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Abstract. The Rota-Welsh Conjecture claims that the coefficients of specific

polynomials associated to certain mathematical objects called matroids form
a log concave sequence. This paper will define matroids and the associated

polynomials referenced in the conjecture. It will then prove the conjecture for

the special class of matroids representable over the complex field and explain
how the strategies for this special case can be used to tackle parts of the general

case of the conjecture.
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1. Introduction

A matroid is an object that abstractly captures combinatorial information related
to independence. Matroids can be constructed from sets of vectors, graphs, and
many other situations or exist abstractly on their own unrelated to any underlying
structure. Every matroid has an associated characteristic polynomial associated
with it, the coefficients of which were conjectured to form a log concave sequence
in the Rota-Welsh Conjecture.

Surprisingly, for a special class of matroids the Rota-Welsh Conjecture can be
reformulated into a problem in intersection theory, a field that had already been
studied for some time before the Rota-Welsh Conjecture and has many classical
results that can be utilized to prove the conjecture. More recently, Adiprasito,
Huh, and Katz were able to prove that the main result gained from the special
case’s connection to intersection theory still hold when we are not in the special
case. They were not able to use intersection theory to prove it, so the proof is quite
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hard, but the motivation for the theorem they do prove comes from the special case
we focus on here.

In this paper, we will rigorously define matroids and the characteristic polyno-
mial, explain the connection of matroids to hyperplane arrangements, leverage this
connection to construct the Chow rings that form the basis of intersection theory,
and finally prove the Rota-Welsh Conjecture for a special class of matroids using
intersection theory and the Chow ring of a matroid.

2. Unimodality and Log Concavity

Unimodality and log concavity are properties that show up frequently for se-
quences in algebra and combinatorics. The Rota–Welsh Conjecture asserts that
certain sequences are log concave, so we will first identify these properties here.

Definition 2.1. A finite sequence a0, a1, ..., an is unimodal if there is some i with
0 ≤ i ≤ n such that a0 ≤ a1 ≤ · · · ≤ ai ≥ · · · ≥ an−1 ≥ an.

Definition 2.2. A finite sequence a0, a1, ..., an is log concave if a2i ≥ ai−1ai+1 for
all 0 < i < n.

Proposition 2.3. If a finite, positive sequence a0, a1, ..., an is log concave, then it
is unimodal.

Proof. If the sequence was not unimodal, then there would be some i such that
ai−1 ≥ ai ≤ ai+1 with at least one of the inequalities being strict. This would
mean a2i < ai−1ai+1, so the sequence would not be log concave. �

Example 2.4. The coefficients of (x + 1)n are log concave. To check for the kth
coefficient, we get

(n!)2

(k!)2(n− k!)2
≥ (n!)2

(k + 1)!(k − 1)!(n− k + 1)!(n− k − 1)!
.

After moving things around, that becomes

1 ≥ k

k + 1

n− k
n− k + 1

,

which is true because both fractions on the right are less than one.

3. Algebraic Varieties

Let k be an algebraically closed field. Affine n-space over k is the set of n-
tuples of elements in k, denoted An

k or An. Each point P in An
k has coordinates

(a1, ..., an).
For any function f ∈ k[x1, ..., xn], we can assign a member of k to each point of

An
k using f(P ) = f(a1, ..., an). We let

Z(f) = {P ∈ An
k |f(P ) = 0}.

This is the zero set of f . For some collection of functions T ⊂ k[x1, ..., xn], we let

Z(T ) = {P ∈ An
k |f(P ) = 0 for all f ∈ T}.

This forms the set of zeros common to all members of T . A ⊂ An
k is an algebraic

set if A = Z(T ) for some T .

Proposition 3.1. We can construct a topology using algebraic sets by having their
complements be the open sets. This is called the Zariski topology.
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Proof. First, we have Z(0) = An
k and Z(1) = ∅, so both the empty set and all of

An
k are open. Z(S) ∪ Z(T ) = Z(ST ) where ST = {st|s ∈ S and t ∈ T}, so a finite

intersection of open sets is open. Finally,
⋂
Z(Ti) = Z (

⋃
Ti), so an arbitrary union

of open sets is open. �

Definition 3.2. An algebraic set A is irreducible in the Zariski topology if for any
pair of subsets A1 and A2 closed in A where A = A1∪A2, either A = A1 or A = A2.

Definition 3.3. An affine variety is a subset of An
k which is closed and irreducible

in the Zariski topology. An open subset of an affine variety is a quasi-affine variety.

In an analogous way, we can define projective varieties over projective space.

Definition 3.4. Let k be an algebraically closed field. Projective n-space, denoted
Pn

k , is the set An
k − {(0, ..., 0)} quotiented by all lines through the origin.

Similarly, for a vector space V , P(V ) is the set V − 0 quotiented by all lines
through the origin.

The construction of projective varieties and quasi-projective varieties follows a
similar path to the affine case, so I will not repeat it here. However, there are two
notable differences worth focusing on. First, in order for a polynomial in k[x0, .., xn]
to be zero on the lines, it must be homogeneous, or have each term be the same
degree. Second, we can often use homogeneous coordinates to represent the lines.
This is written as (x0 : x1 : · · · : xn) to emphasize that we care about the ratio
of the coordinates and not the exact numbers. For the purposes of this paper, an
algebraic variety is either an affine or projective variety.

4. Matroids

A matroid is a mathematical object that extends the ideas of independent vector
sets to abstract sets. There are several equivalent ways to define a matroid, each
of which gives different benefits. We will define it here using flats.

Definition 4.1. Let E be any set. Take F, F ′ ∈ {F1, ..., Fn} ⊂ 2E . We say F ′

covers F if F ( F ′ but there is no i such that F ( Fi ( F ′.

Definition 4.2. A matroid M is a finite set E and a collection of subsets of E, F
satisfying properties:

(M1) E ∈ F .
(M2) For all F, F ′ ∈ F , F ∩ F ′ ∈ F .
(M3) If F ∈ F and {F1, ..., Fn} is all members of F which cover F , then the set

{F1 \ F, ..., Fn \ F} partitions E \ F .

We call the members of F flats.

It is useful to define a closure operation on any subset of X ⊂ E as

(4.3) cl(X) =
⋂

X⊂F∈F
F.

There will always be some F containing X because E is a flat, and cl(X) is a flat
itself by (M2). This closure operation gives the minimal flat containing X.

Example 4.4. The uniform matroid Ur,m is the matroid over the set E = {1, ...,m}
such that all flats F ⊂ E have either |F | < r or F = E.
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Example 4.5. Let E = {1, 2, 3} and F = {{}, {1}, {2}, {3}, {1, 2, 3}}. This forms
the uniform matroid U2,3. We can also construct this matroid in another way using a
set of vectors in some ambient vector space if we let E = {〈1, 0〉, 〈0, 1〉, 〈1, 1〉} ⊂ R2

and flats be the subsets such that no elements outside the subset are contained in
the span of vectors in the subset. We can see that the flat structure is the same as
the abstract construction we started with.

Example 4.6. A partition matroid is a direct sum of uniform matroids.
For example, we could take the direct sum of U2,3 on {1, 2, 3} and U1,2 on {4, 5}

to get a partition matroid over {1, 2, 3, 4, 5}. The flats of this matroid would be
{}, {1}, {2}, {3}, {1, 2, 3}, {4, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 3, 4, 5}.

Definition 4.7. A matroid M is simple if every subset of E with cardinality less
than 2 is a flat.

Proposition 4.8. Every matroid has a minimal flat.

Proof. By (M2),
⋂

F∈F F is a flat contained in every other flat. �

If the empty set is not a flat, then there exist some elements that are members
of every flat. These elements are called loops. A matroid is loopless if it has no
loops or equivalently if the empty set is a flat.

Proposition 4.9. If the empty set is a flat and F covers the empty set, then any
flat containing one member of F contains all members of F .

Proof. Suppose F ′ contains one element of F but F 6⊂ F ′. We have ∅ ( F ∩F ′ ( F ,
which is a contradiction to F covering the empty set. �

Elements contained in the same flat covering the empty set are parallel.
For any matroid M , we can constrict its simplification M̂ by first removing

all loops and then combining all parallel elements into a single element, making
appropriate changes to the flats.

Definition 4.10. A lattice is a partially ordered set such that for any x, y in the
lattice, they have a least upper bound x∧y and a greatest lower bound x∨y, which
are called meet and join, respectively.

For a matroid M , the flats form a poset using containment. This poset becomes
the lattice of flats, L(M), when we define X ∧Y = X ∩Y and X ∨Y = cl (X ∪ Y ).

Example 4.11. We can represent the lattice structure of matroids using diagrams
showing containment. For the matroid U2,3, we have the lattice:

{1, 2, 3}

{1} {2} {3}

{}
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For the partition matroid U2,3 ⊕ U1,2 described in Example 4.6, we have a more
complicated lattice of flats:

{1, 2, 3, 4, 5}

{1, 2, 3} {1, 4, 5} {2, 4, 5} {3, 4, 5}

{4, 5}

{1} {2} {3}

{}

This matroid is not simple because {4} and {5} are not flats. If we simplify this
matroid, we obtain an isomorphic lattice (the choice to place {4, 5} higher up than
the single element flats is purely cosmetic). This is the power of simplifying a
matroid in general: the lattice of flats keeps the same structural information.

Every finite lattice has a minimal element that is the meet of all its members.
Elements that cover this minimal element are called atoms.

Definition 4.12. A lattice is geometric if it has both of these properties

(1) Every member of the lattice is a join of atoms
(2) If x and y cover x ∨ y, then x ∧ y covers x and y.

Proposition 4.13. The lattice of flats for any simple matroid is a geometric lattice.

Proof. From our definition of simple lattices, every single element set is a flat and
will be and atom. Thus, any flat is a join of the atoms of each of its members.

Suppose x and y cover x∨y. If x ⊂ y, then x∨y = x, but x does not cover itself.
Thus, we have some e ∈ x such that e /∈ y. From (M3), there is a flat ȳ which
covers y and contains e. We have e ∈ x∩ ȳ and y ⊂ ȳ, so x∨ y = x∩ y ( x∩ ȳ ⊂ x.
Because x covers x ∨ y, we must have x ∩ ȳ = x, which means x ⊂ ȳ. This means
x ∧ y ⊂ ȳ, but because ȳ covers y and x is not contained in y, ȳ = x ∧ y and x ∧ y
covers y. Swapping x and y shows x ∧ y covers x. �

Because the lattice of flats for a matroid is isomorphic to the lattice of its sim-
plification, this shows that all matroids have a geometric lattice of flats.

Definition 4.14. If F is a flat in a matroid, the rank of F , r(F ), is the maximal
l for which their is a sequence of nested flats F0 ( F1 ( · · · ( Fl = F . The rank of
the whole matroid, r(M), is the rank of the maximal flat E.

The Möbius function is a useful combinatorial function that can be defined on
any poset. We will define it here only on a lattice of flats. The existence and
uniqueness of this function is beyond the scope of this paper, but working with the
function in the context we require only takes straightforward computations.
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Definition 4.15. The Möbius function is the function µL(M) : L(M)×L(M)→ Z
satisfying µL(M)(x, x) = 1, µL(M)(x, y) = 0 if x 6⊂ y, and∑

x⊂z⊂y
µL(M)(x, z) = 0

if x ⊂ y.

Due to a theorem of Rota, a matroid’s lattice of flats being geometric implies

(−1)r(y)−r(x)µL(M)(x, y) > 0.

Definition 4.16. Let M be a loopless matroid. The characteristic polynomial of
M is given by

χM (t) =
∑

F∈L(M)

µL(M)(∅, F )tr(M)−r(F )

Proposition 4.17. For any matroid, χM (1) = 0.

Proof. We have

χM (1) =
∑

F∈L(M)

µL(M)(∅, F )1r(M)−r(F ) =
∑
∅⊂F⊂E

µL(M)(∅, F ) = 0. �

This polynomial captures information about the matroid and is deeply con-
nected to chromatic polynomials of graphs for matroids constructed from them.
Importantly, it is a monic polynomial of degree r(M). If we write χM (t) =
a0 + a1t+ · · ·+ ar(M)t

r(M), the coefficients alternate sign. The Rota–Welsh conjec-
ture states that the sequence |a0|, |a1|, ..., |ar(M)| is log concave.

Example 4.18. (The Rota–Welsh Conjecture on U2,3) Let M = U2,3 and let
L = L(M). From the definition of the Möbius function, we can see if x covers ∅,
then µL(∅, x) = −1. To compute the characteristic polynomial, we now only need
µL(∅, {1, 2, 3}), which must equal 2 from the identity defining the Möbius function.
We can now evaluate the sum to obtain the characteristic polynomial, which we
simplify by combining the three equivalent single-element flats:

χM (t) = µL(∅, ∅)tr(M)−r(∅)+3µL(∅, {1})tr(M)−r({1})+µL(∅, {1, 2, 3})tr(M)−r({1,2,3})

= t2 − 3t+ 2

Because 32 ≥ 1 · 2, the Rota–Welsh Conjecture holds.

Example 4.19. (The Rota–Welsh Conjecture on a Partition Matroid) Let M =

U2,3 ⊕ U1,2 described in Example 4.6 and let M̂ be its simplification by turning

{4, 5} 7→ {4}. Let L be the lattice of flats of M̂ . We can work out values of µL(∅, x)
by starting from the bottom of the lattice and moving upwards to get

µL(∅, ∅) = 1,

µL(∅, {1}) = µL(∅, {2}) = µL(∅, {3}) = µL(∅, {4}) = −1,

µL(∅, {1, 2, 3}) = 2,

µL(∅, {1, 4}) = µL(∅, {2, 4}) = µL(∅, {3, 4}) = 1,

µL(∅, {1, 2, 3, 4}) = −2.

Again, grouping by equivalent flats, we evaluate the characteristic polynomial:

χM̂ (t) = µL(∅, ∅)tr(M̂)−r(∅)+4µL(∅, {1})tr(M̂)−r({1})+µL(∅, {1, 2, 3})tr(M̂)−r({1,2,3})
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+3µL(∅, {1, 4, 5})tr(M̂)−r({1,4,5}) + µL(∅, {1, 2, 3, 4, 5})tr(M̂)−r({1,2,3,4,5})

= t3 − 4t2 + 5t− 2

This time, we get two inequalities for the Rota–Welsh Conjecture, 42 > 1 · 5 and
52 > 4 · 2, both of which hold.

5. Hyperplane Arrangements and Complements

Definition 5.1. Let V be an n dimensional real or complex vector space. A
hyperplane arrangement A in V is a finite set of n − 1 dimensional subspaces of
V . We have an associated topological space M(A) := V \ ∪H∈AH which is the
complement of the arrangement.

A significant amount of information about a hyperplane arrangement is captured
in the way the subspaces intersect. For example, three distinct hyperplanes in
R3 differ only by a change of basis except when the hyperplanes have a mutual
intersection of an entire line. Like for matroids, one way to remember most of the
important structure of an arrangement while ignoring unimportant aspects is to
form a lattice.

Definition 5.2. For a hyperplane arrangement A, the intersection lattice, L(A),
is the lattice on the partially ordered set of all intersections of hyperplanes ordered
by reverse inclusion. For two elements x and y, their join is their intersection and
their meet is the span of their union. The atoms of this lattice are the hyperplanes
and each element is a join (intersection) of these hyperplanes.

Example 5.3. Let V = R3 with coordinates (x1, x2, x3). Consider the arrange-
ment of the coordinate hyperplanes W1 = {x1 = 0}, W2 = {x2 = 0}, and
W3 = {x3 = 0}. From this, we get the lattice:

Point {x1 = x2 = x3 = 0}

Lines {x1 = x2 = 0} {x1 = x3 = 0} {x2 = x3 = 0}

Planes {x1 = 0} {x2 = 0} {x3 = 0}

Space R3

Example 5.4. Let V = R3 with coordinates (x1, x2, x3). Consider the arrange-
ment of the hyperplanes W12 = {x1 = x2}, W13 = {x1 = X3}, W23 = {x2 = x3}.
This particular arrangement is called the real rank 2 braid arrangement and has
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lattice structure:

Line {x1 = x2 = 3}

Planes {x1 = x2} {x1 = x3} {x2 = x3}

Space R3

The lattice of this hyperplane arrangement is identical to the matroid U2,3 we
investigated in the previous section, giving a hint to a connection between matroids
and hyperplane arrangements that we will investigate later.

Hyperplane arrangements exist in affine space, which is fine for some purposes
but not for others. In order to take advantage of projective space, we will define De
Concini-Procesi arrangement models. This construction pushes our arrangements
into projective space while maintaining the topology of M(A).

Definition 5.5. Let A be an arrangement of real or complex hyperplanes in V
with intersection lattice L. Let L be all members of the lattice with the minimal
element removed. We define a map:

Ψ :M(A)→ V ×
∏
X∈L

P(V/X)

x 7→
(
x, (span(x,X)/X)X∈L

)
.

This will be an open embedding. The closure of the image is the De Concini-Procesi
arrangement model for A denoted YA.

The effect of this process is recording the relationship between each point of
M(A) and each member of the intersection lattice.

Example 5.6. Consider the arrangement A of the coordinate planes in R3 given
in Example 5.3. We can ignore factors of P0 in the codomain because they do not
add any additional info, so we are mapping into R3×P2×P1×P1×P1. For some
(x, y, z) ∈M(A), we get

(x, y, z) 7→ ((x, y, z), (x : y : z), (x : y), (x : z), (y : z)).

This map is simple to write explicitly, but rather complex for seeing what is actually
going on.

Example 5.7. Consider the rank-2 braid arrangement A given in Example 5.4.
Again, we can ignore factors of P0 in the codomain, so we are mapping into R3×P1.
Unlike our first example, the map is not as nice or informative to write explicitly,
though the process for doing so is still a straightforward computational endeavor.
However, the result is easier to parse: the component of the image in P1 captures
the “direction” a point is from the line x1 = x2 = x3.
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6. Representable Matroids

We saw in Example 5.5 that it is possible to use vectors to capture the structure
of a specific matroid. When this happens, we say a matroid is representable over a
field.

Definition 6.1. Let V be a finite-degree vector space over some field and let E be
some collection of vectors in V . For F ⊂ E, we define the closure of F in E, cl(F ),
to be all members of E that lie in the span of F .

Because of its reliance on span, we see that the closure operation preserves
containment and that F ⊂ cl(F ) for all F .

Proposition 6.2. Let V be a finite-degree vector space over some field and let E
be some collection of vectors in V . If we let F be the collection of all subsets F ⊂ E
such that F = cl(F ), then the set E with flats F forms a matroid.

Proof. We will go through each property.

(M1) cl(E) = E, so E ∈ F .
(M2) Let A and B be two members of F . A ∩ B ⊂ A, so cl(A ∩ B) ⊂ cl(A) = A.

Similarly, cl(A ∩B) ⊂ B. Thus, we have A ∩B ⊂ cl(A ∩B) ⊂ A ∩B, which
means A ∩B ∈ F .

(M3) Take A,B ∈ F . If B covers A, then the subspace spanned by the elements
of B must have a degree larger than the degree of A. For v ∈ E \A, A∪ {v}
will span a subspace with a degree one larger than that of A. Because of
this, any strict subspace of that span containing the span of A must be A, so
cl(A ∪ {v}) covers A. Thus, all members of E \ A are contained in at least
one member of F that covers A.

Now suppose some v /∈ A is contained in two distinct members of F
covering A, B and B′, which we can choose without loss of generality such
that B 6⊂ B′. Because v ∈ B ∩B′, B ∩B′ 6= A, so we have A ( B ∩B′ ( B.
We have already shown that B ∩ B′ ∈ F , so we have a contradiction of B
covering A. Therefore, we satisfy the desired partition relation.

�

Can we represent all matroids in this way? Unfortunately, we are not able to do
that. While many matroids are representable over any field, some are representable
only over fields with specific characteristic and others over no fields. In fact, almost
all matroids are representable over no field as proven in [11]. However, we will focus
now only on matroids that are representable over C because of their connection to
hyperplane arrangements, so for the remainder of this paper a representable matroid
will be a matroid that is representable over C. The methods we use for these
matroids can be extended to non-representable matroids, but it requires work to
build the tools analogous to the ones we get much more readily for the representable
case.

Definition 6.3. If v is a nonzero vector in Cn, then we define the orthogonal
complement of v, v⊥, to be all vectors w such that v · w = 0 using the usual dot
product. We see v⊥ is an n− 1 dimensional subspace of Cn, so it is a hyperplane.

Proposition 6.4. For nonzero vectors v, v1, ..., vn in a vector space over C, the
following are equivalent:

• v is contained in span(v1, ...vn)
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• v⊥ contains v⊥1 ∩ · · · ∩ v⊥n
Proof. Suppose v is contained in span(v1, ...vn). We can write v = µ1v1+ · · ·+µnvn
for some scalars µ1, ..., µn. For any w ∈ v⊥1 ∩ · · · ∩ v⊥n , w · vi = 0 for all i. This gives

w · v = µ1(w · v1) + · · ·+ µn(w · vn) = 0.

Thus, all such w are contained in v⊥ and v⊥ contains v⊥1 ∩ · · · ∩ v⊥n .
Suppose v⊥ contains v⊥1 ∩ · · · ∩ v⊥n . We can choose an orthonormal basis of

our vector space w1, .., wk such that w1, ..., wi span the span of v, v1, ..., vn and
wi+1, ..., wk span the intersection of their orthogonal compliments. Because that
intersection is contained in v⊥, v · wj = 0 for i < j ≤ k. We can write

v =
∑

1≤j≤k

(v · wj)wj =
∑

1≤j≤i

(v · wj)wj ,

so we see v is in span(v1, ...vn). �

Proposition 6.5. If M is a representable matroid over C with nonzero vectors
v1, ..., vn, then its lattice of flats is isomorphic to the intersection lattice of the
hyperplane arrangement v⊥1 , ..., v

⊥
n .

Proof. Both lattices have atoms for which all other elements are the join of them,
and these atoms are v1, ..., vn and v⊥1 , ..., v

⊥
n . The join of atoms in the former being

the same as a join of corresponding elements in the latter is a direct consequence
of Proposition 6.4. �

The benefit of this construction is that we have encoded the meaningful com-
binatorial information relevant to the characteristic polynomial of a representable
matroid into an algebraic object that has additional structure that has already been
studied. We can exploit this connection to learn more about the matroid. This fact
also patches one small issue in this construction: vectors must be nonzero. The
zero vector is a loop, and we care only about loopless matroids for the Rota-Welsh
conjecture, so the omission causes no problems.

7. Chow Rings

The most helpful consequence we get from the connection between matroids and
hyperplane arrangements is a set of strong results from the field of intersection
theory. To fully appreciate this connection, we must define two types of Chow
rings.

Definition 7.1. Let F0 ( F1 ( · · · ( Fk be a sequence of nested flats of some
matroid. The collection of such flats, F = {F0, F1, ..., Fk} is called a flag.

Definition 7.2. Let M be a loopless matroid over E and let F be the non-empty
proper flats of M . The Chow ring of M , A∗ = A∗(M), is the graded ring given by
the quotient of Z[xF ]F∈F by the ideals associated to two relations:

• ∑
a∈F∈F

xF =
∑

b∈F ′∈F

xF ′ .

• xFxF ′ = 0 when the flats F and F ′ are not comparable in the poset lattice.

If r = r(M) − 1, we get a unique isomorphism deg : Ar → Z if we define
deg(xF1

xF2
...xFr

) = 1 when {F1 ( F2 ( · · · ( Fr} is a flag in F .
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Example 7.3. Let M = U2,3. We have F containing the three single-element flats,
so we will work with Z[x1, x2, x3]. The quotient relations give

• x1 = x2 = x3,
• xixj = 0 for all i 6= j, which with the first relation means x2i = 0 for all i.

This quotient is rather straightforward, giving A∗(M) = Z[x]/(x2).

This Chow ring is a concrete structure but does not offer much motivation on its
own. However, our second type of Chow ring is more understood by another field.

Definition 7.4. Let X be an algebraic variety. The group of cycles, Z(X), is the
free abelian group generated by subvarieties of X.

Definition 7.5. Let t0, t1 ∈ P1 and Φ be a subvariety of P1 × X which is not
contained in any {t}×X for fixed t. We define Rat(X) to be the subgroup generated
by

〈Φ ∩ {t0} ×X〉 − 〈Φ ∩ {t1} ×X〉
Two cycles Z0, Z1 ∈ Z(X) are rationally equivalent if Z0 − Z1 ∈ Rat(X).

The meaning of this equivalence is that we are able to slice our variety in P1×X
along two fixed places in P1 to get each desired cycle in X. We are transforming
one cycle to another using a strict method of transformation.

Definition 7.6. Quotienting the group of cycles by this equivalence relation forms
the Chow group on X, A(X).

If Y is a subvariety of X, then [Y ] is the class in the Chow group associated to
Y .

The best way to define multiplication for this type of structure is to take inter-
sections of these classes, but we run into a few issues. This operation is currently
not well defined, but we are able patch up the problems with a few fixes.

Definition 7.7. Let X be an algebraic variety with subvarieties A and B. We say
A and B intersect transversely at p if A, B, and X are smooth at p and the tangent
spaces1 of A and B at p together span the tangent space of X at p.

We say A and B are generically transverse if A and B intersect transversely at
p for all p ∈ A ∩B.

Subvarieties being generically transverse captures a sense of maximal intersec-
tion. In Figure 1, the tangent spaces of A and B at A∩B will only span A, so they
do not intersect transversely. The tangent spaces of A′ and B at either intersection
point will span all of A2, so A′ and B are generically transverse.

Lemma 7.8 (Moving Lemma). Let X be a smooth quasi-projective variety.

(1) For all classes α, β ∈ A(X), there are generically transverse cycles A,B ∈
Z(X) such that [A] = α and [B] = β.

(2) The class [A ∩B] is independent of choice of such cycles A and B.

The proof of this lemma is hard and is done by Fulton in [8]. As a consequence,
we now have enough to define the Chow ring rather than just the Chow group.

1The tangent space of X at p is informally the set of all lines through p tangent to the X.
This can be defined rigorously and only using algebra as is done in section 2.1.2 of [12], though

the informal notion is fine for our limited use of tangent spaces.
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B

A A’

Figure 1. Affine varieties A and A′ intersecting B in A2.

Theorem 7.9. Let X be a smooth quasi-projective variety. Equipping the Chow
group with multiplication given by

[A][B] = [A ∩B]

for generically transverse A and B creates a commutative, graded ring called the
Chow ring.

Again, this is also proven by Fulton. The Chow ring for algebraic varieties is the
basis for the field of intersection theory, a field that has been studied deeply on its
own. Feichtner and Yazvinsky establish in [7] that the Chow ring A∗(M) is the same
as the chow ring for the De Concini-Procesi arrangement model of the hyperplane
arrangement with corresponding intersection lattice we defined earlier. Because
these coincide, we are able to take parts of the Kähler package, a collection of three
classical result in intersection theory, and apply their consequences to matroids.
This method was first established by Adiprasito, Huh, and Katz.

We must define a few ideas in intersection theory to take advantage of the desired
results.

Definition 7.10. A function c : 2E → R≥0 is strictly submodular if c(E) =
c(∅) = 0 and C(A ∪ B) + c(A ∩ B) < c(A) + c(B) whenever the subsets A,B are
incomparable.

Submodular functions exist. We can define a function l mapping submodular
functions into the chow ring:

l(c) =
∑
F∈F

c(F )xF ∈ A1(M)R

The elements of the form l(c) are called ample and make up the ample classes
in A1(M)R. From this, we get the two results from intersection theory that are
essential for proving the Rota-Welsh conjecture.

Theorem 7.11. Let M be a representable matroid of rank r = d+1, let l ∈ A1(M)R
be ample, and let 0 ≤ k ≤ d

2 . We :

(1) Hard Lefschetz theorem: Multiplication by ld−2k gives an isomorphism

Lk
l : Ak(M)R → Ad−k(M)R.

(2) Hodge-Riemann relations: The bilinear form

Qk
l : Ak(M)R ×Ak(M)R → R

defined by Qk
l (a, b) = (−1)ka ·Lk

l b is positive definite on the kernel of l ·Lk
l .
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Intersection theory was a well developed field with analogous results to theorem
7.11 known for Chow rings of projective varieties well before their connection to
representable matroids was made. Because representable matroids have Chow rings
isomorphic to that of the projective variety constructed in Proposition 6.5, the proof
of this theorem by by Adiprasito, Huh, and Katz in [1] is mostly just reframing
the classical results in intersection theory into the language of the matroid’s Chow
ring.

8. Proving the Rota-Welsh Conjecture for Representable Matroids

Even though we want to prove something about the coefficients of the character-
istic polynomials of matroids, we will find it convent to work with a related reduced
characteristic polynomial.

Definition 8.1. Let M be some matroid with characteristic polynomial. χM (t).
The reduced characteristic polynomial, χM (t), is the quotient χM (t)/(t − 1). The
binomial (t− 1) always divides χM (t) by Proposition 4.17.

For some matroid, we will define χM (t) = a0 + a1t + ... + adt
d and χM (t) =

b0 + b1t+ ...+ bd−1t
d−1. We will also extend the second sequence using two extra

terms: b−1 = bd = 0. We now get two very simple facts about the relationship of
these coefficients using a few algebraic computations

(8.2) ai = bi−1 − bi,

(8.3) bi =

d−i−1∑
j=0

(−1)ja1+j .

From (8.3), we can see the terms of b0, ..., bd−1 alternate sign. If b0, ..., bd−1 is
log concave, the extended sequence will be as well because b20 ≥ 0 and b2d−1 ≥ 0.
We can use (8.2) to get a useful result.

Proposition 8.4. If b0, ..., bd−1 is log concave, then a0, ..., ad is log concave.

Proof. We need to show

(bi−1 − bi)2 ≥ (bi−2 − bi−1)(bi − bi+1)

for 0 < i < d. Expanding, we get

b2i−1 − 2bi−1bi + b2i ≥ bi−2bi − bibi−1 − bi−2bi+1 + bi+1bi−1.

We can break this into four smaller inequalities

b2i−1 ≥ bi−2bi,

b2i−1 ≥ bi−2bi,
bi−1bi ≤ bi−1bi,
bi−1bi ≤ bi−2bi+1.

The first two are a direct consequence of the log concavity of b0, ..., bd−1 and the
third is just an equality. The fourth one can be seen as true by multiplying both
sides by bi−1bi, which is a non-positive value so we flip the sign, giving us

(b2i−1)(b2i ) ≥ (bi−2bi)(bi−1bi+1)

which again is true because b2i−1 ≥ bi−2bi and b2i−1 ≥ bi−2bi from log concavity. �
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Finally, we will define a sequence µ0, ..., µd−1 where µi = |bd−i−1|. When nec-
essary, we will specify the matroid these are associated to by writing µi(M). Log
concavity of the positive, reversed sequence implies log concavity of the coefficients
and will reduce some notation later.

We also able to take advantage on induction on a matroid by using truncation
to reduce the rank of a matroid without changing its characteristic polynomial too
much.

Definition 8.5. The truncation of a matroid M over E with lattice of flats L,
written tr(M), is the matroid over E with lattice of flats L \ {F ∈ L|E covers F}.
If the rank of M is r > 1, then the rank of tr(M) is r − 1.

Because this only changes the very top of the matroid, the coefficients of the
characteristic polynomial will only change slightly: the terms will all be decreased
by a degree and the linear coefficient in the truncated matroid’s characteristic
polynomial might not match the linear coefficient in the untruncated matroid’s
characteristic polynomial. The good thing about this is that (8.3) ignores the
linear coefficient, so we get an equality

µi(tr(M)) = µi(M) for i < r(M).

We will now define a function on the flats of a matroid that is related to the
sequence µi.

Definition 8.6. Let M be a loopless matroid over {1, ..., n}. We define the function
Dk(M) to be the number of flags F = {F1 ( F2 ( · · · ( Fk} satisfying three
properties:

(1) Fi is a proper, non-empty subset of E for all i
(2) F is initial, or r(Fi) = i for all i
(3) F is descending, or min(F1) > min(F2) > · · · > min(Fk) > 1, where

min(F ) is the smallest integer in the flat F .

Lemma 8.7. For all k, Dk(M) = µk.

The proof of this done by Adiprasito, Huh, and Katz is too technical to explain
in this paper, but boils down showing equality holds for the constant term using a
combinatorial argument and then repeatedly truncating the matroid to prove this
for each other µi. The full proof can be found in [1]. We will calculate and verify
this fact for a few matroids.

Example 8.8. Let M = U2,3. It has reduced characteristic polynomial χM (X) =
x − 2. For µ0 = 1, we have the one empty flag. For µ1 = 2, we have three rank 1
flats, but min({1}) 6> 1, leaving the two single-flat flags {2} and {3}.

Example 8.9. Let M be the simplification of the partition matroid U2,3⊕U1,2 over
{1, 2, 3, 4} as described in Example 4.19. It has reduced characteristic polynomial
χM (X) = x2 − 3x+ 2. For µ0 = 1, we have the one empty flag again. For µ1 = 3,
we have the three single-flat flags {2}, {3}, and {4}. For µ2 = 2, there are nine
flags satisfying the first two requirements, but the third requirement leaves only
{{4} ( {2, 4}} and {{4} ( {3, 4}}.

After all of this, we are ready to put the Chow ring to use. We will assume all
matroids are now over the set {1, ..., n} as this is just a relabeling of the elements
in the base set.



THE ROTA-WELSH CONJECTURE FOR REPRESENTABLE MATROIDS 15

Definition 8.10. For a matroid M over E. For some i ∈ E, we can define to
elements in the chow ring A∗(M) by their preimages before we quotient:∑

i∈F
xF 7→ α,

∑
i/∈F

xF 7→ β.

Note that in these summations, i is fixed and we are summing over all flats F that
contain or do not contain i. Because of the choice of quotient relations, α and β do
not depend on the choice of i.

Definition 8.11. If F = {F1 ( F2 ( · · · ( Fk} is a flag, then the element in the
Chow ring denoted xF is given by xF = xF1xF2 · · ·xFk

.

Proposition 8.12. Let M be a representable matroid with r = r(M)− 1. For all
k ≤ r, let Fk be the set of all descending flags of proper nonempty flats of length k.
Then

βk =
∑

F∈Fk

xF

Proof. We will prove this by induction. For k = 1, we observe that the definition
of β is precisely the sum over all single flat descending flags if we let i = 1 because
a single flat flag is descending if the flat does not contain 1.

Now assume the claim holds for a fixed k < r. For some descending flag F =
{F1 ( · · · ( Fk}, set i = min(F1). Then we have

βxF =
∑
i/∈F

xFxF .

None of the F from the sum contain F1 as a subset because i ∈ F1, so the flats
are only comparable, and thus xFxF1

is nonzero, when F ⊂ F1. Because i /∈ F ,
i = min(F1) < min(F ). This gives

βxF =
∑
i/∈F

xFxF =
∑

F⊂F ′∈Fk+1

xF ′ .

From our assumption, we get

βk+1 =
∑

F∈Fk

βxF =
∑

F∈Fk

 ∑
F⊂F ′∈Fk+1

xF ′

 .

All descending flag of length k + 1 flats will be counted once in the double sum
because removing the first flat will result in a unique descending flag of length k.
Thus,

βk+1 =
∑

F∈Fk

 ∑
F⊂F ′∈Fk+1

xF ′

 =
∑

F∈Fk+1

xF . �

Proposition 8.13. Let M be a representable matroid with r = r(M) − 1. Let
F = {F1 ( F2 ( · · · ( Fk} be a flag of length k < r.

(1) If F is not initial, then xFα
r−k = 0.

(2) If F is initial, then xFα
r−k = αr.
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Proof. (1) If k = r − 1, then the rank of Fk must be r or the flag would be
initial. Take some i /∈ Fk and consider

xFk
α =

∑
i∈F

xFk
xF .

The only flats containing Fk are itself and the maximal flat in the matroid,
neither of which are possible values of F in the sum. Because i ∈ F ,
F 6⊂ Fk. Thus, for all F , F and Fk are incomparable and xFk

xF = 0, so
the sum is zero.

Now suppose the proposition hold for all k′ > k. Choose i /∈ Fk and
consider

xF1
xF2
· · ·xFk−1

xFk
αr−k =

∑
i∈F

xF1
xF2
· · ·xFk−1

xFk
xFα

r−k−1.

Because i ∈ F , F 6⊂ Fk, xFk
xF is nonzero only when Fk ⊂ F . However, if

this is true, then the flag {F1 ( · · · ( Fk ( F} is a noninitial flag of length
k + 1, so by assumption

xF1xF2 · · ·xFk−1
xFk

xFα
r−k−1 = 0.

Thus, we have

xF1
xF2
· · ·xFk−1

xFk
αr−k =

∑
i∈F

xF1
xF2
· · ·xFk−1

xFk
xFα

r−k−1 = 0.

(2) If k = 1, pick any i ∈ F1, and we have

αr =
∑
i∈F

xFα
r−1.

Every flat that is not F1 contains it so it will have rank greater than 1 and
form a non-initial flag. The product of those flats with αr−1 is zero by the
first part of this proposition. This leaves αr = xF1α

r−1.
Now suppose the proposition hold for all k′ < k. Pick i ∈ Fk \Fk−1. We

can write

αr = xF1xF2 · · ·xFk−1
αr−k+1 =

∑
i∈F

xF1xF2 · · ·xFk−1
xFα

r−k.

Because i /∈ Fk−1, xFk−1
xF is only nonzero if Fk−1 ⊂ F . The only rank

k flat containing both Fk−1 and i is Fk because we could otherwise take an
intersection to get a flat with a rank between k − 1 an k, a contradiction.
Thus, when F 6= Fk, the flag {F1 ( · · · ( Fk−1 ( F} is not initial and its
product with αr−k is zero. This gives

αr =
∑
i∈F

xF1xF2 · · ·xFk−1
xFα

r−k = xF1xF2 · · ·xFk−1
xFk

αr−k. �

Proposition 8.14. Let M be a representable matroid with r = r(M) − 1. Then
deg(αr) = 1.

Proof. Choose any maximal flag of non-empty proper flats F = {F1 ( · · · ( Fr}.
Using Proposition 8.13, we have

αr = xF1α
r−1 = xF1xF2α

r−2 = xF1xF2 · · ·xFr = xF .

From the definition of the deg map, we have deg(αr) = deg(xF ) = 1. �
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Lemma 8.15. Let M be a representable matroid with r = r(M) − 1. For all
k ≤ r(M), µk = deg(αr−kβk).

Proof. Let Fk be the set of all descending flags of proper nonempty flats of length
k and let F ′k ⊂ F be the subset of F which are also initial flags. Using Propositions
8.12 and 8.13,

αr−kβk = αr−k
∑

F ,∈F

FF =
∑

F∈F ′k

FFα
r−k =

∑
F∈F ′k

αr.

Combining this with Proposition 8.14 and Lemma 8.7 gives

deg(αr−kβk) =
∑

F∈F ′k

deg(αr) =
∑

F∈F ′k

1 = |F ′k| = Dk(M) = µk. �

Now that we have established such results about α and β, we will prove an
inequality using the Chow ring that resembles the inequality of log concavity.

Lemma 8.16. Let M be a representable matroid and let r = r(M)− 1. Let l1 and
l2 be elements of A1(M)R with l2 ample. We have

deg(l1l1l
r−2
2 )deg(l2l2l

r−2
2 ) ≤ deg(l1l2l

r−2
2 )2.

Proof. If l1 = cl2 for c ∈ R, we get

deg(l1l1l
r−2
2 )deg(l2l2l

r−2
2 ) = deg(c2lr2)deg(l22) = deg(clr2)2 = deg(l1l2l

r−2
2 )2,

which shows the inequality is true.
Now suppose l1 is not a multiple of l2. Because l2 is ample, we can define the

bilinear form

Q1
l2 : A1(M)R ×A1(M)R → R, (a1, a2) 7→ −deg(a1l

r−2
2 a2).

The Hodge-Riemann relations tell us that Q1
l2 is negative definite on the span of

l2 and positive definite on its orthogonal compliment. Because l1 is not contained in
the span of l2, the restriction of Q1

l2 to their span will be an indeterminate quadratic
form. We can choose an basis e1 and e2 of the span of l1 and l2 that satisfy the
relations Q1

l2(e1, e1) = −1, Q1
l2(e2, e2) = 1, and Q1

l2(e1, e2) = Q1
l2(e2, e1) = 0. In

this case, we can write l1 = ae1 + be2 and l2 = ce1. We have

deg(l1l1l
r−2
2 )deg(l2l2l

r−2
2 ) = Q1

l2(l1, l1)Q1
l2(l2, l2)

= Q1
l2(ce1, ce1)Q1

l2(ae1 + be2, ae1 + be2) = −c2(−a2 − b2),

deg(l1l2l
r−2
2 )2 = Q1

l2(l1, l2)2 = Q1
l2(ae1 + be2, ce1)2 = a2c2.

Combining these gives

deg(l1l1l
r−2
2 )deg(l2l2l

r−2
2 ) = c2a2 − c2b2 ≤ c2a2 = deg(l1l2l

r−2
2 )2,

which is what we wanted to show. �

Proposition 8.17. Let M be a representable matroid and let r = r(M) − 1. Let
l1 be an element of A1(M)R. We have

deg(l1l1β
r−2)deg(βββr−2) ≤ deg(l1ββ

r−2)2.

Proof. This proof would be easy if β was ample, but unfortunately it is not. How-
ever, in [1], it is proven that for some ample l ∈ A1(M)R, β + tl is ample for all
real t > 0. We can put this into the inequality in Lemma 8.16 with l2 = β + tl and
take the limit as t→ 0 to see the inequality holds as desired. �
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Lemma 8.18. Let M be a representable matroid. For all 0 < k < r(M)− 1,

µk−1µk+1 ≤ µ2
k

Proof. We will prove this by induction on r(M). If r(M) = 2, the claim is vacuously
true.

Now suppose the claim is true for all matroids of rank r. For a matroid M of
rank r + 1, we can consider the rank r matroid tr(M) to see the claim is true for
0 < k < r − 1, so we need only show this for k = r. Using Proposition 8.17 with
α = l1, we get the inequality

deg(α2βr−2)deg(β2βr−2) ≤ deg(α2βr−2)2.

Using Lemma 8.15, we get
µr−1µr+1 ≤ µ2

r.

This completes induction. �

Theorem 8.19. If M is a representable matroid, then the coefficients of the char-
acteristic polynomial form a log concave sequence.

Proof. This is a direct consequence of Lemma 8.18 and Proposition 8.4. �

As we saw before, this barely makes a dent in the true Rota-Welsh conjecture
because representable matroids are a very special case of matroids. However, to
eventually prove it for all matroids, Adiprasito, Huh, and Katz were able to show
the content of Theorem 7.8 applies to the chow ring of all matroids in [1]. Nothing
else we proved in this section requires the matroid to be representable, so proving
the theorem for a general matroid is the same as we have done in this section. The
simple representable case gives the motivation for such a technique that is not able
to rely on the direct connection to intersection theory.
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