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Abstract. This paper introduces the Lovasz local lemma, which is a tool

in the probabilistic method, and the concept of k-coloring. The paper then
presents two applications of the tools in graph theory, lower bounds of Ramsey

numbers and linear arboricity of k-regular graphs.
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1. Introductions

The probabilistic method is a nonconstructive method used in combinatorics.
When proving that an object with a certain property exists, we can prove that the
probability of finding an object with that property in a specified set of objects is
strictly greater than zero. The tool is widely used in graph theory, which studies
mathematical models that reflect pairwise relationship between objects. In this
paper, we shall introduce a result called the Lovasz local lemma, which tells us that,
as long as a set of events are “mostly” independent with each other, the probability
that none of the events occur is positive. This lemma is useful for finding bounds
for certain properties, and we shall apply this to two concepts in graph theory: the
lower bound of Ramsey numbers and the upper bound of linear arboricity in regular
graphs. Throughout the proofs, we shall also utilize the concept of k-coloring, which
labels elements in a set using “colors”.

2. The Lovasz Local Lemma

In this section, we shall introduce a proof of the Lovasz local lemma. The proof
of the lemma utilizes some basic definitions of graph theory.

Definition 2.1. A graph G (V,E) is a collections of vertices V and edges E, where
E is a set of unordered pairs (i, j) with i, j ∈ V , i 6= j. We say that two vertices
i, j ∈ V are adjacent if (i, j) ∈ E.

1



2 CATHY WANG

The local lemma utilizes the definition of a dependency graph, which relates a
graph to random events.

Definition 2.2. A dependency graph on events A1, A2, · · · , An is a graph G (V,E)
with V = [n] and each event Ai is dependent with its neighbors Aj ∈ {Aj | (i, j) ∈
E} and independent with its non-neighbors Aj ∈ {Aj | (i, j) 6∈ E}.

Lemma 2.3 (Lovasz Local Lemma). Let A1, A2, · · · , An be events in a probability
space (Ω,F , P ). Let G (V,E) be a dependency graph on the events. If there exist
real numbers x1, · · · , xn ∈ [0, 1) such that for all i ∈ N, i ≤ n, we have that P (Ai) ≤
xi ·

∏
(i,j)∈E

(1− xj), then,

P

(
n∧

i=1

Ai

)
≥

n∏
i=1

(1− xi)

Proof. We shall first prove by induction that for any S ⊂ V = [n], |S| < n, and
any i 6∈ S, we have

P

Ai |
∧
j∈S

Aj

 < xi

(1) The base case is when |S| = 0. When S = ∅, we have that
∧
j∈S

Aj = Ω.

Therefore,

P

Ai |
∧
j∈S

Aj

 = P (Ai) ≤ xi ·
∏

(i,j)∈E

(1− xj) < xi

(2) We shall next prove the inductive step. Suppose that the statement is true
for all S with |S| < k for some k ∈ N, k < n. Next, consider any S0 ⊂ V
with |S0| = k. Fix i 6∈ S0. Let S1 = {j ∈ S0| (i, j) ∈ E} and S2 = S0 \ S1.
Thus, we have that Ai is dependent with events corresponding with vertices
in S1 and independent with those in S2. This leads to

P

Ai |
∧
j∈S0

Aj

 =
P
(
Ai ∧

(∧
j∈S1

Aj

)
|
∧

j∈S2
Aj

)
P
(∧

j∈S1
Aj |

∧
j∈S2

Aj

) .

We know that, because Ai is independent with all elements in S2, we
have that

P

Ai ∧

 ∧
j∈S1

Aj

 | ∧
j∈S2

Aj

 ≤ P

Ai |
∧
j∈S2

Aj


= P (A)

≤ xi ·
∏

(i,j)∈E

(1− xj) .
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Let S1 = {j1, j2, · · · , jm} for some m ≤ k. We have that

P

 ∧
j∈S1

Aj |
∧
j∈S2

Aj

 = P

Aj1 ∧Aj2 ∧ · · · ∧Ajm |
∧
j∈S2

Aj


= P

Aj1 |Aj2 ∧ · · · ∧Ajm ∧
∧
j∈S2

Aj


· P

Aj2 |Aj3 ∧ · · · ∧Ajm ∧
∧
j∈S2

Aj


· · ·P

Ajm |
∧
j∈S2

Aj


=

1− P

Aj1 |Aj2 ∧ · · · ∧Ajm ∧
∧
j∈S2

Aj


·

1− P

Aj2 |Aj3 ∧ · · · ∧Ajm ∧
∧
j∈S2

Aj


· · ·

1− P

Ajm |
∧
j∈S2

Aj


≥ (1− xj1) (1− xj2) · · · (1− xjm)

≥
∏

(i,j)∈E

(1− xj) .

where the second equation comes from the fact that

P (A1 | A2 ∧A3 ∧ ·An ∧B) · P (A2 | A3 ∧ · · · ∧An ∧B) · · ·P (An | B)

=
P (A1 ∧A2 ∧ · · · ∧An ∧B)

P (A2 ∧A3 ∧ · · · ∧An ∧B)
· P (A2 ∧A3 ∧ · · · ∧An ∧B)

P (A3 ∧ · · · ∧An ∧B)
· P (An ∧B)

P (B)

=
P (A1 ∧A2 ∧ · · · ∧An ∧B)

P (B)

= P (A1 ∧A2 ∧ · · · ∧An ∧B | B)

= P (A1 ∧A2 ∧ · · · ∧An | B)

Therefore, P

Ai |
∧
j∈S

Aj

 ≤ xi.

Thus, we have that

P

(
n∧

i=1

Ai

)
= (1− P (A1)) ·

(
1− P

(
A2 | A1

))
· · ·

(
1− P

(
An |

n−1∧
i=1

Ai

))

≥
n∏

i=1

(1− xi)
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�

A direct corollary of the local lemma is its symmetric version.

Corollary 2.4. Let A1, A2, · · · , An be events in a probability space (Ω,F , P ) such
that each event is pairwise independent with all but at most d events, and P (Ai) < p
for all i ∈ N, i ≤ n. If ep (d + 1) < 1, then

P

(
n∧

i=1

Ai

)
> 0

Proof. If d = 0, we have that P

(
n∧

i=1

Ai

)
= (1− p)

n
> 0.

If d > 0, Let G (V,E) be a dependency graph on the events A1, · · · , An. Accord-
ing to the local lemma, if we can find real numbers x1, · · · , xn ∈ (0, 1) such that for

all i, P (Ai) ≤ xi ·
∏

(i,j)∈E (1− xj), we have that P

(
n∧

i=1

Ai

)
≥
∏n

i=1 (1− xi) > 0.

Let x1 = · · · = xn =
1

d + 1
∈ (0, 1). We have that (1− x)

d
=

(
1− 1

d + 1

)d

<

1

e
. It follows that

P (Ai) < p <
1

e (d + 1)
< x (1− x)

d
= xi ·

∏
(i,j)∈E

(1− xj)

Therefore, P

(
n∧

i=1

Ai

)
> 0. �

3. k-Colorings and Ramsey Theory

In this section, we shall introduce the concept of k-coloring. The tool is a function
that assigns a finite set with different “colors”, thereby catagorizing elements in
the set. If the function assigns the colors randomly, we can prove the existence of
certain types of set by calculating whether the probability of a certain kind of color
arrangement is greater than 0. Here is a formal definition of k-coloring.

Definition 3.1. A k-coloring is a function f : S → {0, 1, · · · , k − 1} where S is a
finite set and the numbers 0, 1, · · · , k − 1 each represent a color.

This is a very useful method for the Ramsey theory, which is built off the concept
that, given a large enough number of people, there must exist a number of people
who know each other or a number of people who are strangers to each other. Before
we talk about how to apply the k-coloring method to Ramsey theory, we shall make
this concept precise utilizing graph theory.

Definition 3.2. A graph G′ (V ′, E′) is a subgraph of G (V,E) if V ′ ⊂ V and
E′ ⊂ {(i, j) ∈ E | i, j ∈ V ′}. The subgraph G′ is denoted as G[V ′] if E = {(i, j) ∈
E | i, j ∈ V ′}.

Definition 3.3. A complete graph is a graph G (V,E) where E contains all possible

edges. We have that E = {(i, j) | i, j ∈ V } and |E| =
(|V |

2

)
. A complete graph with

n vertices is denoted by Kn.
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Definition 3.4. A clique of a graph G (V,E) is a subset S1 of V such that G[S1]
is a complete graph. An independent set of a graph G (V,E) is a subset S2 of V
such that no two vertices in S are adjacent in G.

These concepts allow us to define the Ramsey number:

Definition 3.5. The Ramsey number R (k, l) is the smallest number n such that for
all graphs with n vertices, there must exist a clique of k vertices or an independent
set of l vertices.

Ramsey theory states that all Ramsey numbers exist. We can show this by
proving an upper bound for the Ramsey numbers.

Theorem 3.6. R (k, l) ≤
(
k + l − 2

k − 1

)
.

To do this, we shall first prove the inductive step:

Lemma 3.7. R (k, l) ≤ R (k, l − 1) + R (k − 1, l).

Proof. Let G (V,E) be a graph such that |V | = R (k, l − 1)+R (k − 1, l). Let v ∈ V .
Because the total number of vertices that v can be either adjacent or nonadjacent
to is |V | − 1 = R (k, l − 1) + R (k − 1, l) − 1, we have that either v is adjacent to
a subset of vertices V1 ⊂ V such that |V1| = R (k − 1, l) or v is nonadjacent to a
subset of vertices V2 ⊂ V such that |V2| = R (k, l − 1).

Suppose the first case is true. We know that G[S] contains either a clique of
k − 1 vertices or an independent set of l vertices. If the former is true, because v
is adjacent to all vertices in the k − 1 clique, we know that G[S ∪ {v}] a clique of
k vertices. If the latter is true, we have an independent set of l vertices. The same
argument holds for the second case.

From the above reasoning, G must contain a clique of k vertices or an independent
set of l vertices. Thus, R (k, l) ≤ R (k, l − 1) + R (k − 1, l). �

The proof for Lemma 3.6 is simple using Lemma 3.7:

Proof. (1) The base case is when either k or l equals to 1. We know that
R (1, l) = R (k, 1) = 1 for all k, l ∈ N because any vertex is a clique of 1

vertex. We also know that
(
l−1
0

)
=
(
k−1
k−1
)

= 1. Thus, the statement is true
for the base case.

(2) Let k, l be positive integers such that k, l > 1. Suppose the theorem is valid
for all k′, l′ such that k′ + l′ < k + l. We have that

R (k, l) ≤ R (k, l − 1) + R (k − 1, l)

≤
(
k + l − 3

k − 1

)
+

(
k + l − 3

k − 2

)
=

(
k + l − 2

k − 1

)
�

Remark 3.8. A restatement of the Ramsey number using 2-coloring would be,
R (k, l) is the smallest number n such that, given any complete graph G (V,E)
with n vertices, every possible 2-coloring of E contains either a complete subgraph
Kk whose edges are all colored with 0 or or a complete subgraph Kl whose edges
are all colored with 1.



6 CATHY WANG

k-coloring allows us to obtain a fairly straightforward proof for R (3, 3).

Example 3.9. R (3, 3) = 6.

Proof. Consider the 2-coloring of K6 ([6], E), f : E → {0, 1}. Pick a vertex
1 ∈ [6] from the graph and consider the edges that extend from that vertex,
(1, 2) , (1, 3) , (1, 4) , (1, 5) , (1, 6). Because the vertex is connected to 5 vertices,
there must exist three vertices with edges that share the same color. Suppose with-
out loss of generality that f (1, 2) = f (1, 3) = f (1, 4) = 0 . Then, consider the
edges that connect the vertices 2, 3, 4. If, for example, f (2, 3) = 0, the vertices
1, 2, 3 form a monochromatic subgraph of color 0. Otherwise, the vertices 2, 3, 4
form a monochromatic subgraph of color 1. Thus, R (3, 3) ≤ 6.

Then consider the 2-coloring of K5 ([5], E′), f : E′ → {0, 1}. If f (1, 2) =
f (2, 3) = f (3, 4) = f (4, 5) = f (5, 1) = 0 and f (1, 3) = f (1, 4) = f (2, 4) =
f (2, 5) = f (3, 5) = 1, we have that there does not exist a complete subgraph K3

whose edges are monochromatic. Therefore, R (3, 3) > 5.
Overall, R (3, 3) = 6. �

4. Lower Bounds of Ramsey Numbers

We shall first prove a lower bound for diagonal Ramsey numbers utilizing k-
coloring and probability.

Theorem 4.1. R (k, k) > 2
k
2 for all k ≥ 3.

Proof. Consider a random 2-coloring of the edges of a graph K
b2

k
2 c

for some k ≥ 3,

f : b2 k
2 c → {0, 1} such that P (f (i, j) = 0) = P (f (i, j) = 1) = 1

2 for all i, j ∈ b2 k
2 c.

It follows that, for any set S with k vertices, the probability that all edges on

K
b2

k
2 c

[S] are monochromatic is 1
2
(k
2)−1. We know that there exists

(b2 k
2 c
k

)
choices

of S. Therefore, the probability of at least one set of S is monochromatic is
(b2 k

2 c
k

)
·

1
2
(k
2)−1. Because (

b2 k
2 c
k

)
· 1

2

(k
2)−1

< 21−
k2+k

2 · 2
k2

2

k!
< 1,

we have that the probability that none of the sets have a monochromatic coloring is

greater than 0, meaning that there exists a graph with b2 k
2 c vertices such that there

neither exists a clique nor an independent set of k vertices. Therefore, R (k, k) > 2
k
2

for all k ≥ 3. �

An improved lower bound utilizes the symmetric local lemma.

Theorem 4.2. If e · 21−(k
2) ·
(
k
2

)(
n−2
k−2
)
< 1, then R (k, k) > n.

Proof. Consider a random 2-coloring of the edges of Kn, f : [n]→ {0, 1} such that
P (f (i, j) = 0) = P (f (i, j) = 1) = 1

2 for all i, j ∈ [n]. Let Si be a set of k vertices
and ASi

be the event that Kn[Si] is monochromatic. We know that there exists a
total of

(
n
k

)
events possible.

For two events ASi
and ASj

to be dependent, they have to share an edge. Thus,

they must share 2 vertices. Thus, we have that d ≤
(
k
2

)(
n−2
k−2
)
− 1. We also know

that, just like in the proof of Lemma 4.1, P (ASi
) = 21−(k

2). Therefore, applying
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Lemma 2.4, we know that, if there exists some Kn such that there does not exist a
monochromatic coloring, n satisfies

e · 21−(k
2) ·
(
k

2

)(
n− 2

k − 2

)
< 1

Therefore, R (k, k) > n. �

One could also obtain lower bounds of asymptotic Ramsey number using the
Lovasz local lemma. Here, we will discuss the lower bound of Ramsey numbers
that guarantee either a triangle or a independent set of size l.

Theorem 4.3. There exists a constant c such that R (3, l) ≥ c l2

log2l .

Proof. Consider a random 2-coloring of the edges of Kn, f : [n]→ {0, 1} such that
P (f (i, j) = 0) = p and P (f (i, j) = 1) = 1− p for all i, j ∈ [n]. Let Si be a set of
3 vertices and ASi

be the event that Kn[Si] is monochromatic. Let Tj be a set of
l vertices and BTj be the event that Kn[Tj ] is monochromatic. Therefore, we have

that P (ASi
) = p3, P

(
BTj

)
= (1− p)

l
, the number of ASi

is
(
n
3

)
and the number

of BTj is
(
n
l

)
.

We shall create a dependency graph G (V,E) consisting of events ASi
and BTj

.
For each vertex ASi

it is connected to at most 3n other AS . This is because, in order
for ASi

to be dependent with AS , they must share one edge. It is also connected
to at most

(
n
l

)
BT . This is a trivial bound given that there are only

(
n
l

)
events of

BT . According to the same logic, for each vertex BTj , it is connected to at most(
l
2

)
n AS and at most

(
n
l

)
BT .

In order to apply the local lemma, all we need to do is find real numbers

x1, · · · , x(n
3)+(n

l)
such that for all i ∈ N, i ≤

(
n
3

)
+
(
n
l

)
, P (Ai) ≤ xi ·

∏
(i,j)∈E

(1− xj).

Because all ASi
are identical and all BTj

are identical, we can assign the same x to
all ASi

and the same y to all BTj
. Thus, we need to find p, x, y ∈ [0, 1) and n ∈ N

that satisfy

p3 ≤ x (1− x)
3n

(1− y)(
n
l)

(1− p)
l ≤ y (1− x)(

l
2)n (1− y)(

n
l)

The process of finding the values is quite tedious and is a detour from our
discussion of probabilistic methods, and therefore will be omitted from this paper.
However, when l ≥ 20

√
n log n, we can find p = 1

3
√
n

, x = 1

9n
3
2

and y = 1

(n
l)

that

satisfy the inequalities.

Thus, when n ≤ l2

(40 log l)2
, we have that l ≥ 20

√
n log n, and there either exists a

monochromatic triangle or a monochromatic subgraph of l vertices. Therefore, we
have c = 1

1600 . �

Remark 4.4. This lower bound is fairly close to the best possible because R(3, l) =

Θ

(
l2

log2 l

)
, the upper bound of which was proved by Ajtai, Kolmos, Sezmeredi,

and the lower bound of which was proved by Jeong Han Kim.
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5. Preliminaries of Linear Arboricity

We shall move on to another application of the probabilistic method in graph
theory, which is linear arboricity. To reach the result we want, we must introduce
some definitions.

We shall first define the concept of linear arboricity:

Definition 5.1. A walk in a graph G (V,E) is a finite sequence W = v0e1v1 · · · ekvk
where vi ∈ V for all 0 ≤ i ≤ k, ej ∈ E for all 1 ≤ j ≤ k and ej = (vj−1, vj). A cycle
is a walk W where v0 = vk. A path is a walk where vi 6= vj for all 0 ≤ i < j ≤ k.
The

Definition 5.2. Two vertices i, j of a graph G are connected if there exists a walk
between i and j.

Definition 5.3. A linear forest is a graph in which every connected component is
a path.

Definition 5.4. The linear arboricity la (G) of a graph G is the minimum number
of linear forests in G, whose union is the set of all edges in G.

We shall next provide some more definitions related to the proofs in the next
section:

Definition 5.5. The degree of a vertex v of graph G (V,E), deg (v), is the number
of edges connected to v.

Definition 5.6. A d-regular graph G (V,E) is a graph where deg (v) = d for all
v ∈ V .

Definition 5.7. A directed graph, or a digraph, D (V,E) is a collections of vertices
V and edges E, with E being a set of ordered pairs (i, j) with i, j ∈ V . The indegree,
d−D (v), of a vertex v in graph D is the number of elements in {(i, v) | (i, v) ∈ E}.
The outdegree, d+D (v), of a vertex v in graph D is the number of elements in {(v, j) |
(v, j) ∈ E}. A d-regular digraph is a digraph D (V,E) where d−D (v) = d+D (v) = d
for all v ∈ V . The linear arboricity of a directed graph G is denoted as dla (G).

Definition 5.8. The directed girth of a digraph D (V,E) is the minimum length
of a directed cycle in D.

Definition 5.9. A subgraph G′ (V ′, E′) of a graph G (V,E) is a spanning subgraph
if V ′ = V .

Definition 5.10. A set of edges M is a matching of a graph G (V,E) if M ⊂ E
and no two edges in M share a vertex. A matching is perfect if for every v ∈ V ,
there exists an edge in M that connects v.

Definition 5.11. A graph G (V,E) is bipartite if its vertices V can be partitioned
into two sets X,Y such that each edge connects a vertex from X and another vertex
from Y .

Definition 5.12. Let G (V,E) be a graph. Let S ⊂ V . The neighboring set of S
in G is the set {v | u ∈ S, v ∈ V (u, v) ∈ E}. We denote this set N (S).
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6. Linear Arboricity

Now, we can introduce a conjecture about linear arboricity, which was brought
forth in Akiyama, Exoo and Harary (1981):

Conjecture 6.1. The linear arboricity of every d-regular graph, la (G), is
dd + 1e

2
.

This conjecture can be transformed into one that deals with directed graphs,
because it is quite easy to see that the edge of any 2d-regular graph can be oriented
in a way such that the resulting digraph is a d-regular digraph, and a (2d− 1)-
regular graph is simply a subgraph of the 2d-regular graph. Therefore, the digraph
version of Lemma 6.1 can be stated as

Conjecture 6.2. The linear arboricity of every d-regular digraph, dla (G), is d+1.

Unfortunately, the conjecture does not yet have a proof, but we shall prove an
upper and lower bound for the linear arboricity.

The lower bound can be obtained without the probabilistic method.

Theorem 6.3. For any d-regular graph G (V,E), la (G) ≥ dd+1e
2 .

Proof. We know that each d-regular graph G (V,E) has |V |d2 edges, and the number
of edges of any linear forest is at most |V | − 1. Therefore,

la (G) ≥

|V |d
2

|V | − 1
>

d

2

Therefore, la (G) ≥ dd + 1e
2

. �

We shall move on to the upper bounds of linear arboricity of regular graphs.
We can see from the proofs below that it is simpler to find upper bounds for the
directed version. To obtain the bounds, we shall first prove that the conjecture
holds for graphs with certain structures, specifically high girths, and then apply
this result to general directed graphs.

Theorem 6.4. Let D (V,E) be a d-regular directed graph with directed girth g ≥
8ed. Then, we have that dla (G) = d + 1.

In order to prove the theorem, we need a few lemmas:

Lemma 6.5. There exists a perfect matching for all k-regular bipartite graphs.

Proof. We shall first prove that for any bipartite graph G (V,E) with the partition
(X,Y ), if for all S ⊂ X we have |N (S) | ≥ |S|, then there exists a matching for G
that connects all vertices in X by induction:

(1) When |V | = 2 and |E| = 1, we know that V is partitioned into ({1}, {2}).
E itself is a matching for G that contains {1}.

(2) Suppose the statement holds for all graphs with |V | ≤ i and |E| < j for
some i, j ∈ N. Let G (V,E) be any bipartite graph with |V | = i and |E| = j.
There are two cases of G:
(a) Suppose for all S ⊂ X, |N (S) | > |S|. Let e ∈ E. We have that

G′ (V,E \ {e}) still satisfies the conditions. Thus, there exists a match-
ing M in G′ which connects all vertices in X. Therefore, M satisfies
the conditions for G.
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(b) Suppose that there exists some S ⊂ X such that |N (S) | = S. Con-
sider the subgraphs G1 = G[S∪N (S)] and G2 = G[(X \ S)∪(Y \N (S))].
We can check that the two subgraphs satisfy the condition:

(i) For G1, take any set T ⊂ S. By definition of neighboring sets,
we know that NG (T ) ⊂ NG (S). Therefore, NG1

(T ) = NG (T ).
Because |NG (T ) | ≥ |T |, we have that |NG1

(T ) | ≥ |T |.
(ii) For G2, suppose that there exists some T ′ ⊂ (X \ S) such that
|NG2 (T ′) | < |T ′|. We know that NG2 (T ′) = NG (T ′) \ N (S)
and that N (S ∪ T ′) = NG (T ′) ∪NG (S). Therefore,

|NG (S ∪ T ′) | = |NG (T ′)∪NG (S) | = |NG (S) |+ |NG2
(T ′) |

Because |S| = |NG (S) | and |T ′| > |NG2
(T ′) |, we have that

|S ∪ T ′| = |S|+ |T ′| > |NG (S ∪ T ′) |
This contradicts with our assumption that for S ∪ T ′ ⊂ X,
|NG (S ∪ T ′) | ≥ |S ∪ T ′|. Therefore, there does not exist some
T ′ ⊂ (X \ S) such that |NG2

(T ′) | < |T ′|.
Therefore, there exists some matching M1,M2 for the subgraphs re-
spectively. The set M1 ∪M2 is a matching for G that connects all
vertices in X.

Therefore, according to induction, if for all S ⊂ X we have |N (S) | ≥ |S|, then
there exists a perfect matching for G.

Next, we shall consider a k-regular bipartite graph G with the partition (X,Y ).
Let nX , nY be the number of edges connecting to vertices in X and Y respectively.
Because G is bipartite, we know that nX = nY . Because G is k-regular, nX = k|X|
and nY = k|Y |. Therefore, |X| = |Y |.

Let S ⊂ X. Let E1, E2 be the collection of edges that are incident with vertices
in S and N (S) respectively. For each edge e ∈ E1, we know that it is incident with
a vertex in N (S). Therefore, e ∈ E2, and so E1 ⊂ E2. Because G is k-regular,
we have that |E1| = k|S| and |E2| = k|N (S) |, which leads to that |S| ≤ |N (S) |.
Therefore, there exists a matching M of the k-regular bipartite graph that contains
all vertices in X. Because all edges in M connect a vertex in X and a vertex in
Y , we have that |NM (X) | = |X| = |Y |. Therefore, NM (X) = Y . Thus, M is a
perfect matching.

�

Lemma 6.6. The edges of a k-regular bipartite graph G (V,E) can be decomposed
into k perfect matchings.

Proof. We shall prove this lemma by induction.

(1) When k = 1, we know that G is a perfect matching itself.
(2) Suppose that for some i ∈ N, all i-regular bipartite graphs G (V,E) can be

decomposed into i perfect matchings. Let G0 (V,E) be an (i + 1)-regular
bipartite graph. According to Lemma 6.5, there exists a perfect matching
M for G0 (V,E). Consider the graph G′ (V,E \ {M}). Because M is a
perfect matching, G′ is a i-regular graph. Therefore, G′ can be decomposed
into i perfect matchings, M1, · · · ,Mi. It follows that G0 can be decomposed
into M,M1, · · · ,Mi, which are i + 1 perfect matchings.

Therefore, the edges of a k-regular bipartite graph G (V,E) can be decomposed
into k perfect matchings. �
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Lemma 6.7. Let D (V,E) be a d-regular digraph. It can be partitioned into d
pairwise 1-regular spanning subgraphs.

Proof. Consider a graph H (V ′, E′) where |V ′| = 2|V |. We can partition V ′ into
X,Y such that |X| = |Y | = |V |. Let f : X → V, g : Y → V be bijective cor-
respondences between the sets of vertices. We define E′ = {(u, v) | u ∈ X, v ∈
Y, (f (u) , g (v)) ∈ E}. Therefore, there exists a bijection h : E′ → E where
h (u, v) = (f (u) , g (v)). We also know that H is d-regular. According to Lemma
6.6, H can be decomposed into d perfect matchings. Consider any perfect matching
Mi for 1 ≤ i ≤ d. For every u′ ∈ V , there exists one and only one u ∈ X such that
f (u) = u′. Therefore, there exists one and only one v ∈ Y such that (u, v) ∈ M .
This indicates that there exists one and only one v′ ∈ V such that f (v) = v′. Con-
sider the graph Gi (V, f (Mi)). We have that degGi

(u) = 1. Thus, Gi is a 1-regular
spanning subgraph of G. Because {Mi} are partitions of H and |Mi| = d, we have
that {Gi} are d pairwise 1-regular spanning subgraphs of G. �

Lemma 6.8. Let G (V,E) be a graph with maximum degree d. Let V1, V2, · · · , Vr

be pairwise disjoint and that V1 ∪ V2 ∪ · · · ∪ Vr = V such that |Vi| ≥ 2ed for all
1 ≤ i ≤ r. Then, there exists a set of vertices W ⊂ V where W is an independent
set, and contains one vertex from each Vi.

Proof. We shall first prove that this is true if |Vi| = d2ede for all 1 ≤ i ≤ r. We
shall pick a vertex vi from each Vi randomly such that it forms a set W . The

probability that any vertex v is picked is P (v) =
1

d2ede
. Let f be any edge f ∈ E.

Let Af be the event that both vertices of the edge are in W . Let the two vertices

be named i, j. We have that P (Af ) ≤ P (i)P (j) = P 2 (v) =
1

d2ede2
. We also

know that the event Af is dependent on the events that correspond to the edges
which connect vertices that belong to the same set as i or j. This leads to that

Af is dependent with fewer than 2d2eded events. Because e · 1

d2ede2
· 2d2eded ≤ 1,

we know from Lemma 2.4 that P
(∧

Af

)
> 0. Thus, there exists a set of vertices

W which contains one vertex from each Vi, such that there does not exist an edge
between any of the vertices in W . Therefore, W is an independent set.

If there exists some Vi such that |Vi| > d2ede, we know that there exists a
subgraph V ′i of Vi such that |V ′i | = d2ede. We can then consider the subgraph
G[
⋃

1≤i≤r V
′
i ]. The above tells us that there exists some W ⊂

⋃
1≤i≤r Vi that is an

independent set containing one vertex from each V ′i . This W satisfies that W ⊂ V ,
is an independent set, and contains one vertex from each Vi. �

We are now ready to prove Lemma 6.4.

Proof. As Lemma 6.7 shows, D can be partitioned into d pairwise 1-regular span-
ning subgraphs, D1, D2, · · · , Dd. Because each Di is 1-regular, it consists of a union

of ni disjoint cycles. Let n =
∑d

i=1 ni. Consider the subgraphs V1, V2, · · · , Vn where
Vi is a disjoint cycle in one of the Di. Because the directed girth of D is greater
or equal to 8ed, we know that the number of edges in each subgraph is greater or
equal to 8ed.

Consider the line graph H of D, where each edge in D corresponds to a vertex in
H, and vertices in H are connected if the corresponding edges in D join the same
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vertex. It is fairly obvious that H can be partitioned into subgraphs H1, H2, · · · , Hn

where Hi is the line graph of Vi for all 1 ≤ i ≤ n. Therefore, Hi satisfies |Hi| ≥ 8ed.
Because H is (4d− 2)-regular, we have that |Hi| ≥ 8ed > 2e (4d− 2). According
to 6.8, there exists a set of vertices W where W is an independent set, and contains
one vertex from each Hi. Consider the line graph of H[W ]. It represents a matching
on D where there exists one and only one edge in each cycle Vi that belongs to the
matching, which we shall denote as M . Therefore, M is a linear forest. Consider
the subgraphs Di \M . We can see that the original cycles in Di are now paths
in Di \M . Thus, Di \M is also a linear forest. Thus, the collection of subgraphs
M,D1 \M,D2 \M, · · · , Dd \M is a collection of linear forests in D, whose union
is the set of all edges in D. Thus, dla (D) ≤ d + 1.

We also know that D has |V | · d edges, and each linear forest can have at most

|V | − 1 edges, or there would exist a cycle. Therefore, dla (D) ≥ |V | · d
|V | − 1

> d.

Overall, dla (D) = d + 1. �

To deal with d-regular graphs with small girths, we shall show that, if d is
sufficiently large, the edges of the graphs can be decomposed in a way such that
the resulting graphs are almost regular graphs with high girths.

This requires us to specify how to decompose the graph using the following
lemma.

Lemma 6.9. Let D (V,E) be a d-regular digraph where d is sufficiently large. Let

p be an integer satisfying 10
√
d ≤ p ≤ 20

√
d. Then, there exists a p-coloring of the

vertices of D: f : V → {0, 1, · · · , p − 1} such that for each vertex v ∈ V and each
integer i with 0 ≤ i ≤ p− 1, the numbers

N+ (v, i) = |{u ∈ V | (v, u) ∈ E, f (u) = i}|

and

N− (v, i) = |{u ∈ V | (v, u) ∈ E, f (u) = i}|

satisfy ∣∣∣∣N+ (v, i)− d

p

∣∣∣∣ , ∣∣∣∣N− (v, i)− d

p

∣∣∣∣ ≤ 3

√
d

p

√
log d

Proof. Let f be any random p-coloring of the vertices of D with colors labelled
0, 1, · · · , p− 1 such that f follows a uniform distribution on the p colors. For every
vertex v and every integer i, let Av,i be the probability that N+ (v, i) does not
satisfy the above inequality and Bv,i be the probability that N− (v, i) does not
satisfy the above inequality. Because the probability of any given vertex being

colored by i is
1

p
for all 0 ≤ i < p, we know that N+ (v, i) and N− (v, i) follow a

binomial distribution with expectation
d

p
and standard deviation

√
d · 1

p

(
1− 1

p

)
.

Therefore, according to Chernoff bound, we can estimate an upper bound of the
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probability that Av,i holds.

P (Av,i) < exp

−d

p
·


3

√
d

p

√
log d√

d · 1

p

(
1− 1

p

)


2

· 1

2



< e
−
d

p
·(3
√
log d)

2·
1

2

=

(
1

d

)9

2
·
d

p

<

(
1

d4

)d

p

For d sufficiently large, we have that P (Av,i) <
1

d4
. According to the same logic,

we have that P (Bv,i) <
1

d4
.

We know that each of the events Av,i, Bv,i is only dependent with events Au,j , Bu,j

if u has a common neighbor with v for any 0 ≤ j < p. Thus, the dependency graph
on Av,i and Bv,i has a maximum degree not exceeding (2d)

2 · p. Because

e · 1

d4
·
(

(2d)
2 · p + 1

)
≤ 1

for sufficiently large d, we know from Lemma 2.4 that there exists a coloring
where none of Av,i, Bv,j holds, which also satisfies the statement in the lemma. �

Having this knowledge, we can now deal with any digraph.

Theorem 6.10. There exists some c > 0 such that for a d-regular digraph G with
sufficiently large d, we have that

dla (G) ≤ d + c · d 3
4 ·
√

log d

Proof. Let G (V,E) be a d-regular digraph. According to the Bertrand-Chebyshev

theorem, there must exist a prime number between 10
√
d and ≤ 20

√
d. Let p

be that prime number. According to Lemma 6.9, there exists a vertex p-coloring
f : V → {0, 1, · · · , p− 1} such that for each vertex v ∈ V and every integer i with

0 ≤ i ≤ p − 1, we have that

∣∣∣∣N−v, i− d

p

∣∣∣∣ , ∣∣∣∣N+v, i− d

p

∣∣∣∣ ≤ 3

√
d

p

√
log d. For each

i, let Gi (Vi, Ei) be defined as Vi = V and Ei = {(u, v) ∈ E | f (v) = (f (u) + i)
mod p}. It follows that the maximum indegree d−i and maximum outdegree d+i are

both less or equal to
d

p
+ 3

√
d

p
. Thus, each Gi is a subgraph of a

(
d

p
+ 3

√
d

p

)
-

regular digraph with vertices V .
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(1) For i > 0, we also have that the directed girth gi of Gi is greater or equal

to p. When d is sufficiently large, we know that gi ≥ p > 8e

(
d

p
+ 3

√
d

p

)
.

According to Lemma 6.4, we have that dla (Gi) ≤
d

p
+ 3

√
d

p
+ 1.

(2) For G0, we can break down the

(
d

p
+ 3

√
d

p

)
-regular digraph, which G0

is a subgraph of, into
d

p
+ 3

√
d

p
1-regular spanning trees and break the

spanning trees into halves to gain paths. Here, dla (G0) ≤ 2
d

p
+ 6

√
d

p
.

We can now add the inequalities and obtain

dla (G) ≤ (p− 1) dla (Gi) (for i > 0) + dla (G0)

= d + 2
d

p
+ 3
√
pd
√

log d + 3

√
d

p

√
log d + p− 1

< d + c · d 3
4 ·
√

log d

for some constant c > 0. �
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