
INTRODUCTION TO NUMBER THEORY AND

CRYPTOGRAPHY

IRENE RYU

Abstract. This paper introduces the basic idea behind cryptosystems and

how number theory can be applied in constructing them. We begin with
ciphers which do not require any math other than basic arithmetics. By ex-

ploring several such examples, we find a motivation for making use of number

theory in constructing more efficient, complex cryptosystems.

Contents

1. Definitions 1
2. “Simple” Ciphers 4
3. Fundamental Theorems in Number Theory 6
3.1. The Chinese Remainder Theorem 6
3.2. Euler’s ϕ-Function and Euler’s Theorem 7
3.3. Orders and Squaring 8
4. Public-Key Cryptosystems 9
4.1. Rabin Encryption 9
4.2. RSA Encryption 9
4.3. Pollard’s p-1 Algorithm 10
5. Concluding Remarks 12
Acknowledgments 12
References 12

1. Definitions

The following are recurring ideas used in the construction of cryptosystems.

Definition 1.1. If a number is divisible only by 1 and itself, we call this number
a prime.

This notion is of great importance. Most generally, all integers can be represented
as a product of primes. Also consider how primes are “rare” compared to composite
values. Later on we will see how this rareness allows us to make locks with keys
that are hard to find.

Definition 1.2. A number base is the number of different digits or combination
of digits that a system uses to represent a number.

Date: August 15, 2020.

1

2 IRENE RYU

The decimal system is most prevalent, but the mechanics are identical regardless
of the choice of base value. For instance,

153 = 15 · 10 + 3

15 = 1 · 10 + 5

1 = 0 · 10 + 1

153 =
(
(0 · 10 + 1) · 10 + 5

)
·10 + 3

= 3 + 5 · 101 + 1 · 102

in base 10. But if we wanted to write 153 in base 2, we can go through a similar
procedure to get 100110012.

20 · 1 + 21 · 0 + 22 · 0 + 23 · 1 + 24 · 1 + 25 · 0 + 26 · 0 + 27 · 1 = 153

This paper assumes some familiarity with modular arithmetic. If this is not the
case, the most relatable instance of modular arithmetic can be found in how time
is read (time in am/pm represents integers less than 24 evaluated modulo 12).

Definition 1.3. If a is congruent to b, or a ≡ b (mod p), then a− b = kp for some
integer k.

Remark 1.4. If a and b are congruent modulo p, a and b will have the same re-
mainder when divided by p. That is, a and b will belong to the same residue class.
The least residue of a mod p is an integer r such that r ≡ a mod p and 0 ≤ r < p.
It is easy to check that there is only one such value. Addition, subtraction and
multiplication between residue classes are similar to those in real numbers.

Definition 1.5. Two values are considered coprime if their greatest common divi-
sor is 1.

Remark 1.6. The notion of coprime is needed to define division in modular arith-
metic. Be warned, division of residue classes is very different from that in real
numbers. In order to “divide”, the number you are dividing by must be invertible.
In R, it is convenient to denote the inverse of some value k as 1/k, and luckily
there is a corresponding real value that can be assigned to this inverse for every
k ∈ R \ {0}. This is not the case in all rings. Recall that an element k in a ring has
an inverse, or is invertible, if there exists some other element in that ring, denoted
by k−1, such that k · k−1 = 1. As we are concerned with modular arithmetic, we
can let division be defined simply as the multiplication by an inverse.

Proposition 1.7. An integer a is invertible mod m if and only if a is coprime to
m.

Proof. If a is invertible modulo m, then there exists b such that a · b ≡ 1 (mod m).
By definition of congruence, this means that there exists some integer k such that
ab − 1 = mk. Suppose the gcd of a and m is some value d. Then by definition of
gcd, d divides both a and m. Then going back to our equation

ab− 1 = mk.

Since d|mk, the left hand side must also be divisible by d. We already know that
d|ab, so we must have that d|1. Thus d = 1.

INTRODUCTION TO NUMBER THEORY AND CRYPTOGRAPHY 3

For the converse, the statement that a and m are coprime is equivalent to stating
gcd(a,m) = 1. Then, as we will see from the Euclidean Algorithm, there exist some
x, y such that

ax + my = 1.

Since my ≡ 0 (mod m), we have that ax ≡ 1 mod m, so a is invertible modulo
m. �

Let us introduce the Euclidean Algorithm. Suppose we have two integers a, b
such that 0 < b < a. Repeat the following division algorithm until the remainder
is zero.

a = q1b + r1

b = q2r1 + r2

r1 = q3r2 + r3

...

rk−1 = qkrk + rk+1

rk = qk+1rk+1

The last nonzero remainder is the gcd(a, b). Since we are consecutively dividing
the left hand side by the remainder from the previous equation, we have that
b > r1 > . . . > rk. Notice the values are strictly decreasing and nonnegative, so the
algorithm must terminate. Now we will show that rk+1 is in fact equal to gcd(a, b).

Lemma 1.8. The greatest common divisor of a and b is equal to rk+1.

Proof. We want to show that gcd(a, b) = gcd(ri−1, ri), for all 0 < i ≤ k + 1
where r0 = b. Let us consider the first equation (where i = 1). Define the set
D = {d : d|a and d|b} where d′ = max{D} = gcd(a, b). Then

a− q1b = r1

d′x = r1 for some x ∈ Z.

So for all d, d|r1. We want to show gcd(b, r1) is exactly equal to d′, and not a

multiple of d′. q1b+r1
d′ is coprime to b

d′ . That is,

q1(
b

d′
) +

r1
d′

is coprime to
b

d′
.

If gcd(b, r1) = kd′ for some integer k, then r1
d′ and b

d′ are not coprime. This

contradicts our assumption that q1(b
d′) + r1

d′ is coprime to b
d′ .

Now recall that we must arrive at an equation with no remainder by our claim
that the algorithm will ultimately terminate. This will give us a final equation of
the form

rk = qk+1rk+1.

Since gcd(a, b) = gcd(ri−1, ri), for all 0 < i ≤ k + 1, it follows that
gcd(a, b) = gcd(rk, rk+1) = rk+1. �

4 IRENE RYU

We have just proved the following result:

Proposition 1.9. The Euclidean Algorithm provides an efficient method to calcu-
late the gcd of two values a and b. Moreover, it can be used to represent d as a
linear combination of a and b.

You may wonder what advantages the Euclidean Algorithm has over prime fac-
torization: for larger numbers it is difficult to guess some common divisor to reduce
the two values. This is easy in the case of three or four digit values but we will be
concerned with larger integers.

Example 1.10. Finding the gcd of 30 and 42 using the Euclidean Algorithm:

42 = 1 · 30 + 12

30 = 2 · 12 + 6

12 = 2 · 6

Now, if we want to express 42 in terms of the partial remainders, we start with the
first equation and successively plug the following equations one by one. In our case
this gives us

42 = 1·
[
2(2 · 6) + 6

]
+12.

Rearranging, the Euclidean Algorithm gives us the gcd(42, 30) as a linear combina-
tion of 42 and 30:

6 = 3 · 30− 2 · 42.

2. “Simple” Ciphers

If you want to encode a secret message, you create a cipher. This does not
necessarily call for the use of number theory, but I hope to convince you why using
number theory might be a good idea. Conventionally, the alphabet corresponds to
integer values 0 to 25 in order from a to z. We will call the original message the
plaintext.

Let us first consider one to one substitutions. We assign a new value to corre-
spond to each letter of the plaintext. The choice can be random or follow some
formal procedure, but it is easy to see the two will not make much of a difference as
far as it is a simple one to one substitution. But in order to see how the structure of
ciphers can get complicated, let us introduce two formal methods of substitution,
namely a caesar shift and and an affine cipher.

Example 2.1. Shift Cipher
If we take x to be an integer value of our plaintext, we define a function f(x) = ax+b
(mod 26) to send it to the encoded value. Clearly this procedure will be one to
one when a = 1 since the function will simply shift all integers by b; we call this a
caesar shift. Consider now the case of an affine cipher, meaning that a 6= 1. For
the function to be one to one, a must be chosen to be a unit modulo 26. We can
decode the cipher with the inverse function f−1(x) = a−1(x− b) if and only if there
exists an inverse of a modulo 26.

The most notable shortcoming of one to one substitutions is that it is vulnerable
to frequency analysis. Since the function is one to one, if the enemy figures out the
decrypted value of one letter, they can rely on the fact that this value will always
decrypt to the same letter. Then, the frequency of the letters will be consistent

INTRODUCTION TO NUMBER THEORY AND CRYPTOGRAPHY 5

with that of the original text which allows the enemy to break the code with relative
ease.

Luckily, we can introduce methods to strengthen simple substitution ciphers.
These fall into the category of polyalphabetic ciphers. Polyalphabetic ciphers allow
different encodings of the same letter, depending on the key or the location of the
letter within the plaintext.

Example 2.2. Block Cipher
In a simple shift cipher, all values were encoded under the same function given by
f(x) = ax + b. In a block cipher, we encrypt multiple letters in a single block, but
the “function” may vary within a single block for each place value.

Let us consider the Vigenere cipher as a general example. Suppose we want
to encode the plaintext happy house.

(1) Choose a keyword of length n: let us choose purple to be our keyword.
(2) Define a vector of length n, which in our case would be the following:

keyword p u r p l e
number 15 20 17 15 11 4

(3) Break up our plaintext into blocks of length n and add the vector defined
by our keyword

message h a p p y h o u s e
number 7 0 15 15 24 7 14 20 18 4
keyword p u r p l e p u r p

keyword number 15 20 17 15 11 4 15 20 17 15
encoding 22 20 6 4 9 11 3 14 9 19

ciphertext W U G E J L D O J T

Notice that the letter “p” in the message is encoded to different values in the
ciphertext depending on the vector component added to it. The same is true for
the letter “h”. Although a block cipher is more resilient to frequency attacks, if
the length of the key is determined, one can simply break apart the ciphertext into
n groups, after which determining the shift for each group will be equivalent to
finding a key of length one.

Example 2.3. Transposition Cipher
The Playfair cipher is a clever way of encoding a message without using any cor-
responding integer values. However, this example will demonstrate how regardless
of the strategy, a non random encoding method of a ciphertext with components
corresponding directly to the components of the plaintext will be susceptible to
brute force attacks, since the ciphertext itself reveals enough information to chip
away towards the original message.

We will once again encode the message happy house, this time using the keyword
blueskyrain.

(1) Construct a 5x5 encoding grid using the keyword (let i=j by convention).

b l u e s
k y r a ij
n c d f g
h m o p q
t v w x z

6 IRENE RYU

We have listed the remaining letters of the alphabet in order after the
keyword. Notice the choice of a keyword with no duplicates, so there is no
need to additionally eliminate.

(2) Break up the plaintext into digrams: ha pp yh ou se. If there are duplicates,
add an x in between them and at the end to pair with the last letter:
ha px py ho us ex.

(3) Encode by the following rules, remembering that we will be encoding di-
grams to digrams.
• Find the first component of the digram on the grid. Then slide right

and left until you locate the column with the second component of
the digram. This is the first value of your encoded digram. For our
example, we find the first component of ha to be p.

• Now go back to the first component of the plaintext digram on the grid
and slide up and down until you locate the row that holds the second
component of the digram. This is the second value. Going back to our
example, we find that ha encodes to pk.

• If values are on the same row then shift right by one, wrapping around
the grid if necessary.

• If values are on the same column then shift down by one, wrapping
around the grid if necessary.

Following the given procedure, we obtain the encoded digram:
pk xs ma mp ek as.

Although the Playfair cipher is a relatively convenient strategy, it is nevertheless
vulnerable to similar attacks as previous ciphers. Specifically, since the Playfair
cipher is simply a substitution encoding on digrams, we can use this hint to work
towards a frequency analysis.

The key takeaway is that plaintexts encoded as ciphertexts by substitution have
critical vulnerabilities (namely to frequency analysis). These weaknesses cannot be
overcome by utilizing variations of the tools introduced thus far. Then, we turn to
number theory hoping to find a new approach to our dilemma.

3. Fundamental Theorems in Number Theory

We must shortly digress from the topic of ciphers to establish some theorems
which will make recurring appearances in our future work.

First, consider the following dilemma: you have a basket of eggs, and want to
guess how many eggs are in this basket. You know that if you take out 3, 4 or 5
eggs at a time, you always have one left in the end. Additionally, if you take out 7
at a time, you don’t have any left. Notice this is equivalent to solving the system
of congruences given by

x ≡ 1 (mod 3), x ≡ 1 (mod 4), x ≡ 1 (mod 5). x ≡ 0 (mod 7).

3.1. The Chinese Remainder Theorem.

Theorem 3.1. Suppose we have pairwise coprime moduli denoted by
m1,m2, . . . ,mk ∈ N and arbitrary integers r1, r2, . . . , rk for k ≥ 2. Then there
exists some least residue a mod m, where m = m1m2 . . .mk, such that

a ≡ rj (mod mj), for 1 ≤ j ≤ k.

INTRODUCTION TO NUMBER THEORY AND CRYPTOGRAPHY 7

Proof. We can define a0 ≡ a (mod m) by taking

a0 =

k∑
j=1

(m/mj)cjrj ,

where cj is an integer value such that (m/mj)cj ≡ 1 (mod mj). We know such
cj exist because we have defined mj for 1 ≤ j ≤ k to be pairwise coprime, so
gcd(m/mj ,mj) = 1. Then we know (m/mj) has an inverse mod mj for all 1 ≤ j ≤
k, which is denoted by cj for our purpose. Now,

a = a0 ≡ (m/mj)cjrj ≡ rj (modmj) for 1 ≤ j ≤ k,

since for each term of a0 such that i 6= j, (m/mj)cj ≡ 0 (mod mi). �

Now, going back to our basket of eggs, we can easily solve our system of congru-
ences using this proposition.

• m = 3 · 4 · 5 · 7 = 420.
• m/m1 = 420/3 = 140,
m/m2 = 420/4 = 105,
m/m3 = 420/5 = 84.
(we don’t need to find m/m4 since r4 = 0, so the term will yield zero
regardless)
• c1 = 2 since 140 · 2 ≡ 2 · 2 ≡ 1(mod 3). Similarly, we find c2 = 1, c3 = 4.
• a0 = 140 · 2 + 105 · 1 + 84 · 4 = 721.
• Finding the least residue, we get 721 ≡ 301(mod 420).

Proposition 3.2. If d|m and gcd(d,m/d) = 1, then x ≡ a (mod m) implies

x ≡ a (mod d);

x ≡ a (mod m/d).

See Section 2.2.3 of [2] for a proof.

3.2. Euler’s ϕ-Function and Euler’s Theorem.

Definition 3.3. Let m be a positive integer. The set

Zm := {0, 1, . . . ,m− 1} ⊂ Z

is called the least residue system modulo m.

Notice that every integer will be sorted into exactly one of these sets. In general,
we do not have to choose the least residue to define a residue system. In fact, we
can choose any m number of elements which are pairwise incongruent mod m and
these will form a complete residue system.

Definition 3.4. For m ∈ N, the number of elements in Zm that are coprime to m
is denoted by ϕ(m). We call this function Euler’s totient function.

Theorem 3.5. Euler’s Theorem
Take m ∈ N and some integer a. If gcd(a,m) = 1, then

aϕ(m) = 1(mod m).

8 IRENE RYU

Proof. Consider Rm, the subset of Zm consisting of all the elements coprime to m.
So:

Rm = {r1, . . . , rϕ(m)}.

Notice that the elements of Rm will remain incongruent if we multiply all of them
by some integer a such that gcd(a,m) = 1. Moreover, since we chose a to be
coprime with m, the resulting elements ar1, . . . , arϕ(m) represent the elements of
Rm written in a different order. Therefore,

(ar1) · · · (arϕ(m)) ≡ r1 · · · rϕ(m) (mod m).

Then multiplying each side with the inverse of r1 · · · rϕ(m) (mod m), we obtain our
result. �

Corollary 3.6. Fermat’s Little Theorem
Let p be a prime and let a be an integer such that p - a. then ap−1 ≡ 1(mod p).

Proof. First notice for any prime number p, ϕ(p) = p − 1. Combining this result
with Euler’s Theorem, we have that for any a not divisible by p,

ap−1 ≡ 1(mod p).

�

3.3. Orders and Squaring.

Definition 3.7. If u is a unit modulo m, the smallest k > 0 such that uk ≡ 1 (mod
m) is called the order of u.

In order to compute ak (mod m) more efficiently, we introduce the squaring
algorithm.

Definition 3.8. Successive Squaring

• Find the binary expansion of k = bjbj−1 . . . b0 (we will be needing this at
the final step).

• Compute a2, a4, · · · , a2d by squaring the previous entry and reducing mod
m at each step.
• Using the binary expansion obtained at the first step, we have

ak =
∏

0≤i≤j

abi (mod m).

Example 3.9. Compute 2516 (mod 61)

• 516 = 10000001002, meaning 516 = 22 + 29. So 2516 = 2512 · 24
• By successively squaring and reducing, we obtain all values of 22

d

. But
ultimately we only use 2512 ≡ −4 (mod 61) and 24 ≡ 16 (mod 61).
• 2516 = 2512 · 24 ≡ (−4) · 16 ≡ −64 ≡ 58 (mod 61)

There exist variations of the squaring algorithm, but the underlying mechanisms
are similar.

INTRODUCTION TO NUMBER THEORY AND CRYPTOGRAPHY 9

4. Public-Key Cryptosystems

Going back to our discussion of cyphers and cryptosystems, we now introduce
the notion of a public key. Suppose Alice wants to send Bob a message, and Eve
can intercept the encrypted message. Bob establishes a public key which is shared
with everyone, and this allows anyone to send him an encoded message. However,
the key is constructed in a way such that only Bob will be able to decrypt the
message. That is, a good public key must not only be relatively simple to decode,
but it also must be secure so that even if Eve intercepts Alice’s message, she will
not be able to decode it.

4.1. Rabin Encryption. The Rabin Encryption uses the idea that it is difficult
to factor out large prime numbers.

• Bob chooses two large prime numbers p and q. The product N = pq is his
key. N will be public, but only Bob knows the values p and q.
• If Alice wants to send Bob a message, she converts her message into an

integer m modulo N . Then she computes m2 modulo N , and sends this to
Bob.
• Since Bob knows p and q, using Proposition 3.2, he can solve the system of

congruences given by

x2 ≡ a (mod p), x2 ≡ a (mod q), where a = m2.

• Notice, if x2 ≡ m2 (mod p) then p|(x −m)(x + m). Thus x ≡ ±m (mod
p). Therefore if Bob finds one solution, he immediately gets the other for
both congruences.
• Bob can easily compute x using x = a(p+1)/4.

We have that a = m2 (mod p) and mp−1 ≡ 1(mod p) by Theorem 3.5. We
want to derive an x such that x2 ≡ a (mod p):

a ≡ m2 ≡ mp−1m2 = mp+1 ≡ a(p+1)/2 ≡ x2(mod p).

• Using Theorem 3.1, Bob can calculates the congruences

x ≡ ±a(p+1)/4(mod p)

x ≡ ±a(q+1)/4(mod q)

to obtain four possible values.

Luckily, there is an improved version of the Rabin Encryption which eliminates the
nonuniqueness of roots.

4.2. RSA Encryption. The RSA encryption goes through the same procedure as
the Rabin Encryption, except it does not use a one-to-one map. This allows the
RSA encryption to resolve the issue of multiple roots in the Rabin Encryption. In
an RSA Encryption, Bob chooses some power e so that both N and e serve as his
public key, instead of defaulting to a squaring map. Moreover, Bob must choose
an integer e that is relatively prime to ϕ(N) = (p − 1)(q − 1); the idea is that he
can easily decode Alice’s message c ≡ me modulo N by computing cd modulo N ,
where d is the inverse of e modulo ϕ(N).

Theorem 4.1. If de ≡ 1 (mod ϕ(N)) and c ≡ me (mod N), then cd ≡ m(mod N).

10 IRENE RYU

Proof. We will use the Chinese Remainder Theorem (Theorem 3.1) and Fermat’s
Little Theorem (Theorem 3.6). First, our assumption implies that cd ≡ m (mod p)
and cd ≡ m (mod q), since N = pq. Since ϕ(N) = (p − 1)(q − 1), if de ≡ 1 (mod
ϕ(N)) then de ≡ 1 (mod p− 1). So

de = 1 + k(p− 1),

for some k ∈ Z. Since c ≡ me (mod p),

cd ≡ mde ≡ m1+k(p−1) ≡ m · (mp−1)k (mod p).

Now, if m ≡ 0 (mod p), then cd ≡ 0 ≡ m (mod p) so the result holds. If p - m then
we use Fermat’s little theorem, which gives us cd ≡ m · 1k ≡ m (mod p). Thus, our
assumption holds. �

As an additional note, using the squaring algorithms previously introduced we
can calculate the value of cd quite efficiently.

4.3. Pollard’s p-1 Algorithm. The public key encryption systems introduced in
the previous section are an upgrade from the basic cryptosystems in Section 2.
But this final section is dedicated to the skeptics who will argue (rightfully so),
“how difficult would it be to factor out a product of two large prime numbers?”.

To begin with, by the Prime Number Theorem the approximate number of primes
less than X is X

lnX . The probability of some large integer N being a prime is about
1

lnN ; going back to the case of an RSA encryption, Bob will have a more secure key
by choosing a larger p and q, but this would also make the decoding process more
difficult. Thus, Bob must find a balance in choosing his public key. There are ways
to determine whether an integer is composite or prime, but it is generally easier to
determine if a value is composite than to determine whether it is a prime or not.

As a response to the critics of the RSA encryption system, let us explore a
method to determine the divisors for N = pq.

We start from the assumption that for any residue a modulo n, the order of a
modulo p and a modulo q will not be the same. Let k be the order of a modulo p
and suppose that it is smaller than the order of a modulo q. Then

ak ≡ 1 (mod p), ak 6≡ 1 (mod q);

so gcd(ak − 1, n) = p. Notice that for any multiple of the order k, our conditions
will still hold; this will make the computation much simpler. We just have to make
sure that kx (for some x ∈ Z) is not also a multiple of the order of a modulo q since
that would make the greatest common divisor n.

Then, if p is a prime divisor of n such that p−1 only has small prime factors, the
order of any element modulo p will have frequent multiples. Using this idea, we can
find a way to quickly calculate possible values that will give us gcd(ak − 1, n) = p.

More explicitly, we want to set a bound B and evaluate the values a1!, a2!, . . . , aB!

to ultimately compute gcd(aB! − 1, n).
If the result is 1, then you can either find a new residue a and start over, or

continue on with calculations by raising aB! to consecutive powers. If we get a
value between 1 and n, we are done as we have found p. Finally, if the gcd is n,
then the bound B is too large, so you must go back and repeat the process with a
smaller bound. If the algorithm finds an exponent x such that gcd(ax − 1, n) = p,
then we can definitely say that n is composite. However, not finding such an element
does not tell us anything about the nature of n.

INTRODUCTION TO NUMBER THEORY AND CRYPTOGRAPHY 11

5. Concluding Remarks

Hopefully this paper has convinced you of the infinite possibilities in the field of
cryptosystems. The purpose of this expository paper was not so much focused on
the specific examples or theorems, but rather on intriguing the reader, as I was, on
finding out more. Clearly there does not exist an unbreakeable code (apart from a
one-time pad, which has its own shortcomings), but we can continue to construct
new tools and methods in the hope for better models.

Acknowledgments

I would like to thank my mentor Andreea Iorga for helping me navigate my way
through cryptosystems. I would have been very very lost without her help. I would
also like to thank Professor May for organizing this program and for accepting my
late application. Finally, thank you Daniil for buying a glowing blackboard and
taking the time and effort to provide us with good content in a remote environment.

References

[1] Evan Dummit. Cryptography (part 1) Classical Cryptosystems and Modular Arithmetics.

https://web.northeastern.edu/dummit/docs/cryptography_1_classical_cryptosystems.

pdf

[2] Evan Dummit. Cryptography (part 2) Public-Key Cryptography. https://web.northeastern.

edu/dummit/docs/cryptography_2_public_key_cryptography.pdf

[3] Harald Niederreiter, Arne Winterhof. Applied Number Theory. Springer 2015

https://web.northeastern.edu/dummit/docs/cryptography_1_classical_cryptosystems.pdf
https://web.northeastern.edu/dummit/docs/cryptography_1_classical_cryptosystems.pdf
https://web.northeastern.edu/dummit/docs/cryptography_2_public_key_cryptography.pdf
https://web.northeastern.edu/dummit/docs/cryptography_2_public_key_cryptography.pdf

	1. Definitions
	2. ``Simple'' Ciphers
	3. Fundamental Theorems in Number Theory
	3.1. The Chinese Remainder Theorem
	3.2. Euler's -Function and Euler's Theorem
	3.3. Orders and Squaring

	4. Public-Key Cryptosystems
	4.1. Rabin Encryption
	4.2. RSA Encryption
	4.3. Pollard's p-1 Algorithm

	5. Concluding Remarks
	Acknowledgments
	References

