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Abstract. In this paper, we will introduce bundle theory in a setting where
fibers and maps between fibers lie in a chosen category F . We will construct
classifying spaces using the two-sided bar construction and prove a classi-
fication theorem. We will then define and classify bundles with additional
structures by introducing Y -structures. We will then use orientations of bun-
dles with respect to a cohomology theory as an example to demonstrate the
Y -structure and its classification.
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1. Preliminaries

Throughout this paper, we use F to denote a category with a faithful “underlying
space” functor F → U , where U denotes the category of compactly generated
weak Hausdorff spaces; function spaces in U are given the compactly generated
topology. Each object in F is a space, and the set of morphisms F(F, F ′) is a
subspace of U(F, F ′). We can think of an object in a category F as a space with
additional structure. For example, take F to be the category where objects are
based spaces that are homeomorphic to the n-sphere for some fixed positive integer
n and morphisms are basepoint-preserving homeomorphisms. This example will be
revisited later in the paper.

Theorem 1.1 (Whitehead Theorem).

(1) If θ : Y → Z is a weak homotopy equivalence, then for a CW-complex X
the induced map θ∗ : [X,Y ] → [X,Z] is an isomorphism.

(2) If the spaces Y and Z above are CW-complexes, then the weak homotopy
equivalence θ is a homotopy equivalence.

Proof. For (1), we first factor θ through the mapping cylinder Mθ so that we can
replace Z with Mθ since the map Mθ → Z is a homotopy equivalence. To prove
both injectivity and surjectivity, we use Homotopy extension and lifting property
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in [3, Page 75] to induct on the skeleta of X. Substituting Y and Z for X, we can
prove (2) as an immediate consequence of (1). A detailed proof can be found in [3,
Page 76]. □

2. F-Spaces, F-Maps, and F-Homotopies

In this section, we will define some basic concepts of F-spaces and F-homotopies.

Definition 2.1 (F-space). An F-space is a map π : E → B in U such that
π−1(b) ∈ F for each b ∈ B; B and E are the base space and total space respectively
of π. An F-map is a pair of maps (g, f) : ν → π in U that makes the following
diagram commute

D
g !!

ν

""

E

π

""
A

f
!! B

and is such that the restriction of g : ν−1(a) → π−1(f(a)) is in F for each a ∈ A.

Definition 2.2 (F-homotopy and F-homotopy equivalence). If (g0, f0) and (g1, f1)
are two F-maps between F-spaces ν : D → A and π : E → B, then an F-homotopy
between them is an F-map (H,h) as in the following commutative diagram

D × I
H !!

ν×1

""

E

π

""
A× I

h
!! B.

If for each s ∈ I, we let (Hs, hs) : ν → π be defined by Hs(d) = H(d, s) and
hs(a) = h(a, s), then each (Hs, hs) is an F-map.

• If A = B and hs is the identity map of B for all s ∈ I, then H is said
to be an F-homotopy over B. In this case, we denote this F-map as H
instead of (H, 1) since it’s clear what the map on the bottom is. We then
call ν : D → B and π : E → B equivalent F-spaces over B.

• An F-map g : D → E over B is an F-homotopy equivalence if there is an
F-map g′ : E → D over B such that g′g and gg′ are F-homotopic over B
to identity maps.

• An F-space π : E → B is said to be F-homotopy trivial if it is F-homotopy
equivalent to the projection π1 : B × F → B for some F ∈ F .

Remark 2.3. Here we can think of F-homotopy as a continuous deformation of an
F-map through F-maps.

Definition 2.4 (Pullback of an F-space). Let π : E → B be an F-space and let
f : A → B be a map in U . Define a space

f∗E = {(a, e) ∈ A× E : f(a) = π(e)}

and a map f̃ : f∗E → E by f̃(a, e) = e. We define the pullback F-space of π along
f to be the F-space f∗π : f∗E → A where f∗π(a, e) = a. This is illustrated by the
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following commutative diagram

f∗E
f̃ !!

f∗π

""

E

π

""
A

f
!! B.

Definition 2.5 (Category of bundle fibers). Let G be a topological group and F
be a left G-space on which G acts effectively. Define a category F to have objects
(X,x) where X is a left G-space and x : F → X is a homeomorphism of left G-
spaces. Define the set of morphisms from (X,x) to (X ′, x′) to be {x′gx−1 : g ∈ G}.
Let (F, 1) be the distinguished object of F and we call (F , (F, 1)) a category of
bundle fibers. We write (F , F ) instead of (F , (F, 1)) for the ease of notation when
it is clear from the context.

Definition 2.6 (F-bundle). Let (F , F ) be a category of bundle fibers. Let B be
a connected space with a basepoint b0 ∈ B and let p : E → B be a continuous
surjection, where p−1(b0) = F ∈ F . We require that for each x ∈ B, there is
an open neighborhood Ux ⊂ B containing x such that there is a homeomorphism
ψx : p−1(Ux) → Ux × F , such that p = proj ◦ ψx, as illustrated in the following
commutative diagram.

p−1(Ux)
ψx !!

p

""

Ux × F

proj
##!!
!!
!!
!!
!!
!

Ux

We call E,B, and F the total space, the base space, and the fiber, respectively.

Example 2.7 (Vector bundle). Let n be a positive integer. Let G be the group of
linear automorphisms of Rn, denoted by GL(n,R). Define (F , F ) to be the category
of bundle fibers where the objects are all the n-dimensional subspaces of R∞ with
the distinguished object Rn. For an object X, let x be a linear isomorphism from
F to X (also a homeomorphism since all the objects in F are given the Euclidean
topology). In this example, the F-spaces we constructed are known precisely as
n-dimensional real vector bundles.

Remark 2.8. The category of fibers (instead of bundle fibers) is defined in [1, Chap-
ter 4] for general fibrations, where category of bundle fibers is a special case that
works specifically with bundles. In the category of fibers, each object X ∈ F is
weakly homomopy equivalent to F instead of being homeomorphic to F . We see
that it is much easier to work with category of bundle fibers because homeomophism
is a much stronger condition than weak homotopy equivalence. Hence, we focus
our attention to category of bundle fibers in this paper for simplicity. Note that we
can generalize our main theorems 4.1 and 5.4 to fibrations and category of fibers
with some more work. Details can be in [1, Chapter 9, 11].

Definition 2.9 (Associated principal category of fibers). Let (F , F ) be a category
of bundle fibers. Define its associated principal category of fibers (G, G) by letting
G have objects F(F,X) for X ∈ F , with G = F(F, F ); the product on G and the
action of G on F(F,X) are given by composition.
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Definition 2.10 (prin Functor). For a category of bundle fibers (F , F ) and its
associated principal category of fibers (G, G), the prin functor takes an F-space to
a G-space. For an F-space π : E → B, we define a space PE as a subspace of
U(F,E) consisting of maps φ : F → E such that φ(F ) ⊂ π−1(b) for some b ∈ B
and φ : F → π−1(b) is a map in F . We then define a G-space Pπ : PE → B by
letting (Pπ)(φ) = πφ(F ).
For an F-map ν : D → A and F-map (g, f) : ν → π, we define a G-map P (g, f) =
(Pg, f) : Pν → Pπ where (Pg)(φ) = g ◦ φ. Then we have a functor P (commonly
referred as prin) from the category of F-space to the category of G-space.

Note that if π is an F-bundle, then the space PE contains those maps that take
F into some fiber, and that fiber is weakly equivalent to F . The bundle Pπ takes
a map φ to the point in the base of the fiber to which φ takes that fiber.

Remark 2.11. We claim that whenever we work with F-bundles, it suffices to look
at G-bundles. We see that 2.10 gives us a functor from F-bundles to G-bundles, and
we need to find some functor that acts like its inverse. Starting with a principal
G-bundle: π : P → X, we can obtain an F-bundle P ×G F :→ X, and we claim
that −×G F is the equivalent left-adjoint functor to prin.

Let π : E → B be an F-space where B is paracompact. If for every F-space
ν : D → A, F-map (g, f) : ν → π, and every homotopy h : A × I → B starting at
f , there exists a homotopy H : D × I → E starting at g such that the pair (H,h)
is an F-homotopy, then π satisfies the F-covering homotopy property (F-CHP).
Maps that satisfy F-CHP are called F-fibrations, of which an F-bundle is a special
case. The object of this paper is primarily the study of bundles; generalized results
for fibrations can be found in [1, Chapter 5 - 11].

Proposition 2.12. An F-bundle satisfies the F-covering homotopy property.

Proof. Detailed proof can be found in [5, Theorem 11.7]. □

Proposition 2.13. Let p : E → B be an F-bundle. If f, g : A → B are homotopic
maps, then they induce F-homotopy equivalent F-bundles over A.

Proof. We first notice that if ν0 : D → A and π0 : E → B are trivial F-bundles
with fiber F and there is an F-map (g, f) : ν0 → π0, then ν0 is isomorphic to the
pullback bundle f∗π0 : f∗E → A. Since both bundles are trivial, the bundle map
(g, f) is isomorphic to the diagram

A× F !!

""

B × F

""
A

f
!! B .

The pullback is thus the subspace of A×(B×F ) defined by {(a, b, f) ∈ A×(B×F ) :
b = f(a)}, and this is homeomorphic to A×F , with all the maps being the obvious
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ones. Then we will show that for F-spaces ν and µ

D g

$$

ν

%%

&&
f∗E !!

f∗π

""

E

π

""
A

f
!! B

the map from ν to the pullback bundle f∗π : f∗E → A is an isomorphism. It is
sufficient to show that there is an open cover {Us}s∈S of A such that ν−1Us →
(f∗π)−1(Us) is a homeomorphism for every s ∈ S. If {Vt}t∈T is an open cover of A
such that the restriction of ν to ν−1(Vt) is trivial for all t ∈ T and {Wp}p∈P is an
open cover of B such that the restriction of π to π−1(Wp) is trivial for all p ∈ P ,
then we can let S = T × P and let U(t,p) = Vt ∩ f−1Wp. By what we have shown
previously, the F-spaces ν and f∗π are isomorphic.

To prove this proposition, let H : A× I → B be a homotopy from f to g. Since
p : E → B satisfies the F-CHP, and so there is a map H̃ : f∗E× I → E that makes
the diagram

f∗E × I
H̃ !!

(f∗p)×1

""

E

p

""
A× I

H
!! B

commute. What we have shown in this proof implies that we have an isomorphism
of bundles over A

f∗E × I !!

(f∗p)×1 ''❆
❆❆

❆❆
❆❆

H∗E

H∗p((✂✂
✂✂
✂✂
✂

A× I

where H∗E is the pullback of p along H and the horizontal map is the natural map
to that pullback. Thus, the restriction of these bundles to A× {1} are isomorphic;
since that restriction of (f∗p) × 1 is f∗p and that restriction of H∗p is g∗p, this
proves our claim. □

3. Classifying Spaces via the geometric bar construction

In this section, we introduce the geometric bar construction and classifying
spaces. We also introduce some results that are useful for proving the classification
theorem in Section 4.

Definition 3.1 (Geometric bar construction). Let G be a topological group such
that the identity e is a nondegenerate base-point. Let X and Y be left and right
G-spaces respectively. The bar construction gives us a simplicial topological space
B∗(Y,G,X) where the space of j-th simplicies Y × Gj ×X with typical elements
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written as y[g1, ..., gj ]x. Let the face and degeneracy maps be given by

δi(y[g1, ..., gj ]x) =

!
"#

"$

yg1[g2..., gj ]x if i = 0

y[g1, ..., gi−1, gigi+1, gj ]x if 1 ≤ i < j

y[g1, ..., gj−1]gjx if i = j

and si(y[g1, ..., gj ]x) = y[g1, ..., gi, e, gi+1, ..., gj ]x.

Let B(Y,G,X) denote the geometric realization of B∗(Y,G,X). Let ∗ denote
the one-point G-space and define BG = B(∗, G, ∗) and EG = B(∗, G,G). These
two spaces are essential to the classification of bundles, which will be introduced in
Theorem 4.1.

Notation 3.2. Given a space Z, left and right G-spaces X and Y , and a map
λ : X × Y → Z such that λ(yg, x) = λ(y, gx), we let ε(λ) denote the induced map
B(Y,G,X) → Z that takes y[g1, g2, . . . , gj ]x to yg1g2 · · · gjx. In later parts of the
paper, we will write ε or ε̃ for ε(λ), depending on whether the map is defined on
the base space or total space of a bundle, when the choice of λ is clear.

Proposition 3.3. The map ε̃ : B(Y,G,G) → Y is a homotopy equivalence (here
the underlying λ is the G-action Y ×G → Y ).

Proof. Let Y∗ denote the constant simplicial space where each level is Y and all
maps are the identity. The idea of this proof is to first show that Y∗ is a strong
deformation retract of B∗(Y,G,G) with a right inverse (analogous to [4, Propo-
sition 9.8]. Then, using the result that homotopies between simplicial spaces are
preserved by geometric realization (proved in [4, Corollary 11.1]), we can prove that
B(Y,G,G) is homotopy equivalent to Y . □

Proposition 3.4. If p : E → B is a bundle with a contractible fiber F , then it is
a weak homotopy equivalence.

Proof. We know that a fiber bundle F → E → B induces a long exact sequence
· · · → πnF → πnE → πnB → πn−1F → · · · . Since F is contractible, we have
a sequence · · · → 0 → πnE → πnB → 0 → · · · . By exactness at πnE and πnB
respectively, we have that the map p∗ between πnE and πnB is both injective and
surjective. Therefore, we proved that p is a weak homotopy equivalence. □

Proposition 3.5. Let G be a topological group and let Pν : PD → X be a (G, G)-
bundle. In the following diagram, treat the map p′ as a (G, G)-bundle that takes the
last coordinate to a point. Then the map ε is a weak homotopy equivalence (where
the underlying λ is PD × ∗ → X that is just Pν). If X is a CW-complex, then ε
has a homotopy inverse g.

PD

Pν

""

B(PD,G,G)
ε̃))

p′

""
X

g !! B(PD,G, ∗)
ε

))

Proof. In Proposition 3.3 we proved that ε : B(PD,G,G) → PD is a homotopy
equivalence, so it is a weak homotopy equivalence. We then have the following part
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of a long exact sequence where i denotes the identity map of G.

πnG

i∗

""

!! πnB(PD,G,G)

ε̃∗

""

!! πnB(PD,G, ∗)

ε∗

""

!! πn−1G !!

i∗

""

πn−1B(PD,G,G)

ε̃∗

""
πnG !! πnPD !! πnX !! πn−1G !! πn−1PD

By the Five Lemma, we know that the middle arrow down is an isomorphism. If X
is a CW-complex, then the existence of a homotopy inverse g follows from Theorem
1.1. □

In fact, for any right G-space Y , we have that p′ : B(Y,G,G) → B(Y,G, ∗) is a
principal G-bundle corresponding to q : B(Y,G, ∗) → B(∗, G, ∗), as illustrated in
the commutative square on the right in Diagram (4.2).

4. Classification Theorem

In this section, we will introduce the classification theorem for bundles and some
direct consequences.

Theorem 4.1 (Classification Theorem). Suppose that (F , F ) is a category of bun-
dle fibers and (G, G) is its associated principal category of fibers. For a CW-complex
X, we have that the set GFX of equivalence classes of F-bundle over X is in bi-
jection with [X,BG], the set of homotopy classes of maps from X to BG.

Proof. We begin by defining two maps Ψ : [X,BG] → GFX and Φ : GFX →
[X,BG]. Define Ψ([f ]) = f∗p, the pullback of the bundle p : EG → BG. By
Proposition 2.13, we know that Ψ is well-defined. Given an F-bundle ν : D → X,
we have its associated principal G-bundle: Pν : PD → X. Define Φ(ν) = [g ◦ q],
where g is the inverse of ε in Proposition 3.5, as shown in the commutative diagram
below. Here the left square was introduced in Proposition 3.5 and the right square
is a pullback diagram of the G-bundle p : EG → BG.

(4.2) PD

Pν

""

B(PD,G,G)
ε̃))

p′

""

q̃ !! B(∗, G,G) = EG

p

""
X

g !! B(PD,G, ∗)
ε

))
q
!! B(∗, G, ∗) = BG

We first show that the composition ΨΦ is the identity. Note that we can view
p′ : B(PD,G,G) → B(PD,G, ∗) as a G-bundle where the last coordinate gets
mapped to a single point of G, and we get a pullback principal G-bundle g∗p′ :
g∗B(PD,G,G) → X and a lift g̃ : g∗B(PD,G,G) → B(PD,G,G) as in the
following diagram.

g∗B(PD,G,G)
g̃ !!

g∗p′

""

B(PD,G,G)

p′

""

ε !! PD

Pν

""
X

g
!! B(PD,G, ∗)

ε
!! X

Since g ◦ ε is homotopic to 1X , by lifting the homotopy as in Proposition 2.12 we
know that the bundle map from g∗p′ to Pν is homotopic to the identity bundle
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map on g∗p′. Therefore, we have equivalent bundles Pν and g∗B(P,G,G) over X,
and so ΨΦ(ν) = [(q ◦ g)∗p] = [(g∗(q∗p))] = [(g∗p′)] = [ν], as desired.

To prove that ΦΨ is the identity, consider the following diagram where f∗EG is
the pullback of p : EG → BG along f : X → BG and

X
g !!

f

""

B(f∗EG,G, ∗)
ε

))

Bf̃

""

q
!! B(∗, G, ∗) = BG

BG B(EG,G, ∗)ε′))
q′

**❧❧❧❧❧❧❧❧❧❧❧❧❧

The bottom left map ε′ is a weak homotopy equivalence as B(EG,G,G) → EG
is a homotopy equivalence and there is G-bundle EG → BG and B(EG,G,G) →
B(EG,G, ∗) (similar to proof of Proposition 3.5). The map q′ can be understood
as a bundle with fiber EG. It is also a weak homotopy equivalence by Proposition
3.4. Given two weak homotopy equivalences, by Theorem 1.1, we have bijections
[X,BG] ∼= [X,B(f∗EG,G, ∗)] ∼= [X,BG]. Then ΦΨ([f ]) = Φ([f∗p]) = [q ◦ g] is
an automorphism, and so Ψ is an injection. We know that ΨΦΨ([f ]) = Ψ([f ])
since ΨΦ is the identity. By associativity of composition of maps, we know that
ΨΦΨ([f ]) = Ψ([q ◦ g]). By injectivity of Ψ, we have [f ] = [q ◦ g], so ΦΨ is actually
an isomorphism, as desired. Therefore, we have proved that the set of homotopy
classes of maps [X,BG] is in one-to-one correspondence to the equivalence classes
of G-principal bundles over X. □

Remark 4.3. Though we started with F-bundles, in much of the proof we worked
with their associated principal G-bundles. In Section 2, we showed that there is
a pair of equivalent adjoint functors between (F , F )-bundles and their associated
principal (G, G)-bundles over X. Therefore, it suffices to classify the equivalence
classes of principal G-bundle over X.

5. Y -structure: definition, example, and classification

We will introduce how additional structures on bundles are defined and provide
two motivating examples. We will also classify bundles with additional structure,
using an approach similar to the one in Theorem 4.1.

Definition 5.1 (Y -structure). Let (F , F ) be a category of bundle fibers, let Z be
an auxiliary space, and suppose we have an inclusion of Y into the function space
U(F,Z) such that the right action of G = U(F, F ) on Y is the action G on U(F,Z)
by pre-composition. Define a Y -structure θ on an F-space ν : D → A to be a
map θ : D → Z such that, for an inclusion of fiber ψ : F → D (like the map θ in
Definition 2.10), the composition θ ·ψ : F → Z is in Y. Similarly, define an F-map
(ν, θ) → (ν′, θ′) between two F-map ν, ν′ with Y -structure θ, θ′ to be an F-map
(g, f) : ν → ν′ such that θ ◦ g is homotopic to θ′ via homotopy H : D× I → E. For
all t ∈ I, we require that Htψ : F → Z is in Y for all ψ ∈ PD.

Example 5.2 (Reduction of structure group). Suppose that H is a subgroup of
G with an inclusion i : H → G. Given a G-bundle ν : D → A with fiber F ,
we let Z = B(∗, H, F ) and Y = B(∗, H,G). By Remark 2.11, we know that Y
is homeomorphic to PB(∗, H, F ). Recalling Definition 2.10, we have that Y lies
in U(F,Z). Take θ : D → B(∗, H, F ) as a G/H-structure. Let E → A be the
principal H-bundle induced from the universal bundle EH → BH by A → BH.
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Then θ determines an equivalence of G-bundles from D to the bundle E ×H F
(recall Remark 2.11). This Y -structure is characterized by the reduction from a
G-bundle to a H-bundle.

Example 5.3 (Trivialization of bundles). Let (F , F ) and (F ′, F ) be two categories
of fibers together with their associated principal categories (G, G) and (G′, G′) re-
spectively. Note that here we are changing the category F to F ′ but the dis-
tinguished object F stays the same. Assume that (F , F ) and (F ′, F ) also have
the structure of bundle fibers. We require that G ⊂ G′, which means F(F, F ) ⊂
F ′(F, F ), i.e., the category F allows more homeomorphisms from F to itself. Given
a G-bundle ν : D → X, we take Y = G′ and Z = F . Then we can view the G′-
structure θ : D → F as the second coordinate of an F ′-map D → X×F over X. In
other words, the bundle ν (as a G′-bundle) is equivalent to the trivial bundle. This
Y -structure is characterized by the trivialization of a G-bundle as a G′-bundle.

This example will be revisited shortly with an alternative explanation using
Theorem 5.4.

Theorem 5.4 (Classification for bundles with Y -structure). Suppose that (F , F )
is a category of bundle fibers and (G, G) is its associated principal category of fibers.
Assume that (F , F ) also has the structure of a category of bundle fibers. For CW-
complex X, we have that the set GF (X,Y ) of equivalence classes of F-bundles with
Y -structure over X is in bijection to [X,B(Y,G, ∗)] the homotopy classes of maps
from X to B(Y,G, ∗).

Proof. The structure of this proof is similar to that of Theorem 4.1, despite the
fact that now we have to define where Φ and Ψ takes the Y -structure ω and check
if the maps are well-defined with respect to the Y -structure. As in the proof of
Theorem 4.1, we define maps Ψ : [X,B(Y,G, ∗)] → GF (X,Y ) and Φ : GF (X,Y ) →
[X,B(Y,G, ∗)]. Suppose we have p : B(Y,G,G) → B(Y,G, ∗) with Y -structure

ω : B(Y,G,G) → Z. We define Ψ([f ]) = {f∗p,ωf̃} where f̃ : f∗B(Y,G,G) →
B(Y,G,G). To prove that this is well-defined, suppose we have two homotopic
maps f, h : X → B(Y,G, ∗).

h∗B(Y,G,G)

h∗p
++%%

%%%
%%%

%%%
%%%

J1 !!

h̃

,,
f∗B(Y,G,G)

f∗p

""

f̃ !! B(Y,G,G)

p

""

ω !! Z

X
f !!

h
!! B(Y,G, ∗)

By Proposition 2.13, we know that there is a bundle-covering homotopy J : h∗(Y,G,G)×
I → f∗(Y,G,G) that starts at the identity on h∗p. The composition

h∗B(Y,G,G)
J1−→ f∗B(Y,G,G)

f̃−→ B(Y,G,G)
ω−→ Z

is homotopic to

h∗B(Y,G,G)
h̃−→ B(Y,G,G)

ω−→ Z,

which shows that Ψ is well-defined with respect to ω.
Given an F-bundle ν : D → X with Y -structure θ : D → Z, we have its

associated principal G-bundle: Pν : PD → X with Y -structure θ̃ : PD → Z where
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θ̃ : PD → Y is defined as φ̃(θ) = θ ◦ φ. Consider the composition

A
g−→ B(PD,G, ∗) Bθ̃−−→ B(Y,G, ∗)

where g is an inverse of ε : B(PD,G, ∗) → A as in Theorem 4.1, and define

Φ(ν) = [Bθ̃ ◦ g]. To prove well-definedness of Φ, for two equivalent bundles with
equivalent Y -structure, we want to prove that their images under Φ are homotopic.
Given another bundle (ν′, θ′), an F-map k : D → D′ over X, and a homotopy
h : D × I → Z through Y -structure from θ to θ′k, we define Ph : PD × I → Y
by (Ph)t(ψ) = ht ◦ ψ. For φ ∈ G, we have (Ph)t(ψ ◦ φ) = (Ph)t(ψ) ◦ φ; hence

Ph : PD × I → PZ is an induced G-equivariant homotopy from θ̃ to θ̃ ◦ Pk. It
therefore induces a homotopy from Bθ̃ to Bθ̃′ ◦ BPk after the bar construction.
After composing each one with g, the homotopy is preserved. Thus, we proved that
Φ is well-defined, as desired.

Using the argument in Theorem 4.1, we are able to show that ΨΦ is the identity
with respect to bundle. Let’s now prove that ΨΦ is also the identity with respect to
the Y -structure. In the following diagram, we have proved this part of in Theorem
4.1 that g∗p′ and Pν are equivalent bundles over X.

g∗B(Y,G,G)

g∗p′
--▲

▲▲
▲▲

▲▲
▲▲

▲▲

J1 !!

g̃

..
PD

Pν

""

ε̃−1
!! B(PD,G,G)

p′

""

ε̃
))

!
Bθ̃ !! B(Y,G,G)

p

""

ω !! Z

X
g !! B(PD,G, ∗)
ε

))
Bθ̃

!! B(Y,G, ∗)

Using exactly the same argument as the well-definedness of Ψ, we see that the
composition

g∗B(Y,G,G)
g̃−→ PD

ε̃−1

−−→ B(PD,G,G)
!
Bθ̃−−→ h

ω−→ Z

is homotopic to

g∗B(Y,G,G)
g̃−→ B(PD,G,G)

!
Bθ̃−−→ h

ω−→ Z.

Therefore, the Y -structures PD → Z and g∗B(Y, Y,G) → Z are equivalent, and so
ΨΦ is the identity on Y -structures as well.

To verify that ΦΨ is an automorphism and therefore the identity, we can con-
struct a diagram similar to the one in the proof of Theorem 4.1.

X
g !!

f

""

B(f∗B(Y,G,G), G, ∗)
ε

))

Bf̃

""

q
!! B(Y,G, ∗)

B(Y,G, ∗) B(B(Y,G,G), G, ∗)Bε))

q

//❧❧❧❧❧❧❧❧❧❧❧❧❧

Here the map q is a homotopy equivalence since it is the map induced by
B(Y,G,G) → Y . The map Bε is a weak homotopy equivalence using the proof
of Proposition 3.5. Therefore, similar to Theorem 4.1, we can show that ΦΨ is also
the identity. □
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Here are some immediate consequences of the proofs of Theorem 5.4 and Theo-
rem 4.1.

Corollary 5.5.

(1) The map q∗ : [X,B(Y,G, ∗)] → [X,BG] represents the forgetful transfor-
mation from GF (X,Y ) → GF (X) taking (ν, θ) to ν.

(2) [X,Y ] is isomorphic to the set of equivalence classes of Y -structures on
the trivial F-bundle ε : X × F → X as follows: for f : X → Y , the
corresponding Y -structure is given by its adjoint X × F → Z.

(3) [X,G] is naturally isomorphic to the set of F-homotopy classes of F-maps
over A from the trivial bundle ε to itself. Given f : X → G, its adjoint
X × F → F is the second coordinate of the corresponding F-map over X.

(4) Let ι be a map from G to Y ; then ι∗ : [X,G] → [X,Y ] represents the
transformation that sends an F-map g : X×F → X×F to the Y -structure
θ0 ◦ g, where θ0 : X ×F → Z is the Y -structure on ε with adjoint being the
constant map X → ι(e).

Remark 5.6. We now have another explanation of Example 5.3 using the proof of
Theorem 5.4. We know that the map f below X → B(G′, G, ∗) corresponds to an
equivalence class of G-bundle with G′-structure over X.

X

""

f

00❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧

G′

=

""

!! B(G′, G, ∗)

""

!! B(∗, G, ∗) = BG

""
G′ !! B(G′, G′, ∗) !! B(∗, G′, ∗) = BG′

The first row represents a principal G-bundle with a G′-structure. The second
row represents the universal G′-bundle. By commutativity of this diagram, the
map f : X → BG′ factors through the contractable space B(G′, G′, ∗). It is thus
null-homotopic, and the F ′ bundle associated with it is trivial. In other words, a
G′-structure for an G-bundle is characterized by its triviality as a G′ bundle.

6. Application: orientations of bundles

In this section, we introduce orientations of fiber bundles with respect to a
cohomology theory E. We show why an orientation is an example of a Y -structure
and revisit the classification theorem of Y -structures in the context of orientations.

We first introduce some preliminary concepts that are essential for understanding
orientations and classification.

Definition 6.1 (Thom space). For a vector bundle ξ : P → A, we construct the
Thom space T ξ by applying one point compactification to each fiber V (so at each
point of X we have a spherical fiber SV ) and identifying the infinity points of the
spherical fibers we just obtained.

Definition 6.2 (E-orientation). Given a cohomology theory E with cup products,
a G-bundle ξ with fiber V is E-orientable if there exists a class µ ∈ En(T ξ) (where
n = dimV) such that µ restricts to a generator of En(Sv) ∼= E0S0 for each fiber V
along En(T ξ) → En(Sv). We call µ the orientation class.
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We denote a bundle ξ with an orientation µ as (ξ, µ), and we say that (ξ, µ) is
E-oriented.

Proposition 6.3 (Properties of E-orientations).

(1) The trivial spherical bundle ε : X×SV → X has an E-orientation of ε that
is the suspension of 1 ∈ E0X, called the canonical orientation µ0.

(2) Preservation by pullback: for an E-oriented G-bundle (ψ, ν) over Y and
f : X → Y , the pullback bundle (f∗ψ, (Tf)∗(ν)) is an E-oriented G-bundle
over X where Tf : Tf∗ψ → Tψ is the induced map on the Thom spaces.

(3) Preservation by product: for E-oriented G-bundles (ψ, ν) over X and (ξ, µ)
over Y , the product of the bundles is an E-orientable G-bundle over X×Y .

Further properties of orientations can be found in [2, III, Remark 1.5].
Here, instead of using the common notion of spectra where each level Ei is

indexed by a natural number i, we use coordinate-free spectra where each level
EV is indexed by some finite-dimensional subspace V of R∞. Analogously, for an
inclusion V ⊂ W , there is a homeomorphism σV,W : EV → ΩW−V EW where W−V
denotes the orthogonal complement of V in W .

Let E0 denote the 0-th level of the spectrum that is associated with the coho-
mology theory E. Let GL(1, E) denote the union of components of E0 that contain
units in π0E0.

We claim that given a cohomology theory E, an E-orientation of a bundle is
actually an example of a Y -structure if we take the Y in Definition 5.1 to be
GL(1, E). To see this, we describe an E-orientation in the language of Y -structures.
First, for an E-oriented G-bundle: (ξ, µ) : D → X with fiber SV , take EV = Z.

From the definition of spectrum we have a map δ̃ : E0 → F (SV , EV ), so we can
identify GL(1, E) with a subspace of F (SV , EV ), which satisfies how Y is defined
in Definition 5.1 as it lies in U(SV , Z). We think of the orientation class µ as
a homotopy class of maps D → EV such that for any ψ : SV → D that is a
based homotopy equivalence into a fiber, the composition µψ : SV → EV is in
GL(1, E). We know that µ factor through T ξ = D/X because for χ : ξ−1 → D,
the composition µχ takes each fiber to a single unit of EV . This ensures that the
restriction of µ from EnT ξ → TnTχ is a generator. More details can be found [2,
Page 56]

The proof of Theorem 6.4 comes directly from Theorem 5.4.

Theorem 6.4 (Classification of E-oriented bundles). For a CW-complex X, we
have that the set of equivalence classes of E-oriented G-bundles over X with fiber
SV (under the equivalence relation of orientation preserving G-bundle equivalence)
is in bijection with [X,B(GL(1, E), G, ∗)].
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