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Abstract. This paper discusses permutation representations, culminating in

the decomposition of the left regular representation of Sn into irreducibles each

associated to a partition of n. We study the dimensions of intertwiner spaces
as a computational means to decompose partition representations. Examples

illuminate the more general combinatorical resolution theorem, whose power

manifests when combined with the RSK correspondence.
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1. Introduction

The investigations in this paper are driven by a desire to work out the char-
acter table of the symmetric group; this in turn is driven by the significance of
irreducible representations in composing all other representations and the simple
way that characters add up. The regular representation is the container of these
irreducibles and thus the key object of study.

It turns out that characters have a simple combinatorical interpretation for per-
mutation representations, and the left regular representation is equivalent to a
particular form of partition representation. The aim of this paper is for the reader
to appreciate both the framework of representation theory (of finite groups) and its
elegant intersection with combinatorics in the study of permutation representations.

Date: August 2020.
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2. Group Representations and Maschke’s Theorem

Definitions 2.1. A representation of a group G is a homomorphism ϕ : G →
GL(V ), where V is a vector space over a field K. Throughout this paper, G is
finite, and V is a finite-dimensional vector space over C. The dimension of V is
called the degree of ϕ. Sometimes we write ϕg for ϕ(g) and ϕgv for ϕ(g)(v).

Remark 2.2. When the homomorphism ϕ is clear from the context, we sometimes
refer to V itself as a representation of G. Since ϕ(g) is a linear transformation, we
can write ϕ in matrix form as n2 scalar functions ϕij : G→ C.

Example 2.3. For any group G we have the degree-one trivial representation
given by ϕ : G→ C∗, ϕ(g) = 1 for all g ∈ G.

To classify representations of a given group G, the first step we take is to define
a notion of equivalence.

Definition 2.4. Two representations ϕ : G→ GL(V ) and ρ : G→ GL(W ) are
equivalent or isomorphic if there exists an isomorphism T : V → W , such that
for all g ∈ G, ρg = TϕgT

−1. If such an isomorphism exists, we denote ϕ ∼ ρ, or
V ∼W when the context is clear.

We can then translate some linear algebra concepts into this new context.

Definition 2.5. Let ϕ : G → GL(V ) be a representation. A subspace W ≤ V is
G-invariant if ϕgw ∈W for all g ∈ G and w ∈W .

Definition 2.6. Let ϕ1 : G → GLn(V1) and ϕ2 : G → GLm(V2) be two represen-
tations of a group G. Their direct sum is defined as ϕ1 ⊕ ϕ2 : G→ GL(V1 ⊕ V2),
(ϕ1 ⊕ ϕ2)(g)(v1, v2) = (ϕ1(g)(v1), ϕ2(g)(v2)). Written in block matrix form, we
have

(ϕ1 ⊕ ϕ2)(g) =

(
ϕ1(g) 0

0 ϕ2(g)

)
In representation theory of finite groups there is a notion of irreducibility anal-

ogous to primes in number theory.

Definitions 2.7. Let ϕ : G → GL(V ) be a non-zero representation. ϕ is irre-
ducible or simple if the only G-invariant subspaces of V are {0} and V . ϕ is
completely reducible if V = V1 ⊕ · · · ⊕ Vn, where for all i ∈ [n], Vi is G-invariant
and ϕ|Vi is irreducible. Equivalently, ϕ is completely reducible if ϕ ∼ ϕ1⊕· · ·⊕ϕn,
where for all i ∈ [n], ϕi is irreducible. ϕ is decomposable if V = V1 ⊕ V2 for some
nonzero G-invariant subspaces V1 and V2.

Using some routine linear algebra, one can check that the three properties above
are defined up to equivalence of representations.

Lemma 2.8. If ϕ : G → GL(V ) is equivalent to an irreducible (resp. com-
pletely reducible)(resp. decomposable) representation, then ϕ is irreducible (resp.
completely reducible)(resp. decomposable).

An integer is either irreducible or decomposable; the same is true for represen-
tations, and we can show this by exploiting a particularly useful class of represen-
tations.
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Definition 2.9. Let ϕ : G → GL(V ) be a representation, where V is an inner
product space. ϕ is unitary if for all g ∈ G, ϕg is unitary; i.e., 〈ϕgv, ϕgw〉 = 〈v, w〉
for all v, w ∈ V . Note that when V = Cn, 〈v, w〉 =

∑n
i=1 viwi is the standard inner

product.

Proposition 2.10. If ϕ : G→ GL(V ) is a unitary representation, then ϕ is either
irreducible or decomposable.

Proof. Suppose ϕ is not irreducible. Then V has a nonzero proper invariant sub-
space W , and we can write V = W ⊕W⊥ as a direct sum of vector spaces (instead
of representations). It suffices to show that W⊥ is G-invariant. Fix g ∈ G. For any
w ∈W,w′ ∈W⊥, we have

〈ϕg(w′), w〉 = 〈ϕg−1ϕg(w
′), ϕg−1(w)〉 = 〈w′, ϕg−1(w)〉 = 0

where the first equality follows from the definition of unitary representations. The
third equality holds because W is G-invariant and ϕg−1(w) ∈ W . This shows that

ϕg(w
′) ∈W⊥. �

Proposition 2.11. If ϕ : G→ GL(V ) is a representation of a finite group G, then
ϕ is equivalent to a unitary representation.

Proof. Let dimV = n. Then we can define an isomorphism T : V → Cn and obtain
a representation ρ : G → GLn(C) equivalent to ϕ by setting ρg := TϕgT

−1. Let
〈·, ·〉 be the standard inner product on Cn. We construct a new inner product (·, ·)
on Cn with (v, w) =

∑
g∈G〈ρgv, ρgw〉. One can check that (·, ·) is indeed an inner

product and ρ is a unitary representation with respect to it. �

Corollary 2.12. If ϕ : G→ GL(V ) is a nonzero representation of a finite group,
then ϕ is either irreducible or decomposable.

The following theorem is the analog of prime factorization in the representation
theory of finite groups.

Theorem 2.13 (Maschke’s Theorem). Every representation of a finite group is
completely reducible.

Proof. Let ϕ : G → GL(V ) be a representation of a finite group G. One can
use the previous corollary and proceed by induction on the dimension of V . Take
dimV = 1 as the base case, where ϕ is irreducible since the only subspaces of a
one-dimensional vector space are {0} and itself. Suppose the claim holds true for all
V with dimV ≤ n, and consider the case when dimV = n+ 1. If ϕ is irreducible,
then we are done; if it is not, by the previous corollary it must be decomposable,
so V = W1 ⊕W2 where W1,W2 are G-invariant and dimW1,dimW2 ≤ n. By the
induction hypothesis the claim holds for dimV = n+ 1. �

3. Schur’s Lemma and Intertwiners

We are interested in a particular class of linear maps called intertwiners between
two representations. With complete reducibility, we can investigate intertwiner
spaces by first looking at intertwiners between irreducible representations. Schur’s
lemma provides a simple characterization of them.

Definition 3.1. Let ϕ : G→ GL(V ) and ρ : G→ GL(W ) be representations. An
intertwiner or morphism from ϕ to ρ is a linear transformation T : V →W such
that for all g ∈ G,Tϕg = ρgT . HomG(V,W ) denotes the space of such intertwiners.
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Remark 3.2. If T ∈ HomG(V,W ) is invertible, then ϕ ∼ ρ.

Theorem 3.3 (Schur’s Lemma). If ϕ : G → GL(V ), ρ : G → GL(W ) are irre-
ducible representations of G and T ∈ HomG(V,W ), then T is either invertible or
T = 0. As a result:

(1) If ϕ � ρ, then HomG(V,W ) = 0
(2) If ϕ = ρ, then T = λI for some λ ∈ C
(3) If ϕ ∼ ρ, then dim HomG(V,W ) = 1

Proof. For the main claim, suppose T 6= 0. Since kerT is a G-invariant subspace
of V and ϕ is irreducible, kerT = V or {0}; but T 6= 0, so kerT = {0} and T is
injective. Similarly, ImT = W and T is surjective, thus T must be invertible.

For (1), If ϕ � ρ, then by the definition of intertwiners and equivalence, no
linear map in HomG(V,W ) is invertible. It follows from the main claim that
HomG(V,W ) = {0}.

For (2), we use the fact that C is algebraically closed. Consequently, the charac-
teristic polynomial has a root, i.e., every linear transformation over C has an eigen-
value λ. Notice that λI − T is not invertible. If ϕ = ρ, then I ∈ HomG(V,W ) =
EndGV . Since HomG(V,W ) is a subspace of Hom(V,W ), (λI−T ) ∈ HomG(V,W ).
By the main claim λI − T = 0, i.e., T = λI.

For (3), if ϕ ∼ ρ, then there exists an isomorphism T between V and W such
that T ∈ HomG(V,W ). Suppose S ∈ HomG(V,W ), then since T is invertible, we
can let X := ST−1. so that S = XT . One can show that X ∈ EndGW , so by
(2) X = λI for some λ ∈ C. That is, any S ∈ HomG(V,W ) is a scalar multiple of
T . �

The following theorem is a consequence of Schur’s Lemma.

Theorem 3.4. Let ϕ : G → GL(V ) and ρ : G → GL(W ) be representations. Let
V1, V2, · · · , Vr be a complete collection of pairwise inequivalent irreducible subspaces
of V and/or W . We can write

V ∼ V ⊕n1
1 ⊕ V ⊕n2

2 ⊕ · · · ⊕ V ⊕nrr(3.5)

W ∼ V ⊕m1
1 ⊕ V ⊕m2

2 ⊕ · · · ⊕ V ⊕mrr

where nk,mk ≥ 0, and nk is called the multiplicity of Vk in V . Then:

HomG(V,W ) =

r⊕
k=1

Mmk×nk(C)

where Mmk×nk(C) denotes the set of mk × nk matrices over C.

Corollary 3.6. Let ϕ and ρ be representations as in Theorem 3.4, then

dim HomG(V,W ) = dim HomG(W,V ) =

r∑
k=1

mknk

Remark 3.7. Using Corollary 3.6, we can extract the multiplicities of simple repre-
sentations in the decomposition of a given representation: If ϕ is a representation
and ϕk is an irreducible representation, then the multiplicity of ϕk in ϕ is given by
dim HomG(V, Vk).

In particular, the decomposition of a representation is unique.
We also obtain a useful criterion for irreducible representations: a representation

ϕ is irreducible if and only if dim EndG V = 1.
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4. Schur Orthogonality Relations

Now we proceed to show Schur orthogonality relations (Theorem 4.6), another
important consequence of Schur’s Lemma. It says the matrix-form entries of in-
equivalent irreducible and unitary representations are orthogonal. The proof of The-
orem 4.6 is somewhat tedious, but it paves a convenient way for the orthogonality
of characters presented in Section 5. Since each matrix entry is a one-dimensional
representation, we make use of the following inner product space.

Definition 4.1. Let G be a finite group, then the group algebra of G, denoted
C[G], is the set of functions {f | f : G → C}. We can make C[G] into an inner
product space with

(f1 + f2)(g) = f1(g) + f2(g)

(cf)(g) = c · f(g)

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g)

where f2(g) indicates complex conjugation.

Proposition 4.2. Let ϕ : G → GL(V ) and ρ : G → GL(W ) be representations
and T : V → W a linear transformation. We define a map P : Hom(V,W ) →
Hom(V,W ) and denote it by ”]” such that P (T ) = T ] = 1

|G|
∑
g∈G ρg−1Tϕg. Then:

(1) T ] ∈ HomG(V,W )
(2) If T ∈ HomG(V,W ), then T ] = T
(3) P : Hom(V,W )→ HomG(V,W ) is a surjective linear map.

Proof. For (1), we can do direct calculation and apply a change of variables to show
that T ]ϕg = ρgT

] for all g ∈ G.
For (2), if T ∈ HomG(ϕ, ρ), then we can write Tϕg = ρgT and show the claim

by direct calculation. (3) follows immediately from (2). �

Proposition 4.3. If ϕ : G → GL(V ) and ρ : G → GL(W ) are irreducible repre-
sentations and T : V →W is a linear transformation, then:

(1) If ϕ � ρ, then T ] = 0

(2) If ϕ = ρ, then T ] = Tr(T )
degϕ I

Proof. Since T ] ∈ HomG(V,W ), (1) follows directly from Theorem 3.3 (1).
If ϕ = ρ, then Theorem 3.3 (2) says T ] = λI for some λ ∈ C, so Tr

(
T ]
)

=
Tr(λI) = λTr(I) = λ dimV = λ degϕ. Also, we can use Tr(AB) = Tr(BA) to

show that Tr(T ) = Tr
(
T ]
)
. As a result, λ = Tr(T )

degϕ , and (2) follows. �

Lemma 4.4. Let A = (aij) ∈ Mrm(C), B = (bij) ∈ Mns(C), and Eki ∈ Mmn(C),
where Eki is an element of the standard basis of Mmn(C) with the ki-th entry 1
and all other entries 0. Then (AEkiB)`j = a`kbij.

Lemma 4.5. Let Un(C) denote the group of unitary n × n matrices. If ϕ : G →
Un(C) and ρ : G → Um(C) are unitary representations and Eki ∈ Mmn(C), then

(Eki)
]
`j = 〈ϕij , ρk`〉, where the inner product is taken as in Definition 4.1.
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Proof. Since ρ is unitary, ρg−1 = ρ−1g = ρ∗g, i.e., ρ`k(g−1) = ρk`(g). Using Lemma
4.4, we can compute:

(Eki)
]
`j =

1

|G|
(ρg−1Ekiϕg)`j =

1

G

∑
g∈G

ρ`k(g−1)ϕij(g)

=
1

G

∑
g∈G

ρk`(g)ϕij(g) = 〈ϕij , ρk`〉

�

Theorem 4.6 (Schur orthogonality relations). If ϕ : G → Un(C) and ρ : G →
Um(C) are inequivalent irreducible unitary representations, then:

(1) 〈ϕij , ρk`〉 = 0

(2) 〈ϕij , ϕk`〉 =

{
1
n if i = k and j = `

0 otherwise

Proof. Since ϕ � ρ, for all k ∈ [m] and i ∈ [n], (Eki)
] = 0 by Proposition 4.3 (1).

Thus every entry of the matrix (Eki)
] is 0, and it follows from Lemma 4.5 that for

all i, j ∈ [n] and k, ` ∈ [m], 〈ϕij , ρk`〉 = (Eki)
]
`j = 0.

By Lemma 4.5 and Proposition 4.3 (2), 〈ϕij , ϕk`〉 = (Eki)
]
`j = Tr(Eki)

n I`j . Sup-

pose i 6= k, then since the only nonzero entry of Eki is off the diagonal, Tr(Eki) = 0.
Suppose j 6= `, then I`j = 0. If i = k and j = `, then Tr(Eii) = Ijj = 1, proving
(2). �

5. Characters

Traces of representations called characters play an important role in represen-
tation theory. Notably, they determine the decomposition of representations, and
we exploit their orthonormality, a consequence of Theorem 4.6, to decompose the
regular representation in section 6.

Definition 5.1. Let ϕ : G→ GL(V ) be a representation. The character of ϕ is a

function χϕ : G→ C, with χϕ(g) = Tr(ϕg) =
∑degϕ
i=1 ϕii, where the underlying basis

of V can be arbitrarily chosen, as the trace of (ϕij(g)) is invariant under conjugation
by change of basis matrices. The character of an irreducible representation is called
an irreducible character .

Definition 5.2. Let f : G→ C be a function. f is called a class function if f is
constant on conjugacy classes of G, i.e., (∀g, h ∈ G)(f(g) = f(hgh−1).

Notation 5.3. We denote the space of class functions as Z(C[G]); and the set of
conjugacy classes of G as Cl(G)

One can check the following statements. For (2) and (4), one can use the fact
that the trace is invariant under conjugation.

Proposition 5.4. Let ϕ and ρ be representations of G. Then:
(1) χϕ(1G) = degϕ.
(2) If ϕ ∼ ρ, then χϕ = χρ.
(3) If ϕ = ρ⊕ ψ, then χϕ = χρ + χψ.
(4) Characters are class functions.
(5) Z(C[G]) is a subspace of C[G].
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Proposition 5.5. For C ∈ Cl(G), define functions δC : G→ C by

δC =

{
1 g ∈ C
0 g /∈ C

Then, the set B := {δC | C ∈ Cl(G)} is a basis for Z(L(G)). As a result,
dimZ(C[G]) = |Cl(G)|.

Theorem 5.6 (Orthogonality of Irreducible Characters). If ϕ, ρ are irreducible
representations of G, then

〈χϕ, χρ〉 =

{
1 ϕ ∼ ρ
0 ϕ � ρ

Proof. By Proposition 2.11, every representation is equivalent to a unitary rep-
resentation, and by Proposition 5.4 (2), equivalent representations have the same
character, so we may assume without loss of generality that ϕ and ρ are uni-
tary. Moreover, the case when ϕ ∼ ρ can be simplified by setting ρ = ϕ. Let
ϕ : G→ Un(C), ρ : G→ Um(C). It follows that

〈χϕ, χρ〉 =
1

|G|
∑
g∈G

χϕ(g)χρ(g)

=
1

|G|
∑
g∈G

n∑
i=1

ϕii(g)

m∑
j=1

ρjj(g)

=

n∑
i=1

m∑
j=1

1

|G|
∑
g∈G

ϕii(g)ρjj(g)

=

n∑
i=1

m∑
j=1

〈ϕii(g), ρjj(g)〉

=

{∑n
i=1〈ϕii(g), ϕii(g)〉 = 1 ϕ ∼ ρ

0 ϕ � ρ

where the last step follows from Schur Orthogonality relations (Theorem 4.6). �

The following corollary is a result of the above theorem and Corollary 3.6.

Corollary 5.7. Let ϕ : G → GL(V ) and ρ : G → GL(W ) have the decomposition
as in (3.5). Then

〈χϕ, χρ〉 =

r∑
k=1

mknk = dim HomG(ϕ, ρ)

Remark 5.8. The previous theorem allows us to use characters to compute the
dimensions of intertwiner spaces. It also establishes applications of characters cor-
responding to the discussion in Remark 3.7. Namely, if ϕ is a representation and
ϕk is an irreducible representation, then the multiplicity of ϕk in ϕ is given by
〈χϕ, χϕk〉. Also, a representation ϕ is irreducible if and only if 〈χϕ, χρ〉 = 1.
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6. The Regular Representation

The regular representation is a special case of permutation representation, to
be introduced in section 7. Significantly, the regular representation contains all
irreducible representations of a group G up to equivalence, each with multiplicity
equal to its degree. Thus understanding all irreducible representations amounts to
understanding the regular representation. The work in the last section allows us to
prove this crucial fact.

Definition 6.1. Let C[G] denote the vector space of all C-valued functions on G.
The standard basis of this space is {1g | g ∈ G}, where 1g denotes the function that
takes value 1 at g and 0 elsewhere. Thus any f ∈ C[G] may be written as

f =
∑
g∈G

cg1g

Definition 6.2. The regular representation of a group G is the representation
L : G→ GL(C[G]) such that the action of G is given on basis elements by Lg1h =
1gh for all g, h ∈ G.

One can check the following:

Proposition 6.3. χL(g) =

{
|G| g = 1

0 g 6= 1

Theorem 6.4. Let S = {ϕ1, ϕ2, · · · } be a complete set of inequivalent irreducible
representations of G, and let dk := degϕk, χk := χϕk . Then S is finite. Writing
S as {ϕ1, ϕ2, · · · ϕr}, we have

L ∼ ϕ⊕d11 ⊕ ϕ⊕d22 ⊕ · · · ⊕ ϕ⊕drr .

Proof. We use the the values of χL in Proposition 6.3 to compute

〈χL, χk〉 =
1

|G|
∑
g∈G

χL(g)χk(g) =
1

|G|
|G|χk(1) = dk

where the last equality follows from proposition 5.4 (1). By the discussion in Re-
mark 5.8, ϕk has multiplicity dk in L. By Proposition 5.4(3), χL = d1χ1+d2χ2+· · · .
Evaluate both sides at g = 1 to get |G| = d21 + d22 + · · · . Since G is finite, S must
be finite. �

Corollary 6.5. |G| = d21 + d22 + · · ·+ d2r

Theorem 6.6. The set B = {(ϕk)ij | k ∈ [r], i, j ∈ [dk]} is a basis for C[G].

Proof. Schur orthogonality relations (Theorem 4.6) shows that B is an orthogonal
and hence linearly independent set. On the other hand, |B| = d21 + d22 + · · ·+ d2r =
|G| = dimC[G]. �

Theorem 6.7. {χ1, χ2, · · · , χr} is an orthornormal basis for Z(C[G]).

Proof. In light of the orthogonality of irreducible characters (Theorem 5.6), we
only need to show that the irreducible characters span Z(C[G]). By the previous
theorem, we can write f ∈ Z(C[G]) ≤ C[G] as

f =
∑
k,i,j

ckij(ϕk)ij
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Moreover, since f is constant on conjugacy classes, we can write for any x ∈ G

f(x) =
1

|G|
∑
g∈G

f(g−1xg)

=
1

|G|
∑
g∈G

∑
k,i,j

ckij(ϕk)ij(g
−1xg)

=
∑
k,i,j

ckij(
1

|G|
∑
g∈G

ϕk(g−1)ϕk(x)ϕk(g))ij

=
∑
k,i,j

ckij [(ϕk(x))]]ij

=
∑
k,i,j

ckij
Tr(ϕk(x))

dk
Iij

=
∑
k,i

ckii
1

dk
χk(x)

where we used Proposition 4.3(2). �

Corollary 6.8. The number of equivalence classes of irreducible representations of
G equals the number of conjugacy classes of G.

Proof. Combining the previous theorem with Proposition 5.5, we get

r = dimZ(C[G]) = |Cl(G)|.
�

Now we can introduce a useful tool to document information of a representation.

Definition 6.9. Recall that characters are class functions. The character table of
G is an r×r matrix whose row is indexed by the inequivalent irreducible characters
and whose column is indexed by the conjugacy classes of G. The ij-th entry is the
value χi takes at Cj .

7. Group Actions and Permutation Representation

Definitions 7.1. For a group G, a G-set is a finite set X with a group action
of G on X, which is a homomorphism σ : G→ Aut(X), where Aut(X) is the group
of all bijections X → X under composition. For g ∈ G and x ∈ X, we denote the
group action of g by g · x := σ(g)(x).

Example 7.2. Let X and Y be G-sets. Then we can make X × Y into a G-set
with the diagonal action: g · (x, y) = (g · x, g · y).

Definition 7.3. Two G-sets X and Y are isomorphic if there exists a bijection
φ : X → Y that is compatible with the action of G, i.e., for all g ∈ G, x ∈ X

φ(g · x) = g · φ(x)

Definitions 7.4. Let X be a G-set. For x ∈ X, the G-orbit of x is the set

G · x := {g · x | g ∈ G}
A subset O ⊆ X is a G-orbit if it is the G-orbit of some x ∈ X. One can check that
G-orbits partition G. We write G\X for the set of all G-orbits in X. A G-set X is
transitive if it has only one G-orbit.
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Example 7.5. Let G be a group, H a subgroup of G, and G/H the set of left
cosets of H in G. Let X = G/H, x ∈ G. G acts on G/H by left multiplication:

g · xH = gxH.

Then G/H is a transitive G-set.

The permutation representation is defined using group action.

Definition 7.6. Let C[X] denote the vector space of all C-valued functions on a
G-set X. Let g ∈ G, x ∈ X, f ∈ C[X]. The permutation representation of G
associated to the G-set X is a homomorphism ρX : G→ GL(C[X]) defined by

ρX(g)f(x) = f(g−1 · x)

Remark 7.7. For x ∈ X, let 1x denote the C-valued function on X which takes value
1 at x and 0 elsewhere. Then one can check that ρX(g)1x = 1g·x. From this it is
clear that the regular representation is a special case of permutation representation,
where we let X = G and C[X] becomes C[G].

The next statement is a natural result of the definition of permutation represen-
tations.

Proposition 7.8. If as an G-set X is isomorphic to Y , then ρX ∼ ρY .

Thanks to the following theorem, we can easily calculate the character of a
permutation representation by counting the number of fixed points.

Theorem 7.9. Let Xg denote the set {x ∈ X | g · x = x} of points in X that are
fixed by g ∈ G. Then

χρX (g) = |Xg|

8. Permutations and the Intertwining Number Theorem

In this section we prove two important theorems that prepare for the decompo-
sition of subset and partition representations into irreducibles and the calculation
of their character tables in the next section.

In view of Theorem 8.3, we shall study permutations through their cycle decom-
position. For a permutation σ of [n], we can pick an element i1 ∈ [n] and obtain a

cycle i1
σ−→ i2

σ−→ · · · σ−→ ik
σ−→ i1. We denote this cycle of length k, or a k-cycle, by

(i1, i2, · · · , ik). The cycle decomposition of σ is the cycles of σ listed in conjunction.
For example, (1,2)(3) denotes the element in S3 that takes 1 to 2, 2 to 1, and fixes
3. Note that cycles of σ partition [n]. Since the order in which we list the cycles is
arbitrary, we shall list them in the form of a partition, as defined below.

Definitions 8.1. A partition λ of [n] is a sequence λ1 ≥ · · · ≥ λl of positive
integers such that λ1 + · · ·+λl = n. We write λ = (λ1, · · · , λl). The cycle type of
σ ∈ Sn is the partition of n obtained by listing the cycle lengths of σ in decreasing
order. We sometimes use the exponential notation and write, for instance, the
partition (2, 2, 1) as (221).

Remark 8.2. Note the different use of brackets in denoting the cycle decomposition
and the cycle type of σ. For example, the permutation in S3 with cycle decompo-
sition (1,2)(3) has cycle type (2,1).
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We saw in previous sections that the conjugacy classes of a group G are of
particular interest in representation theory, as their number equals the number
of inequivalent irreducible representations of G (Corollary 6.8). One can check
that the conjugacy classes of the symmetric group are completely and conveniently
determined by cycle types.

Theorem 8.3. Two permutations are conjugate if and only if they have the same
cycle type. Consequently, the number of conjugacy classes in Sn is equal to the
number of partitions of n.

In order to prove the Intertwining number theorem, we need the following linear
transformation called an integral operator. Let X and Y be two finite sets. A
function k : X × Y → C gives rise to a linear transformation Tk : C[Y ] → C[X]
such that for f ∈ C[Y ]

(Tkf)(x) =
∑
y∈Y

k(x, y)f(y)(8.4)

For the following lemma, prove injection and notice that the two vector spaces have
equal dimensions.

Lemma 8.5. The map C[X × Y ] → Hom(C[Y ],C[X]) given by k 7→ Tk is an
isomorphism of vector spaces.

Theorem 8.6 (Intertwining number theorem). Let X and Y be finite G-sets and
(ρX ,C[X]), (ρY ,C[Y ]) the corresponding permutation representations of G. Then
Tk ∈ HomG(C[X],C[Y ]) if and only if k is constant on the orbits of X × Y , where
G acts diagonally as in Example 7.2. Consequently,

dim HomG(C[Y ],C[X]) = |G\(X × Y )|

Proof. By definition, Tk is an intertwiner if and only if for all g ∈ G and x ∈ X

(ρX(g)−1 ◦ Tk ◦ ρY (g)f)(x) = (Tkf)(x)(8.7)

We compute the left hand side

(ρX(g)−1 ◦ Tk ◦ ρY (g)f)(x) = (Tk ◦ ρY (g)f)(g · x)

=
∑
y∈Y

k(g · x, y)(ρY (g)f)(y)

=
∑
y∈Y

k(g · x, y)f(g−1 · y)

=
∑
y∈Y

k(g · x, g · y)f(y)

and the right hand side is as in (8.4). Therefore, (8.7) holds if and only if k(x, y) =
k(g · x, g · y) for all x ∈ X, y ∈ Y, g ∈ G. In other words, if and only if k takes
the same value on an orbit. Together with Lemma 8.5, we see that the dimension
of HomG(C[Y ],C[X]) is the dimension of the subspace of functions k that satisfy
(8.7), which in turn is the number of orbits of X × Y . �
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9. Partition Representations and the Combinatorical Resolution
Theorem

In this section we study partition representations by first decomposing subset
representations – a subclass of partition representations – with the intertwining
number theorem (Theorem 8.6). As another example, we decompose the partition
representations for S3, and from these examples we derive the more general combi-
natorical resolution theorem. The significance of partition representations is that
they contain the regular representation as a special case. Thus decomposing par-
tition representations of S3 simultaneously decomposes the regular representation
and results in a full classification of irreducible representations of S3 and the cal-
culation of the character table. We will be able to do this for the general Sn when
we combine the combinatorical resolution theorem and the RSK correspondence to
derive Young’s rule at the end of this paper.

Definition 9.1. For each 0 ≤ k ≤ n, let Xk denote the set of all subsets of [n]
of size k. A subset representation of Sn on Xk is a permutation representation
where σ ∈ Sn takes one k-subset of [n] to another.

Theorem 9.2. For 0 ≤ k, l ≤ n, two pairs (S, T ) and (S′, T ′) in Xk ×Xl are in
the same G−orbit if and only if |S ∩ T | = |S′ ∩ T ′|.

Proof. If (S, T ) and (S′, T ′) are in the same G-orbit, then there exists σ ∈ Sn
such that σ(S) = S′ and σ(T ) = T ′. It follows that σ(S ∩ T ) = S′ ∩ T ′ and
|S ∩ T | = |S′ ∩ T ′|.

Conversely, if |S ∩ T | = |S′ ∩ T ′|, then any bijection from S∩T to S′∩T ′ extends
to a permutation σ such that σ(S) = S′ and σ(T ) = T ′. �

Corollary 9.3. If k, l ≤ n
2 , then

dim HomSn(C[Xk],C[Xl]) = min{k, l}+ 1

Proof. By the intertwining number theorem (Theorem 8.6), dim HomSn(C[Xk],C[Xl])
is the number of orbits of Xk ×Xl, which by the above theorem is the values that
|S ∩ T | can take for S ∈ Xk and T ∈ Xl. If k, l ≤ n

2 , |S ∩ T | can be any integer
between 0 and min{k, l}. �

Theorem 9.4 (Decomposition of subset representations). There exist irreducible
representations V0, · · · , Vbn2 c such that for integers 0 ≤ k ≤ n

2 ,

C[Xk] ∼ V0 ⊕ · · · ⊕ Vk.

Proof. We make use of Remark 3.7 in this proof. By the previous corollary,
dim EndSn C[X0] = 1, so C[X0] is an irreducible representation. Let V0 = C[X0].
Since dim HomSn(C[X0],C[Xl]) = 1 for every l ≤ 1, V0 occurs with multiplicity one
in C[Xl]. Let C[X1] ∼ V0 ⊕ C[X1]0 for some C[X1]0. Then dim EndSn C[Xl]0 =
dim EndC[X1] − 1 · 1 = 2 − 1 = 1. As a result, C[X1]0 is irreducible, and we set
V1 = C[X1]0. Note that V1 also occurs in every subsequent subset representations
with multiplicity one. We can continue this process and construct representations
V2, V3, etc.. Their irreducbility is likewise deduced by noting that their spaces of
self-intertwiners always have dimension one. �
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Definitions 9.5. An ordered partition of [n] with l parts is a decomposition of
[n] into nonempty pairwise disjoint subsets:

[n] = S1 q S2 q · · · q Sl

Let λi = |Si|. Then the sequence

λ = (λ1, λ2, · · · , λl)

is the shape of the ordered partition S = (S1, S2, · · · , Sl). In more general contexts,
a weak composition of n into l parts is a sequence of positive integers λ =
(λ1, · · · , λl) such that λ1 + · · ·+ λl = n.

Let X denote the set of all ordered partitions of [n]. We define an action of
σ ∈ Sn on X in the following manner:

σ · (S1, S2, · · · , Sl) = (σ(S1), σ(S2), · · · , σ(Sl))

Definition 9.6. Denote by Xλ the set of all ordered partitions of [n] of shape λ,
then we may form a permutation representation corresponding to the action of Sn
on Xλ. For a weak composition λ of n, the partition representation of Sn of
shape λ is the permutation representation C[Xλ].

Remark 9.7. In the notations of Definition 9.1 and Definition 9.6, the Sn-set Xk

is isomorphic to the Sn-set X(k,n−k) by a canonical embedding. Thus C[Xk] and
C[X(k,n−k)] are equivalent representations by Proposition 7.8. This shows that
subset representations are a special case of partition representations.

Proposition 9.8. The partition representation C[X(1n)] is equivalent to the regular
representation of Sn.

Proof. To show C[X(1n)] ∼ C[Sn], we simply need an identification of X(1n) with
Sn. This is provided by viewing the ordered partition ({x1}, {x2}, · · · , {xn}) as the
permutation which takes (1, 2, · · · , n) to (x1, x2, · · · , xn). �

Proposition 9.9. Every partition representation is equivalent to a partition rep-
resentation whose shape is a partition.

Proof. Suppose we have a weak composition µ = (µ1, · · · , µl) of [n], then we can
find a permutation σ ∈ Sl such that λ = (µσ(1), · · · , µσ(l)) is a partition of [n].
Then note that the map Xµ → Xλ defined by (S1, · · · , Sl) 7→ (Sσ(1), · · · , Sσ(l)) is
an isomorphism of Sn-sets. By Proposition 7.8, C[Xµ] ∼ C[Xλ]. �

Example 9.10. We want to compute a character table of partition representations
of Sn (This is not the character table of Sn). The row of a character table is indexed
by characters associated to inequivalent representations, and the column is indexed
by the conjugacy classes of the represented group. In view of the previous proposi-
tion, we only need to consider all partitions of [n] for the row index. Thanks to the
fact that conjugacy classes of Sn are fully determined by cycle types (Theorem 8.3),
the column is also indexed by partitions of [n]. When n = 3, the three partitions of
[3] are (3), (2, 1), and (1, 1, 1). The character of a permutation representation at a
group element is the number of fixed points of that group element (Theorem 7.9),
so we can easily compute the following table.
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Table 1. Characters of Partition Representations of S3

(3) (2,1) (1,1,1)
C[X(3)] 1 1 1
C[X(2,1)] 0 1 3
C[X(1,1,1)] 0 0 6

We now proceed to decompose partition representations of S3 using the inter-
twining number theorem (Theorem 8.6). First we need a combinatorical interpre-
tation of Sn\(Xλ × Xµ), where λ = (λ1, · · · , λl) and µ = (µ1, · · · , µm) are weak
compositions of n.

Definition 9.11. With λ and µ as above, a λ × µ matrix is an l × m matrix
with non-negative integer entries, such that the sum of the i-th row is λi and the
sum of the j-th column is µj . We use Mλµ to denote the set of λ×µ matrices and
Mλµ the cardinality of Mλµ.

Let S = (S1, · · · , Sl) ∈ Xλ and T = (T1, · · · , Tm) ∈ Xµ. We can define a map
r : Xλ×Xµ →Mλµ, where rij(S, T ) := [r(S, T )]ij = |Si ∩ Tj |. Note that the image
of this map is indeed a λ× µ matrix:

ri1(S, T ) + · · ·+ rim(S, T ) = |Si ∩ T1|+ · · ·+ |Si ∩ Tl| = |Si| = λi

Similarly, the sum of the j-th column is µj .

Theorem 9.12. The map (S, T ) 7→ r(S, T ) induces a bijection Sn\(Xλ ×Xµ) →
Mλµ.

Proof. For any σ ∈ Sn, rij(S, T ) = |Si ∩ Tj | = |σ(Si ∩ Tj)| = |σ(Si) ∩ σ(Tj)| =
rij(σ · (S, T )), so r descends to a well-defined function Sn\(Xλ ×Xµ)→Mλµ.

To prove injectivity, suppose (S, T ), (S′, T ′) ∈ Xλ×Xµ are such that |Si ∩ Tj | =∣∣S′i ∩ T ′j∣∣ for all i and j. Then note that [n] = qi.jSi ∩ Tj and [n] = qi,jS′i ∩ T ′j are
partitions of [n] with the same shape. Then we can find σ ∈ Sn that maps each
Si ∩ Tj to S′i ∩ T ′j . It follows that σ(Si) = S′i and σ(Tj) = T ′j for all i and j, so
(S, T ) and (S′, T ′) are in the same Sn-orbit.

To prove surjectivity, let r ∈ Mλµ. Then n = qi,jrij . Construct a partition
n = qi,jAij such that |Aij | = rij for all i and j. Define Si = qjAij and Tj = qiAij ,
then Si∩Tj = Aij , and we find a pair of partitions (S, T ) such that r(S, T ) = r. �

Thanks to the previous theorem and the intertwining number theorem (Theorem
8.6), we obtain the following corollary.

Corollary 9.13. For weak compositions λ and µ of n,

dim HomSn(C[Xλ],C[Xµ]) = Mλµ

To complete the investigation of partition representations of S3, we need the
following table.

Theorem 9.14. There exist irreducible representations V(3), V(2,1) and V(1,1,1) of
S3 such that

C[X(3)] ∼ V(3)
C[X(2,1)] ∼ V(3) ⊕ V(2,1)
C[X(1,1,1)] ∼ V(3) ⊕ V ⊕2(2,1) ⊕ V(1,1,1).
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Table 2. Mλµ for partitions of 3

(3) (2,1) (1,1,1)
(3) 1 1 1

(2,1) 1 2 3
(1,1,1) 1 3 6

Proof. We are now prepared to imitate the reasoning in the decomposition of subset
representations (Theorem 9.4). Since dim EndSn(C[X(3)]) = M(3)(3) = 1, C[X(3)] is
irreducible. Let V(3) = C[X(3)]. Observe from Table 2 that V(3) has multiplicity one
in C[X(2,1)] and C[X(1,1,1)]. Therefore, there exist representations C[Xλ](3) such
that C[Xλ] ∼ C[Xλ](3) ⊕ V(3) respectively for λ = (2, 1) and (1, 1, 1). We obtain
the following updated table:

Table 3. dim HomSn(C[Xλ](3),C[Xµ](3))

(2,1) (1,1,1)
(2,1) 1 2

(1,1,1) 2 5

Observe that C[X(2,1)](3) is irreducible; we set V(2,1) = C[X(2,1)](3). Table 3 shows
that V(2,1) occurs with multiplicity two in C[X(1,1,1)](3), so there exists a represen-

tation C[X(1,1,1)](2,1) such that C[X(1,1,1)](3) ∼ V ⊕2(2,1) ⊕ C[X(1,1,1)](2,1). We easily

compute that dim EndSn(C[X(1,1,1)](2,1) = 5− 22 = 1, so V(1,1,1) := C[X(1,1,1)](2,1)
is also irreducible. �

Remark 9.15. By Proposition 9.8, C[X(1,1,1)] is the left regular representation of
S3, so V(3), V(2,1) and V(1,1,1) form a complete set of representatives for the equiv-
alence classes of irreducible representations of S3, each with dimension equal to
its multiplicity in C[X(1,1,1)] (Theorem 6.4). With the information in Table 1 and
Theorem 9.14, we can calculate the character table of S3 using Proposition 5.4 (3).

Table 4. The character table of S3

(3) (2,1) (1,1,1)
V(3) 1 1 1
V(2,1) -1 0 2
V(1,1,1) 1 -1 1

The following theorem is a generalization of our work in Theorem 9.4 and The-
orem 9.14. Note that in those examples the stated conditions are satisfied.

Theorem 9.16 (Combinatorical resolution theorem). Let (P,≤) be a partially or-
dered set, and {Uλ}λ∈P be a family of completely reducible representations of a
group G. Let Mµλ := dim HomG(Uλ, Uµ). Suppose there exist nonnegative integers
Kµλ for all µ ≤ λ in P such that Kλλ = 1 for all λ ∈ P , and for all µ, λ ∈ P ,

Mµλ =
∑

v≤µ,v≤λ

KvµKvλ.(9.17)
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Then, for each µ ∈ P , there exists an irreducible representation Vµ such that for
all λ ∈ P ,

Uλ ∼
⊕
µ≤λ

V
⊕Kµλ
µ

Proof. Let λ0 be a minimal element of P . The condition given in (9.17) gives
Mλ0λ0

= K2
λ0λ0

= 1, so Vλ0
:= Uλ0

is irreducible. Also by (9.17), Mλ0λ =
Kλ0λ0

Kλ0λ = Kλ0λ for all λ ∈ P . This shows that Vλ0
occurs in Uλ Kλ0λ

times, and there exist representations U0
λ in which Vλ0 does not occur, such that

Uλ = U0
λ ⊕ V

⊕Kλ0λ
λ0λ

.

Using a trick we saw previously in this section, let P 0 = P\{λ0}; for all µ, λ ∈ P 0,
let M0

µλ = dim HomG(U0
λ , U

0
µ). Compute to get

M0
µλ = Mλµ −Kλ0λKλ0µ =

∑
λ0<v≤λ,λ0<v≤µ

KvλKvµ

Therefore, {U0
λ}λ∈P 0 is a smaller collection of representations of G where the con-

ditions of the theorem hold. Thus the theorem follows by induction on |P |. �

10. The RSK Correspondence and Classification of Irreducible
Representations of Sn

The Robinson-Schensted-Knuth (RSK) correspondence makes use of the follow-
ing combinatorical object to find integers Kµλ that satisfy the hypothesis of the
combinatorical resolution theorem (Theorem 9.16).

Definitions 10.1. A Young diagram consists of left justified rows of boxes,
such that each row has at most as many boxes as the row above. A semistandard
Young tableau (SSYT) is a Young diagram whose boxes are filled in with positive
integers such that the entries increase strictly down each column and weakly along
each row.

The shape of an SSYT is the partition (µ1, µ2, · · · ), where µi is the number of
boxes in the i-th row. The type of an SSYT is the partition (λ1, λ2, · · · ), where λj
is the number of times the integer j appears in the tableau.

Example 10.2.

1 1 1 2 3

2 2 3

4 5

is an SSYT of shape (5,3,2) and type (3,3,2,1,1).

Notation 10.3. Let Kµλ be the number of SSYT of shape µ and type λ.

Definition 10.4. Let µ and λ be partitions of n. Then we say µ ≤ λ if µ1+· · ·+µi ≥
λ1 + · · ·+ λi for all 1 ≤ i ≤ min{l,m}. One can check ′ ≤′ is a partial order on the
set of partitions of n, and we call it the reverse dominance order.

We have the following observations.

Lemma 10.5. (1) Kλλ = 1 for all partitions λ.
(2) For all partitions µ and λ, Kµλ > 0 only if µ ≤ λ.



PERMUTATION REPRESENTATIONS 17

We omit the proof of the RSK correspondence, as it is a bit involved and purely
combinatorical. See [1] for an elegant proof via the Viennot-RSK algorithm.

Theorem 10.6 (RSK correspondence). There is a bijection A → (P,Q) from the
set of all λ × µ matrices to pairs of SSYT P and Q such that P and Q have the
same shape v, P is of type µ and Q is of type λ.

Theorem 10.7 (Young’s Rule). For each partition v of n, there exists an irre-
ducible representation Vv of Sn such that for all partitions λ of n,

C[Xλ] ∼
⊕
v≤λ

V ⊕Kvλv

Proof. Let the Mµλ in Theorem 9.17 be the number Mµλ of λ × µ matrices. By
the RSK correspondence we can write

Mµλ =
∑
v

KvλKvµ =
∑

v≤λ,v≤µ

KvλKvµ

where Lemma 10.5 (2) allows us to omit the zero summands. Together with Lemma
10.5 (1), the hypotheses in the combinatorical resolution theorem (Theorem 9.17)
are satisfied. This completes the proof. �

Note that v ≤ (1n) for all partitions v of n. Recall that C[X(1n)] ∼ C[Sn],
and the left regular representation contains all irreducible representations up to
equivalence. We obtain:

Corollary 10.8.

C[Sn] ∼ C[X(1n)] ∼
⊕
v

V
⊕Kv,(1n)
v

In particular, {Vv} as v runs over all partitions of n is a complete collection of
irreducible representations of Sn, each with degree Kv,(1n).
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