex reduces to

0→ V × C→ V × V → 0, which gives us an element in K(D(V ), S(V )) = K̃(S2).

By Bott Periodicity, this is the canonical generator of K̃(S2) up to a sign. Then

by Proposition 3.10,
∧·
V gives a canonical generator of K̃(S2n) up to a sign.

In general, we can relate our Kozul complex construction with the projective
bundle construction. We consider the Thom space as P (V ⊕1)/P (V ). Let H be the
canonical line bundle over P (V ), and H∗ the dual of H. Note that π : P (V ⊕1)→ X
is the projection, and we identify V with P (V ⊕1)−P (V ). Since H is a sub-bundle
of π∗(V ⊕ 1), taking the tensor product with H∗, we get a canonical morphism
1 → π∗V ⊗H∗. Restricted to V ⊂ P (V ⊕ 1), the morphism gives the Thom class∧·
V since H restricting to P (V ⊕ 1)− P (V ) = V is canonically trivial.
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�

With the existence of this Thom class, we have the following Thom Isomorphism
theorem for K-theory. Here we give the more general equivariant version of the
theorem on locally compact spaces.

Theorem 3.11. (Thom Isomorphism) If X is a locally compact G-space, E is a

complex G-vector bundle over the G-space X, then K̃∗G(Th(E)) is a rank 1 module
over K∗G(X) with a generator λE. In other words, the map

φ : K∗G(X)→ K̃∗G(Th(E))

which is given by the multiplication by λE, is an isomorphism.

Proof. Segal proved this theorem in [9]. The idea is that one can first prove this
statement for line bundles using the Koszul complex construction, which is just the
generalized Bott Periodicity. This step is similar to the projective bundle argument
made in the non-equivariant case. Then using Proposition 3.10, we can prove the
isomorphism statement for bundles that are locally a sum of G-line bundles. Note
that when G is abelian, all G-vector bundles are locally a sum of G-line bundles.
We can always embed a compact Lie group in a unitary group. Hence, by appealing
to the proposition that there exists a wrong way map from K∗T (X)→ K∗U (X) where
T is the maximal torus and U is unitary group [9], we can reduce the statement
down to the unitary group, and then to a torus where all vector bundles are local
sums of line bundles. Hence the statement is proved. �

We give an example of using the equivariant Thom Isomorphism as a computa-
tional tool. We calculate the K-theory structure of the real projective space.

Example 3.12. Take G = Z/2, X = ∗, and E = Cn with the −1 action. Then we
have

S(E)/G = RP2n−1

We know that if X is a compact G-space on which G acts freely, then K∗G(X) =
K∗(X/G). G acts freely on S(E) = S(Cn), thus we haveK∗G(S(E)) = K∗(S(E)/G).
We know that K0

G(∗) = R(G), and the representation ring of Z/2 is Z[ρ]/ρ2 − 1
where ρ is the standard representation of dimension 1, and K1

G(∗) = 0. Thus by the
Thom Isomorphism, we can reduce the long exact sequence of the pair (D(E), S(E))
to the following

0→ K1
G(S(E))→ R(G)

×λ−1(E)−→ R(G)→ K0
G(S(E))→ 0

We know that λ−1(Cn) = (1 − ρ)n = ζn where ρ is the standard 1-dimensional
representation and ζ = 1− ρ. Thus we have ζ2 = −2ζ and λ−1(E) = (−ζ)n. This

gives us that K̃0(RP2n−1) = Z2n−1 and K1(RP2n−1) is infinite cyclic. Comparing
the sequence of n and n+ 1, we get the following commutative diagram

0 K1(RP2n+1) R(G) R(G)

0 K1(RP2n−1) R(G) R(G)

(−ζ)n+1

−ζ 1

(−ζ)n
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Note that since ζ2 = −2ζ, the kernel of the map (−ζ)i is (2− ζ) for any i ≥ 1,
therefore by diagram chasing, we have that the middle rectangle gives a zero map,
which means that the left vertical map must be zero. That is

K1(RP2n+1)
0→ K1(RP2n−1)

We can then consider the long exact sequences of the pairs (RP2n+1,RP2n) and
(RP2n,RP2n−1) and make suitable replacement in the sequences, which will give us

K1(RP2n+1) � K1(RP2n) ↪→ K1(RP2n−1)

Thus K1(RP2n) = 0, which then gives us an isomorphism between K0(RP2n+1)
and K0(RP2n). Thus, we have obtained the K∗(RPn) structure

K1(RP2n+1) = Z

K1(RP2n) = 0

K0(RP2n+1) = K0(RP2n) = Z⊕ Z2n

4. The Atiyah-Segal Completion Theorem [4]

4.1. The Statement of the Theorem. The motivation of this theorem is to
study the G-equivariant K-theory of EG, or, equivalently, the ordinary K-theory
of the space BG since G acts freely on EG. Unfortunately this space is generally
not compact, so the general definition of K-theory does not extend to this space.
One workaround is to formulate this problem in a way such that we only need to
work with finite G−CW complexes. Thus, instead of considering the G-equivariant
K-theory of EG which so far we have not yet defined, we can consider the skeleta
EGn. Using Milnor’s model [7] of EG, which is defined to be the infinite join of
G with itself, we have that each level EGn is a finite G− CW complex. Formally,
EGn = G ∗ · · · ∗ G and EG is the colimit of {EGn}. In this way, we can relate
K∗G(X) with {K∗(X × EGn/G)} using the following statement.

Theorem 4.1. (Atiyah-Segal Completion Theorem) Let X be a compact G-space
such that K∗G(X) is finite over R(G). Then,

K∗G(X)Î
∼= lim←−K

∗(X × EGn/G)

where I is the usual augmentation ideal of the representation ring.

Remark 4.2. Note that there is actually a stronger statement given in Theorem 4.6
which is formulated in terms of pro-rings.

One commonly considered special case is when X = ∗. Then Theorem 4.1
restricts to

(4.3) R(G)Î
∼= lim←−K(BGn)

Before going into the proof of the theorem, we give an example of the application
of it.

Example 4.4. Let the space X be a point and take G = S1. Then BS1 = CP∞ =
lim−→CPn. By the Thom Isomorphism (or simply Bott periodicity), we have that

K0(CPn) = Z[t]/tn+1. In the limit, K0(CP∞) = Z[[t]], where the definition of
K0(CP∞) will be given in section 4.3 (K-theory on non-compact spaces). On the
other hand, the representation ring of S1 is R(S1) = Z[X,X−1] where X is the
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standard representation of S1. Completing it at the augmentation ideal (X − 1),
we have that R(S1)Î = Z[[X − 1]]. Thus, we have

R(S1)Î = Z[[X − 1]] ∼= Z[[t]] = K(CP∞) = K(BS1)

The isomorphism given by (5.2) takes the class of t to the class of X − 1.

Now we introduce the notion of pro-objects which gives a convenient formulation
of Theorem 4.1.

Definition 4.5. If C is any category, Pro(C) is a new category whose objects are
inverse-systems {Aα}α∈S of objects of C indexed by directed sets S. The morphism
between {Aα}α∈S and {Bβ}β∈T is the the collection of maps fβ : Aθβ → Bβ for
each β ∈ T , where θ : T → S (not necessarily order-preserving). The maps fβ are
subject to the condition that if β ≤ β′ in T then for some α ∈ S such that α ≥ θβ
and α ≥ θβ′, the diagram

Aθβ Bβ

Aα Aθβ′ Bβ′

fβ

aα,θβ

aα,θβ′ fβ′

bβ′,β

commutes. One identifies the morphisms (θ; fβ) and (θ′; fβ′) if for each β there is
an α ∈ S such that α ≥ θβ, α ≥ θ′β, and fβaα,θβ = f ′βaαθβ′

Approximately, we can think of pro-objects as the inverse limit with its topology.
For example, if we consider the pro-object {Z/pn}, the equivalent data is given by
the p-adic integers Zp together with the p-adic topology. Isomorphisms between
pro-objects can be understood as an isomorphism between the inverse limits that
respects the topology but not necessarily the exact tower.

We also give an example to demostrate how a pro-object is different from the
inverse limit. Consider the pro-object: all objects in the tower are Z and the maps
between them are multiplication by 2. So we can think of it as

· · · ⊂ 2n · Z ⊂ 2n−1 · Z ⊂ . . . 2Z ⊂ Z
This is a tower of abelian groups whose inverse limit is 0 since there is no integer
divisible by 2n for all n. However in the category of pro-objects this does not give
us 0.

With this formulation, the theorem is saying that there is an isomorphism be-
tween K∗G(X)Î and K∗(X×EG/G) as pro-rings. Specifically, the LHS of Theorem
4.1 is obtained by an I-adic completion, which can be identified with lim←−K

∗
G(X)/InG·

K∗G(X). We can view the system {K∗G(X)/InG ·K∗G(X)} as a pro-ring construction.
Similarly, the RHS of Theorem 4.1 can be constructed via the pro-system of rings
{K∗G(X × EGn)}. Our goal now is to show that there is an isomorphism between
the pro-objects. This is done by the following.

Note that BGn = EGn/G is the union of the n contractible subsets Ui, Ui
being the set where the i-th join-coordinate does not vanish. Therefore the product

of any n elements of the reduced group K̃∗(BGn) is zero. Thus, we have that

(K̃∗(BGn))n = 0. Let ε : K∗(BGn) → Z denote the usual augmentation, we

know that K̃∗(BGn) is the kernel of this map, which gives us that K̃∗(BGn) ↪→
K∗(BGn)

ε→ Z is zero. Denote αn : R(G) = K∗G(point) → K∗G(EGn) as the
induced map of the map EGn → (point) . Note that we have the composite
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homomorphism R(G) = K∗G(point)
αn−→ K∗G(EGn) = K∗(BGn)

ε−→ Z being the
usual augmentation of R(G) and the kernel being the usual augmentation ideal IG.
Thus we have

IG R(G) K∗(BGn)

K̃∗(BGn)

αn

factors through K̃∗(BGn). This implies that InG factors through (K̃∗(BGn))n = 0,
(i.e. InG → R(G) → K∗(BGn) is zero). Thus we have that αn factors through
R(G)/InGR(G).

By naturality this implies that the map induced by the projection X×EGn → X
factors through the submodule generated by InG, which gives us the map:

αn : K∗G(X)/InG ·K∗G(X)→ K∗G(X × EGn)

We will prove that this map induces an isomorphism on the pro-rings. Note that
this is in fact a stronger statement than our original theorem given in Theorem 4.1.
Formally, our main theorem is

Theorem 4.6. Let X be a compact G-space such that K∗G(X) is finite over R(G).
Then the homomorphisms

αn : K∗G(X)/InG ·K∗G(X)→ K∗G(X × EGn)

induce an isomorphism of pro-rings. Specifically, for each n one can find k and a
homomorphism βn : K∗G(X×EGn+k)→ K∗G(X)/InG ·K∗G(X) such that the diagram

K∗G(X)/In+k
G ·K∗G(X) K∗G(X × EGn+k)

K∗G(X)/InG ·K∗G(X) K∗G(X × EGn)

αn+k

βn

αn

commutes.

4.2. The Proof of the Main Theorem. The proof of the main theorem consists
of four steps.

Step1 : The case of S1 = T
Since in step 2 we will inductively prove the theorem for Tn, here we prove a

slightly more general statement.

Lemma 4.7. Let G be a compact Lie group, and X a compact G-space such that
K∗G(X) is finite over R(G). Let θ : G → T be a homomorphism by which G acts
on ET . Then

αn : K∗G(X)/InT ·K∗G(X)→ K∗G(X × ETn),

induces an isomorphism of pro-rings.

Proof. We know that ETn = T ∗ · · · ∗T , which is just S2n−1 where T acts on S2n−1

via scalar multiplication as a subgroup of C×.
Consider the exact sequence of the pair (X × D(Vn), X × S(Vn)), where Vn is

the direct sum of n copies of the 1-dimensional standard representation.

· · · → K0
G(X ×D(Vn), X × S(Vn))→ K0

G(X ×D(Vn))→ K0
G(X × S(Vn))→ . . .
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D(Vn) is contractible; thus we have K∗G(X × D(Vn)) ∼= K∗G(X). Also, K∗G(X ×
D(Vn), X×S(Vn)) = K̃∗G(Th(X×Vn)). By the Thom Isomorphism, we can reduce
the long exact sequence of the pair to the following exact diagram

K̃0
G(Th(X × Vn)) K0

G(X) K0
G(X × S(Vn))

K1
G(X × S(Vn)) K1

G(X) K̃1
G(Th(X × Vn))

×λ−1(Vn)

×λ−1(Vn)

Note that λ−1(Vn) = (1 − ρ)n = ζn where ρ is the standard one-dimensional
representation of T and ζ = 1 − ρ (We used the fact that direct sum of bundles
gives a product of the Thom classes). We know that the augmentation ideal of
R(T ) is also generated by ζ, thus we can further reduce the exact diagram to

0→ K0/ζn ·K0 αn−→ K0
G(X × ETn)→ ζnK

1 → 0

where K0 = K0
G(X), K1 = K1

G(X) and ζnK
1 = {x ∈ K1 : ζnx = 0}

Note that K∗ is a Noetherian R(G)-module; thus there must exist some k ∈ N
such that ζkK

1 = ζk+1K1 = . . . , which means that ζk annihilates all of ζk+iK
1 for

all i ≥ 1. Therefore, we have the following commutative diagram,

0 K0/ζn+k ·K0 K0
G(X × S2n+2k−1) ζn+kK1 0

0 K0/ζn ·K0 K0
G(X × S2n−1) ζnK

1 0

αn+k

βn
×ζk=0

αn

The existence of such a βn is due to the fact that the right vertical map is the zero
map, then by diagram chasing, the middle map factors through K0/ζn ·K0. This
concludes the proof of Lemma 4.7. �

Step2: Proof for Tm

We will prove by induction on m. The main lemma that we are trying to prove
in this step is

Lemma 4.8. Let G be a compact Lie group and X a compact G-space such that
K∗G(X) is finite over R(G). If G acts on ETm by a homomorphism θ : G → Tm,
then the homomorphism

αn : K∗G(X)/InTm ·K∗G(X)→ K∗G(X × (ETm)n)

induces an isomorphism between pro-rings.

Proof. Write Tm = T × Tm−1. Step 1 proved the base case m = 1, and we assume
the statement is true for T i for any i < m. Let H = Tm−1 for notational simplicity.
One can identify ETm with ET × EH by the axioms of universal spaces, which
means that they are G-homotopy equivalent. This induces an isomorphism between
{K∗G(X×(ETm)n)} and {K∗G(X×ETn×EHm)} as pro-rings. We can then use the
cofinal subfamily {ET p×EHq} of compact subspaces to model the pro-ring. Let IT
and IH denote the ideals of R(Tm) generated by the respective augmentation ideals
of the two groups. Then we have ITm = IT + IH . For notational simplicity, let
K = K∗G(X). Since InT+InH ⊂ (IT+IH)n = (ITm)n, and Ip+q−1

Tm = (IT+IH)p+q−1 ⊂
IpT + IqH , we have that the pro-rings {K/InTm ·K} ∼= {K/(I

p
T + IqH) ·K}. In other

words, the ITm-adic topology is the same as the one induced by IpT +IqH . Therefore,
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we can use {K/(IpT + IqH) · K} to compute the completion of the LHS of Lemma
4.8.

Note that the induced projection map K → K∗G(X×ET p×EHq) factors through
the quotient module {K/(IpT + IqH) ·K}, and thus gives us maps

αp,q : K/(IpT + IqH) ·K → K∗G(X × ET p × EHq)

On completion, we know that these homomorphisms induce the same map as
{αn}. Thus, we want to prove that these maps define an isomorphism of pro-rings.
Let R = R(Tm). Note that

K/(IpT + IqH) ·K ∼= K ⊗R(Tm) R(Tm)/IpT ⊗R(Tm) R(Tm)/IqH = K/IpT ⊗R R/I
q
H

We can then then factorize αp,q by

αp,− ⊗ 1 : K/IpT ⊗R/I
q
H

∼=→ K∗G(X × (ET )p)⊗R/IqH
1⊗ α−,q : K∗G(X × (ET )p)⊗R/IqH

∼=→ K∗G(X × (ET )p × (EH)q)

where the the first isomorphism is given by step 1, and the second isomorphism
is given by the induction hypothesis (the induction hypothesis applies because
K∗G(X × ET p) is finite over R(G), as showed in the exact sequence in step 1).
Therefore, on completion, {αn} gives an isomorphism between pro-rings. �

Step3: The Proof for U(m) = U .
This step requires a blackbox from [2].

Theorem 4.9. Let j : T → U be the inclusion of the maximal torus into the unitary
group. For any compact U -space X, let j∗ : K∗U (X)→ K∗T (X) be the induced map.
Then there exists a K∗U (X)-module homomorphism

j∗ : K∗T (X)→ K∗U (X)

which is functorial in X and is a left inverse of j∗.

We use the fact that K∗T (X) is a finite module over K∗U (X) for any compact U -
spaceX. This tells us thatK∗U (X) is a natural canonical direct summand ofK∗T (X).
Therefore, αn : K∗U (X)/InU · K∗U (X) → K∗U (X × EUn) induces an isomorphism
between pro-rings follows from the fact that

ηn : K∗T (X)/InU ·K∗T (X)→ K∗T (X × EUn)

induces an isomorphism between pro-rings.
We then examine the following commutative rectangle

K∗T (X)/InU ·K∗T (X) K∗T (X × EUn)

K∗T (X)/InT ·K∗T (X) K∗T (X × ETn)

ηn

αn

By step 2, {αn} defines an isomorphism of pro-rings. The left vertical map defines
an isomorphism of pro-rings because the IU -adic and IT -adic topologies coincide
on R(T ), and thus coincide on any R(T )-module. We then consider the objects on
the right. Note that {EUn} are U -CW complexes, which are larger T -CW com-
plexes (dimension of U is greater than dimension of T ). This means that {ETn}
and {EUn} are cofinal families of compact T -spaces, defining the same pro-object
of T -equivariant K-theory rings. Thus the right vertical map in the commutative
diagram is an isomorphism of pro-rings. This then forces the top map ηn to be an
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isomorphism of pro-rings, and this completes the proof of the third step.

Step4 : The general case
Embed G in a unitary group U . For a compact G-space X, define X = (U ×

X)/G, which is then an U -space. By Proposition 2.8, K∗G(X) ∼= K∗U (X).

Note that X × EUn = (U ×G X) × EUn = X × EUn by the associativity of
balanced products. Thus we have K∗U (X × EUn) = K∗U (X × EUn) ∼= K∗G(X ×
EUn). Step 3 gives us an isomorphism of pro-rings

αn : K∗U (X)/InU ·K∗U (X)→ K∗U (X × EUn)

for any compact U -space X. Note that K∗U (X) is finite over R(U) because K∗G(X)
is finite over R(G) and R(G) is finite over R(U). Thus we can apply the statement
in step 3 to X and we get

αn : K∗G(X)/InU ·K∗G(X)→ K∗G(X × EUn)

Note that since EU is a universal space for G, {EGn} and {EUn} are cofinal
families. Hence K∗G(X×EUn) is isomorphic to K∗G(X×EGn) as pro-rings. Finally,
we know that IU -adic and IG-adic topologies coincide on R(G)-modules[10]. This
means that {K∗G(X)/InU · K∗G(X)} and {K∗G(X)/InG · K∗G(X)} give the same pro-
object. The proof is then completed.

4.3. Defining KG(X×EG). We return to the original formulation of our theorem.
We define the K-theory for non compact spaces as follows.

Kn(X) = [X,Fn]

the group of homotopy classes of maps X → Fn, where Fn is a suitable H-space.
Note that F 0 = Z×BU , and F 1 is the infinite unitary group.

This definition is consistent with the previous definition on compact spaces as
mentioned in Remark 2.6.

The property that we need in order to formulate the RHS of Theorem 4.1 is the
following

Proposition 4.10. (Milnor) If the space X is the limit of an expanding sequence
of compact subspaces Xn, then there is a natural exact sequence

0← R1 lim←−K
k−1(Xn)→ Kk(X)→ lim←−K

k(Xn)→ 0

Proof. A proof of this proposition is given in [4]. �

Note that the space X×EG/G is the limit of the sequence of compact subspaces
Xn = X ×EGn/G. By Theorem 4.1 we know that {K∗(Xn)} = {K∗G(X ×EGn)}
satisfies the Mittag-Leffler condition [4]. Hence R1 lim←−K

∗(Xn) = 0, and so by

Proposition 4.10, we have that K∗(X × EG/G) ∼= limK∗G(X × EGn), which gives
us the other form of Theorem 4.1:

Theorem 4.11. If X is a compact G-space such that K∗G(X) is finite over R(G),
then we have

α : K∗G(X)→ K∗(X × EG/G)

induces an isomorphism between the IG-adic completion of K∗G(X) and K∗(X ×
EG/G)
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