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Abstract. Our first focus is proving that field extensions of Q generated by

torsion points of elliptic curves are Galois over Q. To do so, we study the

structure torsion points and finite extensions of Q. We then analyze their
Galois groups through representations and prove the representation is a one-

to-one group homomorphism between the Galois group and the general linear

group GL2(Z/nZ).
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1. Introduction

Our goal is to prove that extension generated by coordinates of torsion points
on a rational elliptic curve is Galois over Q, and outline a method for computing
the representation. We begin by examining the algebraic structure of the complex
points on the elliptic curve E(C). We define a group law on E(C) and layout an
isomorphism between E(C) and a complex torus, to obtain torsion groups.

The focus then diverges to general theory of number fields that are Galois over
Q. We examine splitting fields, cyclotomic fields, and the Fundamental Theorem
of Galois theory. We converge on the relationship between Galois extensions of Q
and elliptic curves by looking at the interactions between the automorphisms of
the Galois group and E. We are then able to prove that the field generated by
n-torsion point coordinates is Galois over Q.

We conclude with studying the Galois groups of these extensions by computing
the representation. We further show that the representation is a one-to-one group
homomorphism from the Galois group to the general linear group of 2×2 invertible
matrices with coefficients in Z/nZ.
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Here, we begin by defining an elliptic curve, and looking at its structure in the
projective plane:

Definition 1.1 (Elliptic Curve). An elliptic curve E over some field F, where
charF 6= 2, is a smooth, projective, non-singular algebraic curve of genus 1. It is
given by the homogenous equation

(1.2) Y 2Z = X3 + aX2Z + bXZ2 + cZ3

with a, b, c ∈ F.

If F = Q then E is a rational elliptic curve. All elliptic curves considered in this
paper are rational.

Any projective point (X : Y : Z) ∈ P2 can be associated with the point (X/Z, Y/Z)
in the affine plane A2. If Z = 0 then (X : Y : 0) can be associated with (X : Y ) in
the projective line P1. Then we can view E as the affine curve

y2 = f(x) = x3 + ax2 + bx+ c

along with points at infinity. The affine curve is similarly non-singular, i.e. f(x)
has distinct roots.

The points at infinity in (1.2) occur when Z = 0. Setting Z = 0 gives one
point at infinity, namely O = (0: 1 : 0), and is considered to be the point where all
vertical lines meet in the xy-plane. A line connecting a point P ∈ A2 to O is then
the vertical line through P . Details about projective geometry are in Appendix A
of [2].

Definition 1.3. Let E : y2 = f(x) = x3 + ax2 + bx+ c be a rational elliptic curve.
The set of K-rational points for a field K, denoted as E(K), is

{(x, y) ∈ F × F | y2 = f(x)}.

2. The Elliptic Group Law

A crucial fact about rational elliptic curves is that the complex points E(C) are,
algebraically, an abelian group. To obtain a group structure, we first need that a
line passing through two points on E intersects the curve at a third point.

Theorem 2.1 (Bézout’s Theorem [2, Theorem A.2]). Two projective curves C1

and C2 of degree m and n respectively intersect a total of mn times.

Since E is degree 3 and the line l connecting two distinct points P1 and P2 on
E has degree 1, l intersects the curve at a third point by Bézout’s Theorem. This
point is denoted as P1 ∗ P2. The set E(C) can then be made into a group with the
following operation:

Definition 2.2 (Group Law). Let E be a rational elliptic curve and take P1 and
P2 on E. The map +: E(C) × E(C) → E(C) is defined as follows: Consider the
point P1 ∗ P2,. The line connecting O and P1 ∗ P2 intersects E at another point
O ∗ (P1 ∗ P2) = P3. Then P1 + P2 is P3.

Remark 2.3. If P1 = P2 then take the tangent line through P1. The tangent line is
considered to intersect the curve twice at P1 and a third time at a P1 ∗ P1.
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The Group Law.

Theorem 2.4 ([2, Pgs. 12-15]). Let E be a rational elliptic curve. Then (E(C),+)
is an abelian group, with group operation + from Definition 2.2, and O as the
identity.

Proof. For commutativity, take P1, P2 ∈ E(C). Since the line connecting P1 to P2

is the same as the line connecting P2 to P1, they yield the same third intersection
point.

To show O is the identity, join P1 to O, and take the third intersection point,
P1 ∗O. This line intersects the curve at O, P1, and P1 ∗O. So, connecting P1 ∗O to
O and then taking the third intersection point yields P1. Thus, O is the identity.
Furthermore, (P ∗ O) + P = O, so there exists an inverse −P = P ∗ O.

For associativity, details can be found in Chapter 1 of [2]. �

3. Torsion Points

With a group law now defined over E(C), we can construct methods to find
torsion points. We start with 2-torsion points and compute higher torsions by
defining an isomorphism between E(C) and a complex torus.

Definition 3.1. For m ∈ N, a point P has order m if m ·P = O and m′ ·P 6= O for
all 1 ≤ m′ ≤ m. If such an m exists then P has order m. If the order of P divides
n ∈ N then P is an n-torsion point.

3.1. Points of Order 2. Let E : y2 = f(x) = x3 + ax2 + bx + c be a rational
elliptic curve. The points of order two are unique because their x-coordinates are
exactly the roots of f(x).

Each point of order 2 satisfies 2P = O, or rather, P = −P. By Theorem 2.4, if
P = (x, y) then −P = (x,−y) so y = −y, implying that y = 0. By definition, an
elliptic curve is non-singular so f(x) has three distinct (complex) roots, α1, α2, α3.
Including O, the set of points of order 2 is {O, P1, P2, P3} where Pi = (αi, 0).
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Example 3.2. Let p ∈ N be prime and consider the curve E : y2 = x3 − p. Let ζ3
be a primitive cube root of unity and β = 3

√
p. Then

{roots of x3 − p} = {β, ζ3β, ζ23β}.

The points of order 2 are

{O, (β, 0), (ζ3β, 0), (ζ23β, 0)}.

The points of order 2 are therefore quite nice, as they come from the roots of f .
For higher order torsion groups, there is a method to compute them, outlined in
the next subsection.

3.2. An Elliptic Curve as a Complex Torus. Points of higher order (than 2)
can be difficult to compute via the group law. By converting E(C) into a quotient
group of C modulo a lattice L, finding the group of n-torsion points becomes more
efficient. Many results are stated without proof and computational details can be
found in Chapter 6 of [3].

Definition 3.3. A lattice L is an additive subgroup of C generated by two R-
linearly independent periods ω1 and ω2 :

L = {ω1Z + ω2Z}.

The quotient group C/L for some lattice L is topologically a torus and forms an
abelian group. The group law is defined by complex addition modulo the periods
of L. Each point in C/L can be mapped to a point in E(C). To create a mapping,
we need a Weierstrass ℘-function.

Definition 3.4 (Weierstrass ℘-function). Let L ⊂ C be a lattice. Then the
Weierstrass ℘-function relative to L is

℘(u,L) =
1

u2
+
∑
ω∈L
ω 6=0

(
1

(u− ω)2
− 1

ω2

)
.

With the use of the ℘-function, and it’s derivative, we are able to define a map
between C and E(C).

Theorem 3.5 ([3, Corollary 5.1.1]). For a rational elliptic curve E, R-linearly
independent periods ω1 and ω2 can be chosen to define the lattice L such that for
each u ∈ C, the point P (u) = (℘(u,L), ℘′(u,L)) is on E. If u ∈ L then P (u) = O.

The function ℘(u,L) is doubly periodic: ℘(u + ω1,L) = ℘(u,L) and ℘(u +
ω2,L) = ℘(u,L) for all u ∈ C. Thus, ℘(u + ω,L) = ℘(u,L) for all ω ∈ L. For
u, v ∈ C where u − v ∈ L, P (u) = P (v). Therefore, P descends to a well-defined
map C/L → E(C). This map turns out to be a bijection.

Theorem 3.6 ([3, Corollary 5.1.1]). Let E be a rational elliptic curve and L be
a lattice associated with E from Theorem 3.5. The map u 7→ P (u), where P (u) =
(℘(u,L), ℘′(u,L)), from C/L → E(C) is a group isomorphism.

It follows that the map u 7→ P (u) from C→ E(C) is a group homomorphism so

P (u+ v) = P (u) + P (v).
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The kernel of this homomorphism is the lattice L, and the quotient group of the
complex u-plane modulo L is isomorphic to the group E(C). Thus, for any u ∈ C/L
where mu ∈ L, P (u) is an m-torsion point. So the set of m-torsion points is{

aω1 + bω2

m
| a, b ∈ Z/mZ

}
.

(0,0)

ω1

ω2

ω1 + ω2

ω1

3

2ω1

3

ω2

3

2ω2

3

The Group of Points of Order Dividing Three.

The group of n-torsion points in E(C) is also the direct sum of two cyclic groups
of order n, an important result for Section 6.

Theorem 3.7 ([3, Proposition 5.4]). Let E be a rational elliptic curve and let E[n]
denote the n-torsion points in E(C). Then, E[n] ∼= (Z/nZ)⊕ (Z/nZ).

Proof. First, by Theorem 3.6, E(C) is isomorphic to C/L for some lattice L with
periods ω1 and ω2. The point P (u) for some u ∈ C/L is in E[n] if and only if
nu ∈ L. Thus,

(a1, a2) 7→ P
(a1
n
ω1 +

a2
n
ω2

)
with P from Theorem 3.5, is an isomorphism from (Z/nZ)⊕ (Z/nZ) to E[n].

This map is surjective because each Q ∈ E[n] is produced by some u ∈ C/L

where nu ∈ L. So u =
αω1 + βω2

n
for some α, β ∈ Z/nZ and corresponds to the pair

(α, β) ∈ (Z/nZ)⊕ (Z/nZ). This map is also injective: since P is an isomorphism, if

P
(a1
n
ω1 +

a2
n
ω2

)
= P

(a3
n
ω1 +

a4
n
ω2

)
then

a1
n
ω1+

a2
n
ω2 ≡

a3
n
ω1+

a4
n
ω2 mod L.

Then, because ω1 and ω2 are R-linearly independent, (a1, a2) ≡ (a3, a4) mod L.
�

A method for calculating ω1 and ω2 is described in Chapter 6 of [3], and can be
quickly approximated by computer algorithms. All computer calculations in this
paper are done via SageMath. Once such periods are found, the set of n-torsion
points E[n] can be computed.
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Example 3.8. Consider the curve E : y2 = f(x) = x3 − 9x + 9. The associated
lattice L is generated by the periods ω1 ≈ 1.931 and ω2 ≈ −i1.391. This yields

℘(u,L) = u−2 − 9

5
u2 − 9

7
u4 +

27

25
u6 +O(u8).

So P (ω1/3,L) gives the 3-torsion point (3, 3). For each (a1, a2) ∈ (Z/nZ)⊕ (Z/nZ),
the point P (a1n ω1 + a2

n ω2) has order dividing n.

4. Finite Field Extensions of Q

We have constructed a method towards finding torsion points, which often have
non-rational coordinates. We can generate interesting field extensions of Q using
these coordinates. However, to understand the extensions they produce, we break
away from elliptic curves and examine how to obtain number fields that are Galois
over Q.

A field K, with Q ⊂ K ⊂ C, can be viewed as a vector space over Q. The degree
of K over Q is the dimension of K as a vector space over Q, denoted as [K : Q].

Definition 4.1 (Number field). A field extension K, of Q, is a number field if
[K : Q] is finite.

A simple extension of Q is created through adjoining an algebraic number, α, to
get the field extension Q(α). A number field can always be thought of as a simple
extension of Q.

Lemma 4.2 ([1, Ch. 31 Theorem 2]). Let K be a number field. Then there exists
an algebraic number α such that K = Q(α).

The set of field homomorphisms σ : K → C provides useful insight into number
fields. By definition, σ(1) = 1, so σ(q) = q for all q ∈ Q, so Q is fixed by σ. So if
f ∈ Q[x] and γ ∈ K is a root of f then σ(f(γ)) = f(σ(γ)) = 0. Thus, σ(γ) is also a
root of f. If K = Q(α1, · · · , αn) then σ is determined by where it maps α1, · · · , αn.

Theorem 4.3. Let K be a number field. Then the number of field homomorphisms
σ : K → C is [K : Q].

Proof. By Lemma 4.2, K = Q(α) for some algebraic number α. Consider a map
σ : K → C with σ(q) = q for all q ∈ Q, σ(β1β2) = σ(β1)σ(β2) and σ(β1 + β2) =
σ(β1) + σ(β2) for all β1, β2 ∈ K. Since K as a vector-space over Q has the basis
{1, α, · · · , αn−1}, σ is determined by its mapping of α. If f is the minimal poly-
nomial of α over Q (i.e. the monic polynomial that has the lowest degree in Q[x]
with α as a root), then f has degree [K : Q] = n. So

f = (x− α1) · · · (x− αn).

Also, σ(f(α)) = f(σ(α)), so σ(α) must be a root of f .
There are at least n maps of this form, σ1, · · · , σn, where σi(α) = αi. All field

homomorphisms from K to C must map α to some αi: if σ does not map α to some
root of f, then σ(f(α)) 6= f(σ(α)).

Next, if σi(α) = αi and σj(α) = αi then σi = σj : for all γ ∈ K, γ is a rational
linear combination of {1, α, · · · , αn−1} so σi(γ) = σj(γ). Thus, there are exactly n
field homomorphisms from K → C, each determined by sending α to some αi. �
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It may also hold that a field homomorphism σ : K → C has image σ(K) = K.
Then σ is an automorphism of K. This gives rise to our definition of a Galois
extension:

Definition 4.4 (Galois Extension). A number field K is a Galois extension of Q
if each homomorphism σ : K → C is an automorphism, so the image σ(K) = K.

Remark 4.5. If a number field K is a Galois extension of Q, then it is a finite Galois
extension of Q. However, there are Galois extensions of Q which are infinite and
will not be discussed.

Let Aut(K) denote the set of automorphisms of K, which is a group with the
following operation: if σ, τ ∈ Aut(K) then (στ)(a) = (σ(τ(a)). If K is a Galois
extension of Q, then this group is called the Galois group of K/Q and is denoted
as Gal(K/Q).

To find number fields that are Galois over Q, we look at fields generated by roots
of polynomials.

Definition 4.6 (Splitting Field). Let F be a field and take a polynomial f ∈ F [x].
Then a field extension K of F is the splitting field for f if f splits into linear factors
in K[x] and does not completely split into linear factors over any proper subfield
of K containing F .

Theorem 4.7. Let F be a field with charF = 0. Take an irreducible polynomial
f ∈ F [x] and let K be the splitting field over F for f. Then |Aut(K)| = [K : F ].

Proof. See Chapter 32 of [1]. The proof is similar to that in Theorem 4.3, where the
automorphisms are determined by exchanging roots of minimum polynomial. �

Corollary 4.8. The splitting field K over Q for an irreducible polynomial f ∈ Q[x]
is a Galois extension of Q.

Proof. By Theorem 4.3, the number of field homomorphisms from K → C is
equal to [K : Q]. Each automorphism is a homomorphism, and by Theorem 4.7,
|Aut(K)| = [K : Q]. So each field homomorphism is an automorphism of K, imply-
ing K is a Galois extension of Q. �

So a number field K that is the splitting field of some f ∈ Q[x] is a Galois
Extenion of Q. For each element σ ∈ Gal(K/Q) and root αi of f , σ(αi) must also
be a root of f, so σ induces a permutation on the αi’s.

Example 4.9 (Cyclotomic Fields). A nice example of Galois extensions of Q arises
by considering the splitting field of

1− xn.

Factoring this, with ζ = e2πi/n as the primitive nth root of unity, yields

1− xn = (1− x)(1− ζx)(1− ζ2x) · · · (1− ζn−1x).

The field Q(ζ) contains all powers of ζ, so it is the splitting field of 1− xn. The
field Q(ζ) is called a cyclotomic field. Thus, Q(ζ) is a Galois extension of Q. For
any σ ∈ Gal(Q(ζ)/Q), σ(ζ) is a primitive nth root of unity. Each primitive nth root
of unity is of the form ζt where t ∈ (Z/nZ)∗. There is then a group isomorphism

t : Gal(Q[ζ]/Q)→ (Z/nZ)∗.
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It is defined as

σ(ζ) = ζt(σ) for σ ∈ Gal(Q[ζ]/Q).

Details are in Chapter 6 of [2].

Since (Z/nZ)∗ is an abelian group, so is Gal(Q(ζ)/Q), which makes Q(ζ) a useful
field to study. We can describe subextensions of a cyclotomic field, Q ⊂ K ⊂ Q(ζ)
through the Fundamental Theorem of Galois theory and the relationship between
the Galois groups.

Theorem 4.10 (Fundamental Theorem of Galois Theory [1, Chapter 32]). If L
is a finite Galois extension of Q, there is a one-to-one correspondence between the
intermediate fields Q ⊂ K ⊂ L, and the subgroups of the Galois group, Gal(L/Q).
The subgroup H corresponds to the subfield K = LH that is fixed by the automor-
phisms in H. The normal subgroups of Gal(L/Q) specifically correspond to subfields
K which are Galois over Q.

A subextension of a cyclotomic fieldK, is Galois over Q if and only if Gal(Q(ζ)/K)
is a normal subgroup of Gal(Q(ζ)/Q). Since Gal(Q(ζ)/Q) is abelian, Gal(Q(ζ)/K)
must be a normal subgroup. Thus, K/Q is Galois. The Galois group Gal(K/Q)
can be described using the following theorem.

Theorem 4.11. Suppose L and K are finite Galois Extensions of Q, and K is a
subfield of L. So Q ⊂ K ⊂ L. Then there exists an isomorphism

Gal(L/Q)

Gal(L/K)

∼−→ Gal(K/Q).

Proof. See Chapter 32 in [1]. The important note is that Gal(L/Q) has some
subgroup H which fixes K. Then Gal(L/K) is specifically H. By taking Gal(L/Q)
moduloH, the remaining automorphisms keep Q fixed but notK. By restricting the

domain from L to K, each σ ∈ Gal(L/Q)

Gal(L/K)
induces an automorphism on K. Thus,

we obtain the automorphisms in Gal(K/Q) precisely from those in
Gal(L/Q)

Gal(L/K)
. �

So every subfield of a cyclotomic field is therefore a Galois extension of Q with an
abelian Galois group. The Fundamental Theorem of Galois Theory and Theorem
4.11 are helpful when determining the Galois group of some Galois extension K
over Q, as seen in the following example.

Example 4.12. Consider the rational elliptic curve y2 = f(x) = x3 − 3x+ 1. Let
K be the splitting field of f.

Next, let ζ9 = e±i2π/9 be a primitive ninth root of unity. We can show that K
is a subfield of Q(ζ9). First,

x9 − 1 = (x3 − 1)(x6 + x3 + 1).

Then,

{roots of x6 + x3 + 1} = {ζ9, ζ29 , ζ49 , ζ59 , ζ79 , ζ89}.
The splitting field of x6 +x3 + 1 is then Q(ζ9). Further, if u is a root of x6 +x3 + 1
then u+ u−1 is a root of x3 − 3x+ 1. So, Q ⊂ K ⊂ Q(ζ9).

Next,

Gal(Q(ζ9)/Q) ∼= (Z/9Z)∗ ∼= (Z/6Z)
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by the map t from Example 4.9, and since (Z/9Z)∗ ∼= (Z/6Z). By the Fundamental
Theorem of Galois Theory, Gal(Q(ζ9)/K) must correspond to one of the subgroups
of (Z/6Z).

We can denote Gal(Q(ζ9)/Q) as {σ1, σ2, σ4, σ5, σ7, σ8}. Using the map t, where

σ(ζ9) 7→ ζ
t(σ)
9 , gives two subgroups: {σ4, σ7, σ1} and {σ8, σ1}. Then,

σ8(ζ9) 7→ ζ89

σ8(ζ89 ) 7→ ζ9.

Thus, ζ9 + ζ89 = σ8(ζ9 + ζ89 ), meaning σ8 fixes ζ9 + ζ89 . Next, ζ9 + ζ89 is of the form
u+ u−1 so Gal(Q(ζ9)/K) ∼= (Z/2Z). Then

Gal(Q(ζ9)/Q
Gal(Q(ζ9)/K)

∼=
(Z/6Z)

(Z/2Z)
∼= (Z/3Z).

By Theorem 4.11, Gal(K/Q) ∼= (Z/3Z).

5. Elliptic Curves over Galois Extensions of Q

We can continue the discussion of field extensions over Q by focusing on fields
generated through the coordinates of n-torsion points on an elliptic curve. We begin
be looking at elliptic curves over Galois extensions K of Q.

For some P ∈ E(K) and σ ∈ Gal(K/Q), let σ(P ) be the point (σ(x), σ(y))
and σ(O) = O. The interactions between σ and E(K) are useful for proving these
extensions are Galois over Q and for Section 6, where we examine their Galois
groups. First, we want the point σ(P ) to still be contained in E(K).

Proposition 5.1 ([2, Proposition 6.3]). If E is an elliptic curve with rational
coefficients and K is a field extension of Q then E(K) is a subgroup of E(C).

Theorem 5.2 ([2, Proposition 6.3]). If E is an elliptic curve with rational coeffi-
cients and K is a Galois extension of Q then

(i) For all P ∈ E(K) and σ ∈ Gal(K/Q), σ(P ) ∈ E(K).
(ii) The group Gal(K/Q) acts on the abelian group E(K).

Proof. For (i), take P = (x, y) ∈ E(K). Since the coordinates of σ(P ) are in K, it
only needs to be verified that σ(P ) is on E. First, σ fixes all q ∈ Q, so

σ(y2 − x3 − ax− b) = 0

σ(y)2 − σ(x)3 − aσ(x)− b = 0

So then σ(P ) ∈ E(K).
For (ii) take P ∈ E(K) and σ, τ ∈ Gal(K/Q). Then

(στ)(P ) = ((στ)(x), (στ)(y))

= (σ(τ(x)), σ(τ(y))

= σ(τ(x), τ(y))

= σ(τ(P )).

Next, e(P ) = (e(x), e(y)) = (x, y) = P, where e is the identity in Gal(K/Q). �

We also want σ to preserve the group structure and maintain the torsion points
over E(K).
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Theorem 5.3 ([2, Proposition 6.3]). Let E be an elliptic curve with rational coef-
ficients and K be a Galois extension of Q. Then

(i) For all P,Q ∈ E(K) and σ ∈ Gal(K/Q), σ(P + Q) = σ(P ) + σ(Q) and
σ(−P ) = −σ(P ). So, σ(nP ) = n(σ(P )).

(ii) Let P ∈ E(K) have order n. Then, for all σ ∈ Gal(K/Q), σ(P ) has order
n.

Proof. For (i), see Chapter 6 in [2]. For (ii) Let P ∈ E(K) have order n and let
the order of σ(P ) be m. Then

nσ(P ) = σ(nP ) = σ(O) = O.
So, m divides n. Next,

O = σ−1(O) = σ−1(σ(mP )) = (σ−1σ)(mP ) = mP.

So n divides m. Thus, n = m. �

So for a Galois extension K of Q, σ ∈ Gal(K/Q) induces a permutation on the
n-torsion points. Consider the set E[n] = {P ∈ E(C) | nP = O}. Let Q(E[n])
denote the field generated over Q by the coordinates of the points in E[n]. We can
use the properties from Theorem 5.3 to prove such a field is Galois over Q:

Theorem 5.4 ([2, Proposition 6.5]). Let E be an elliptic curve with rational coef-
ficients. For all n ≥ 2,

(i) Let P = (xp, yp) ∈ E[n]. Then xp and yp are algebraic over Q.
(ii) Let E[n] = {P1, · · · , Pm,O} where Pi = (xi, yi). Then Q(E[n]) = K is

Galois over Q.

Proof. For (i), details can be found in Chapter 6 of [2]. One proof is done by
observing that each field homomorphism σ : K → C is determined by a permutation
on the Pi’s in E[n]. This is because σ(Pi) ∈ E[n], by the same logic in Theorem
5.3. So there is a finite number of homomorphisms. If there existed some xi or
yi that was not algebraic over Q then K would have infinite degree over Q, and
therefore infinitely many homomorphisms to C.

For (ii), let L be the Galois closure of K over Q i.e. the smallest field containing
K that is Galois over Q. Take σ ∈ Gal(L/Q). Each Pi is in E[n], so σ(Pi) ∈ E[n]
by Theorem 5.3. So σ(Pi) = Pj for some 1 ≤ j ≤ m. This holds for all 1 ≤ i ≤ m.
So by restricting the domain of σ to K, then σ(K) ⊂ K. Next, since σ induces
a permutation on the (xi, yi)’s, then for each β ∈ K, σ−1(β) is some γ ∈ K. So
β = σ(γ) and K ⊂ σ(K). All field homomorphisms from K to C are obtained by
restricting the domain of each σ ∈ Gal(L/Q) to K. Then σ(K) = K so each σ is
an automorphism. Thus, K is Galois over Q. �

We now know Q(E[n]) is Galois over Q and how σ ∈ Gal(Q(E[n])/Q) interacts
with the points in Q(E[n]) that are on E. Here we provide some examples of these
fields:

Example 5.5. Looking at the curve E : y2 = x3 + x, the set of 2-torsion points is

{O, (0, 0), (i, 0), (−i, 0)}.
So the field generated by the coordinates of these points is Q(E[2]) = Q(i). Then
the Galois group contains two elements: Gal(Q(E[2])/Q) = {e, σ} where e is the
identity and σ is complex conjugation.
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Example 5.6. For the curve E : y2 = f(x) = x3+2x, the points of order 4 are each
P where 2P has order 2. So the y-coordinate of 2P must be 0. Through computation
from the group law, the x-coordinates of these points satisfy

(5.7) x6 + 10x4 − 20x2 − 8 = 0.

Let α = (
√

2− 2)i and υ = (
√

2 + 2)i. Then (5.7) is

(x2 − 2)(x2 − α2)(x2 − υ2) = 0.

Next,

f(±
√

2) = ±4
√

2, f(±α) = ±(4
√

2− 4)α, f(±υ) = ±(−4
√

2− 4)υ.

Since E[4] ∼= Z/4Z⊕Z/4Z, there are sixteen points total: O, three 2-torsion points,
and two points from each root of (5.7). The points of order 2 are

{(0, 0), (i
√

2, 0), (−i
√

2, 0)}.

The points of order 4 are

{(
√

2,±4
√

2), (−
√

2,±4
√

2), (α, f(±α)), (−α, f(±α)), (υ, f(±υ)), (−υ, f(±υ))}

Thus, Q(E[4]) = Q(i,
√

2).

6. Representations Given by Torsion

We now know Q(E[n]) is Galois over Q, and we have the tools to explicitly
describe the Galois group. Each σ ∈ Gal(Q(E[n])/Q) induces a permutation on
the set E[n]. By Theorem 3.7, the set E[n] is also the direct sum of two cyclic
groups, each with order n. We can utilize these properties for describing the Galois
group. In this section we analyze Gal(Q(E[n])/Q) through its representation.

Definition 6.1. A representation of a group G on a vector space V over a field
K is a group homomorphism from G to the general linear group on V, denoted
GL(V ) :

ρ : G→ GL(V ).

By Theorem 5.3, we have

σ(P +Q) = σ(P ) + σ(Q), σ(−P ) = −σ(P ), σ(O) = O.

By viewing E[n] as an abelian group, each σ ∈ Gal(Q(E[n]/Q) is a group ho-
momorphism from E[n] to itself. Each σ also has an inverse so each σ is a group
isomorphism from E[n] to itself.

Since E[n] ∼= (Z/nZ) ⊕ (Z/nZ) by Theorem 3.7, two basis elements P1, P2 can
be chosen to generate E[n] over Z/nZ. Then,

E[n] = {aP1 + bP2 | a, b ∈ Z/nZ}.

Because σ is an isomorphism, then σ(aP1 + bP2) = aσ(P1) + bσ(P2). So for all
P ∈ E[n], σ(P ) is determined by σ(P1) and σ(P2). Furthermore, σ(P1) and σ(P2)
are some (Z/nZ)-linear combination of P1 and P2 :

σ(P1) = ασP1 + γσP2,

σ(P2) = βσP1 + δσP2.

So σ(P1) and σ(P2) can be expressed as the matrix product
(
P1 P2

) (ασ βσ
γσ δσ

)
.
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Since σ has an inverse, the matrix is invertible. Furthermore, every 2× 2 invert-
ible matrix defines an isomorphism from E[n] to E[n]. We can therefore consider the
general linear group of 2× 2 invertible matrices with coefficients in Z/nZ, denoted
as GL2(Z/nZ).

Definition 6.2 (Galois Representation). Let E be a rational elliptic curve and
fix P1 and P2 as the generators of E[n]. Then for all σ ∈ Gal(Q(E[n])/Q), the
constants ασ, βσ, γσ, δσ are determined by

σ(P1) = ασP1 + γσP2,

σ(P2) = βσP1 + δσP2.

The map ρn : Gal(Q(E[n])/Q)→ GL2(Z/nZ) is defined as

ρn(σ) =

(
ασ βσ
γσ δσ

)
.

The map ρn is the Galois representation of Gal(Q(E[n])/Q).

The representation allows us to understand Gal(Q(E[n])/Q) as a group of ma-
trices. It both preserves the composition law through matrix multiplication and
provides a one-to-one group homomorphism.

Theorem 6.3 ([2, Theorem 6.7]). Let E be a rational elliptic curve and take n ≥ 2.
Fix P1 and P2 as generators for E[n]. Then the map ρn from Definition 6.2 is a
one-to-one group homomorphism.

Proof. To prove ρn is a group homomorphism, we need ρn(στ) = ρn(σ)ρn(τ) for
all σ, τ ∈ Gal(Q(E[n])/Q). First,

ρn(σ)ρn(τ) =

(
ασ βσ
γσ δσ

)(
ατ βτ
γτ δτ

)
=

(
ασατ + βσγτ γσατ + δσγτ
ασβτ + βσδτ γσβτ + δσδτ

)
.

Next,

(στ)(P1) = σ(ατP1 + γτP2)

= ατσ(P1) + γτσ(P2)

= ατ (ασP1 + γσP2) + γτ (βσP1 + δσP2)

= (ασατ + βσγτ )P1 + (γσατ + δσγτ )P2.

It can similarly be shown that (στ)(P2) = (ασβτ + βσδτ )(P1) + (γσβτ + δσδτ )(P2).
So ρn(στ) = ρn(σ)ρn(τ).

Next, if ker(ρn) = {e} where e is the identity isomorphism from E[n] to E[n],
then ρn is one-to-one. Take σ ∈ ker(ρn) so σ(P1) = P1 and σ(P2) = P2. Then
σ(P ) = P for all P ∈ E[n] since the generators are fixed. Next, σ((x, y)) =
(σ(x), σ(y)) by definition, and Q(E[n]) is generated by the coordinates of the points
in E[n]. So, σ fixes x and y for all P ∈ E[n] and therefore fixes the generators of
Q(E[n]). Thus, all of Q(E[n]) is fixed by σ so σ must be e. So ker(ρn) has only the
identity, proving that ρn is one-to-one. �

We can now examine Galois representations for various torsions by fixing gener-
ators and determining where each isomorphism maps them.
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Example 6.4. Continuing with the curve E : y2 = x3 + x, the Galois extension of
Q using the 2-torsion points has the Galois group {e, σ} from Example 5.5. The
generators can be P1 = (0, 0) and P2 = (i, 0). Then e(P1) = P1 and e(P2) = P2.

So, ρ2(e) =

(
1 0
0 1

)
, which is the identity matrix. Next,

σ(P1) = σ(0, 0) = (0, 0) = P1

σ(P2) = σ(i, 0) = (−i, 0) = P1 + P2.

So, ρ2(σ) =

(
1 1
0 1

)
.

Example 6.5. Looking again at the curve E : y2 = x3 − 3x + 1 from Example
4.12, the Galois group Gal(Q(E[2])/Q) is isomorphic to (Z/3Z). Let P1, P2, P3 be
the points of order 2. There are 3 isomorphisms in this group, one of them being
the identity, and σ and τ where

σ(P1) = P2 τ(P1) = P3

σ(P2) = P3 τ(P2) = P1

σ(P3) = P1 τ(P3) = P2.

Then the generators can be P1 and P2. First, ρ2(e) =

(
1 0
0 1

)
. Next, for ρ2(σ),

σ(P1) = P2 and σ(P2) = P3 = P1 + P2. So ρ2(σ) =

(
0 1
1 1

)
. Lastly, τ(P1) = P3 =

P1 + P2 and τ(P2) = P1 so ρ2(τ) =

(
1 1
1 0

)
.

For a rational elliptic curve E, the Galois group Gal(Q(E[2])/Q) can also be S3,
the permutation group of 3 elements, as in the following example.

Example 6.6. Consider the curve E : y2 = x3 − p from Example 3.2, with

E[2] = {O, (β, 0), (ζ3β, 0), (ζ23β, 0)}.

So Q(E[2]) = Q(ζ3, β). There are two isomorphisms σ and τ where

σ(β) = ζ3β τ(β) = β

σ(ζ3) = ζ3 τ(ζ3) = ζ23 .

The Galois group Gal(Q(E[2])/Q) is S3, and can be described as {e, σ, σ2, στ, σ2τ, τ},
where e is the identity. The generators can be P1 = (β, 0) and P2 = (ζβ, 0). Then,

σ(P1) = (σ(β), σ(0)) = (ζ3β, 0) = P2

σ(P2) = (σ(ζ3β), σ(0)) = (ζ23β, 0) = P1 + P2.

So, ρ2(σ) =

(
0 1
1 1

)
. The matrix ρ2(τ) can be found similarly, and is

(
1 1
0 1

)
.

From ρ2(σ) and ρ2(τ), the rest of the representation can be found through matrix
multiplication.

For higher torsions, the Galois group is more complicated to describe, especially
since the representation is not always surjective onto GL2(Z/nZ). Computations
for determining the Galois group can be done with the aid of a computer algorithm.
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Example 6.7. Consider the curve E : y2 = f(x) = x3−9x+9. In Example 3.8, we
found periods ω1 and ω2. Looking at the set E[5], the generators can be P1 = P (ω1

5 )
and P2 = P (ω2

5 ), with the map P from Theorem 3.5.
Each (a1, a2) ∈ (Z/5Z)⊕ (Z/5Z) maps to the 5-torsion point

P
(a1
n
ω1 +

a2
n
ω2

)
= a1P1 + a2P2.

So each σ ∈ Gal(Q(E[5])/Q) is described by where it sends
ω1

5
and

ω2

5
. In this

case,
ρ5(Gal(Q(E[5])/Q)) ∼= GL2(Z/5Z).

However, if a curve has rational n-torsion points, then the representation cannot
be surjective onto GL2(Z/nZ). The curve E has rational 3-torsion points and
every matrix in GL2(Z/3Z) defines an isomorphism from E[3] to itself [4]. So if an
isomorphism moves a rational point in E[3] then it cannot be in Gal(Q(E[3])/Q)).
Thus,

ρ3(Gal(Q(E[3])/Q)) 6∼= GL2(Z/3Z).

There are cases where the representation is not isomorphic to the general linear
group, even if the torsion points all have non-rational coordinates. This occurred in
Example 6.5, where there were only three isomorphisms in the Galois group and six
matrices in GL2(Z/2Z). Another example is with the curve T : y2 = x3 + 9x− 18.
The 5-torsion points are all non-rational, but the representation ρ5(Gal(Q(T [5])/Q)
is isomorphic to the symmetric group S4.
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