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ETHAN LEWIS

Abstract. This expository paper presents an introduction to stochastic cal-

culus. In order to be widely accessible, we assume only knowledge of basic

analysis and some familiarity with probability. We will cover the basics of
measure theoretic probability, then describe Brownian motion, then introduce

stochastic integration.
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1. Introduction

Brownian motion aims to describe a process of a random value whose direction
is constantly fluctuating. Examples of such processes in the real world include the
position of a particle in a gas or the price of a security traded on an exchange. We
can consider a simpler process that is constant except for jumps at discrete time
intervals, where the size and direction of each jump is a random value. For example,
we can think of a random walk where at each time interval, we flip a coin, and if it
lands heads, we take a step right, and if tails, we take a step left. To understand
Brownian motion, we consider the limit of such a process as the intervals between
jumps and the size of the jumps becomes vanishingly small.

In addition, we may want to integrate with respect to such a process. As with
our random walk example above, we could consider moving along a surface with a
variable slope where we want to know our total vertical displacement. Once again,
we can use the integral in the discrete case to understand the limit of Brownian
motion.

We will begin by providing some background of measure theoretic probability
and a few key theorems. Next we will define Brownian motion and describe some
of its properties. The concept of quadratic variation is necessary for the theorems
of stochastic calculus, so we treat it in the next section. Finally we formulate the
stochastic integral and present Itô’s Formula.
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2. Measure Theoretic Probability

We will first introduce some definitions fundamental to measure theory.

Definition 2.1. Let S be a set and Σ0 be a collection of subsets of S. Σ0 is called
an algebra on S if it satisfies the following.

(i) S is an element of Σ0.
(ii) If F ∈ Σ0, then F c ∈ Σ0, where F c is the complement of F.

(iii) If F ∈ Σ0 and G ∈ Σ0, then F ∪G ∈ Σ0.

Remark. Note the following properties of algebras:

• Since ∅ = Sc, ∅ ∈ Σ0.
• If F,G ∈ Σ, then F ∩G ∈ Σ since F ∩G = (F c ∪Gc)c.

Definition 2.2. Let Σ be an algebra on a set S. We call Σ a σ-algebra on S if for
any countable subset of the algebra {Fn ∈ Σ : n ∈ N},

∞⋃
n=1

Fn ∈ Σ.

As before, it follows that if {Fn ∈ Σ : n ∈ N}, then

∞⋂
n=1

Fn ∈ Σ.

Definition 2.3. Let A be a collection of subsets of a set S. The σ-algebra generated
by A, denoted σ(A), is the smallest σ-algebra such that A ∈ σ(A). That is, for any
Σ that is a σ-algebra on S such that A ∈ Σ, σ(A) ⊆ Σ.

Definition 2.4. For any set S, the Borel σ-algebra on S, denoted B(S), is the
σ-algebra generated by the collection of open subsets of S. For the Borel σ-algebra
on R we use the notation B = B(R),

Since a closed set is the complement of an open set, a Borel σ-algebra contains
all the closed sets and all the sets formed by countable unions and intersections of
open sets and closed sets.

Definition 2.5. Let Σ0 be an algebra and µ0 be a non-negative set function on Σ0

µ0 : Σ0 → [0,∞].

µ0 is called countably additive if µ0(∅) = 0 and for any sequence (Fn : n ∈ N) of
disjoint subsets of Σ0 such that

⋃
Fn ∈ Σ0,

∞∑
n=1

µ0(Fn) = µ0

( ∞⋃
n=1

Fn

)
.

Note that the values in the above equation could be infinite.

Definition 2.6. Let S be a set, and let Σ be a σ-algebra on S. The pair (S,Σ) is
called a measurable space. If µ is a countably additive set function on Σ then µ is
a measure on (S,Σ). The triple (S,Σ, µ) is called a measure space.

Definition 2.7. Suppose (S,Σ, µ) is measure space. If µ(S) = 1, then µ is called
a probability measure, and (S,Σ, µ) is called a probability triple.
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The standard form of a probability triple is (Ω,F ,P), where Ω is the set of all
possible outcomes called the sample space and F is the collection of events, which
are subsets of Ω, to which we can assign a probability. The probability of an event
E ∈ F is P(E).

Definition 2.8. Let (S,Σ) be a measurable space, and f : S → R. f is called
Σ-measurable if for any A ∈ B, the pre-image of A is an element of Σ.

Definition 2.9. For a measurable space (Ω,F) that serves as our sample space and
collection of events, a real random variable is a F-measurable function X : Ω→ R.

The following two lemmas are presented without proof but can be found in [2].

Lemma 2.10. For any measurable space (S,Σ), f : S → R is Σ-measurable if for
all c ∈ R,

{s ∈ S : f(s) ≤ c} ∈ Σ.

This tells us that for any random variable X and any c ∈ R we can always ask
the probability of X being at most c, that is P{X ≤ c}, since the event {X ≤ c} is
an element of F .

Note that we use the simplified notation {X ≤ c} for {ω ∈ Ω : X(ω) ≤ c}.

Lemma 2.11. Let mΣ be the set of Σ-measurable functions for a measurable space
(S,Σ). If λ ∈ R and f, g ∈ mΣ, then

(i) f + g ∈ mΣ
(ii) fg ∈ mΣ

(iii) λf ∈ mΣ.

This tells us that we can scale, add, and multiply random variables and get
random variables out.

For simplicity we will use the following elementary definitions of independence
as they are sufficient for our discussion.

Definitions 2.12. Events E1, E2, . . . are independent if for distinct i1, . . . , in,

P(Ei1 ∩ · · · ∩ Ein) =

n∏
k=1

P(Eik).

Random variables X1, X2, . . . , Xn are independent if

P
{
Xk ≤ xk : k ∈ {1, . . . , n}

}
=

n∏
k=1

P{Xk ≤ xk}.

A complete treatment of the Lebesgue integral is beyond the scope of this paper
and can be found in [2] or [3]. We will cover only its definition.

For the indicator function of a set A, we use the notation

1A(x) =

{
1, x ∈ A
0, x /∈ A

and for the indicator random variable of an event E, we use the notation

1E =

{
1, E occurs

0, E does not occur
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Definition 2.13. Suppose (S,Σ, µ) is a measure space and s is a Σ-measurable
function defined by

(2.14) s(x) =

n∑
i=1

ci 1Ei(x),

for sets Ei ∈ Σ and constants ci ≥ 0. If E ∈ Σ, define

IE(s) =

n∑
i=1

ci µ(E ∩ Ei).

If f is Σ-measurable and non-negative, define the Lebesgue integral of f as∫
E

f dµ = sup IE(s),

where the supremum is taken over functions of the form given in (2.14) such that
s ≤ f. Finally if f is Σ-measurable, let

f+ = max(f, 0), f− = max(−f, 0).

Note that both are positive. If either
∫
E
f+ dµ or

∫
E
f− dµ is finite then we define∫

E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ.

If
∫
S
f dµ is finite, we say that f is integrable and write f ∈ L1(S,Σ, µ).

Definition 2.15. Suppose (Ω,F ,P) is a probability triple and X ∈ L1(Ω,F ,P).
The expectation of X is

E[X] :=

∫
Ω

X dP.

If X ≥ 0 and is Σ-measurable we define 0 ≤ E[X] ≤ ∞ the same way.

Definition 2.16. Suppose (Ω,F ,P) is a probability triple, Y is an integrable ran-
dom variable, and G is a sub-σ-algebra of F . The conditional expectation E[Y | G]
is defined to be the unique G-measurable random variable such that if A ∈ G,

(2.17) E[Y 1A] = E[E[Y | G] 1A].

Here, “unique” means unique up to an event of measure zero, which is to say that if
two G-measurable random variables, Z1 and Z2 satisfy (2.17), then P{Z1 6= Z2} = 0.

Note that while expectation is a constant variable (in particular it is the weighted
mean of a random variable), the conditional expectation is itself a random variable
that denotes the best guess given the information in G. This definition of conditional
expectation necessitates a proof of its existence and uniqueness which can be found
in [2].

To better understand the nature of conditional expectation, we will consider a
simple example. Let

Ω = {(1, 1), (1, 2), . . . , (2, 1), (2, 2), . . . , (6, 5), (6, 6)}

be the set of possible rolls of two fair, independent 6-sided dice and F = P(Ω) the
power set of Ω. Let

G = σ
({
{(i, 1), . . . , (i, 6)} : i ∈ {1, . . . , 6}

})
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be the sub-σ-algebra of events determined only by the value of the first die. Let X
be the sum of the two dice values, so X is F measurable, and E[X] = 7. On the
other hand, E[X | G] is random variable determined by the value of the first die
whose value is what we expect the sum to be given the value of the first die. In
particular, E[X | G] is 3.5 greater than the mean value of the first die for an event
in G. One final note on conditional expectation is that we can have examples like

E[X | the first die is 4] = 7.5

or

E[X | the first die is greater than 2] = 8

where the expectation of X given some other event is a constant; in fact, it is a
value taken by E[X | G].

Proposition 2.18. The following are properties of conditional expectation.

• If Y is G-measurable. then

(2.19) E[Y | G] = Y.

• If Y is independent of the events in F , then

(2.20) E[Y | F ] = E[Y ].

• Linearity: If Y , Z are random variables and a, b are constants, then

(2.21) E[a Y + b Z | G] = aE[Y | G] + bE[Z | G].

• Tower Property: If G and F are σ-algebras with G ⊆ F , then

(2.22) E[E[Y |F ] | G] = E[Y | G].

Proof. We will prove only the tower property; the proof of the other properties can
be found in [1] and [2]. Let

Z = E[E[Y | F ] | G].

So Z is the unique (up to an event of probability zero) G-measurable random
variable such that for all A ∈ G,

E[E[Y | F ] 1A] = E[Z 1A].

Similarly E[Y | F ] is the unique F-measurable random variable such that for all
B ∈ F ,

E[Y 1B ] = E[E[Y | F ] 1B ].

If A ∈ G, then also A ∈ F , and so

E[Y 1A] = E[E[Y | F ] 1A] = E[Z 1A],

and since Z is G-measurable, the result follows from uniqueness of conditional
expectation. �

We will now give a few useful results used in probability theory.

Lemma 2.23 (Markov’s Inequality). Suppose X is an integrable random variable
with respect to a probability triple (Ω,F ,P). Then for all c ≥ 0,

cP{|X| ≥ c} ≤ E[|X|]
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Proof. Let A be the event {|X| ≥ c}. Then

cP{|X| ≥ c} =

∫
A

c dP ≤
∫
A

|X| dP ≤
∫

Ω

|X| dP = E[|X|]

since A ∈ Ω and |X| ≥ 0. �

Lemma 2.24 (Chebyshev’s Inequality). Suppose X is a random variable that is
square integrable (that is, X2 is integrable). Let µ = E[X]. For all c ≥ 0,

c2 P{|X − µ| ≥ c} ≤ Var[X],

where Var[X] = E
[
(X − µ)2

]
is the variance of X.

Proof. Since |X − µ| ≥ c if and only if |X − µ|2 ≥ c2,

P{|X − µ| ≥ c} = P{|X − µ|2 ≥ c2},

and the result follows from Markov’s inequality. �

Lemma 2.25 (First Borel-Cantelli Lemma). If (En) is a sequence of events such
that

∞∑
n=1

P{En} <∞,

then,

P

{ ∞⋂
N=1

∞⋃
n=N

En

}
= 0.

In other words, the probability of infinitely many En occuring is zero.

The proof of the Borel-Cantelli Lemma can be found in [2].

3. Brownian Motion

Before discussing Brownian motion we will first discuss a bit about random walks.
Suppose X1, X2, . . . are independent random variables, each with equal probability
of being −1 or 1. Let

Sn = X1 +X2 + · · ·+Xn.

Sn is a simple random walk in Z which represents a discrete-time process where in
each time step there is an equal probability of progressing right or left along the
number line. The Central Limit theorem tells us that as n increases, Sn approaches
a normal distribution with mean 0 and variance n. Equivalently, Zn = Sn/

√
n

approaches a standard normal normal distribution, that is, one with mean 0 and
variance 1. Put precisely, for a < b

lim
n→∞

P{a ≤ Zn ≤ b} = Φ(b)− Φ(a)

where

Φ(c) =

∫ c

−∞

1√
2π
e−x

2/2 dx.

Brownian motion can be thought of as the limit of a random walk, where instead
of going farther in time, we make the time between steps and the magnitude of each
step smaller, so that in the limit, the process is continuous in time. Let us denote
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Figure 1. Simulations of W
(N)
t for various values of N

the space increments as ∆x and time increments as ∆t and let the value of our
process for these increments at a time t be∑

0<j∆t≤t

∆xXj .

Our initial example of Sn fits this with ∆x = 1, ∆t = 1.
Now, to take the limit, we will consider time increments ∆t = 1/N and denote

the resulting process as

W
(N)
t = ∆x (X1 + · · · XbNtc).

What should be our choice of ∆x for this choice of N? We want Var[W
(N)
1 ] = 1, so

1 = Var[W
(N)
1 ] = Var[∆x (X1 + · · · XN )]

= (∆x)2 (Var[X1] + . . . + Var[XN ])

= (∆x)2N

would necessitate
∆x =

√
1/N =

√
∆t.

Figure 1 shows some simulations of possible paths of the process W
(N)
t for various

values of N . As we increase the number of steps, the process appears more like it
is continuous as the size of the jumps becomes small. The process also becomes
more jagged as there are many points that are not differentiable, and in fact, with
probability one, Brownian motion is nowhere differentiable.

While it useful to think of Brownian motion as the limit of a random walk, we
now give a more rigorous definition. Brownian motion is an example of a stochastic
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process, that is a collection of random variables indexed by time. The process W
(N)
t

given above is also a stochastic process.

Definition 3.1. A stochastic process Bt is called a (one-dimensional) Brownian
motion with drift m and variance σ2 starting at the origin if it satisfies the following.

(i) B0 = 0.
(ii) For s < t the distribution of Bt − BS is normal with mean m(t − s) and

variance σ2(t− s).
(iii) If s < t the random variable Bt − Bs is independent of the values of Br for

r ≤ s.
(iv) With probability one, the function t 7→ Bt is a continuous function of t.

If Bt is a Brownian motion with drift 0 and variance 1, it is called a standard
Brownian motion, and in fact, if

Yt = mt+ σBt,

then Yt is Brownian motion with mean m and variance σ2.
For s < t,

Yt − Ys = mt+ σ Bt −ms− σ Bs = m (t− s) + σ (Bt −Bs),

which is distributed as

m (t− s) + σN(0, t− s) = N(m (t− s), σ2 (t− s)),
where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. There-
fore, condition (ii) is satisfied. The other conditions are immediate.

This definition does not guarantee that any such process exists. However, by the
preceding discussion, the existence of a standard Brownian motion is sufficient for
the existence of any Brownian motion.

It is possible to construct a standard Brownian motion by defining the process
on a countable, dense subset of R, showing that the process is continuous, and then
extending the process to all the real numbers, using the result from calculus that
a continuous function is uniquely determined by its values on a dense subset. This
construction is lengthy and will be left out; the interested reader can consult [1].

We will now discuss a few properties of Brownian motion.

Definition 3.2. Suppose we have a set of σ-algebras Ft such that if s < t, then
Fs ⊆ Ft. A stochastic process Mt is a continuous martingale with respect to the
filtration {Ft} if:

• For all t, Mt is an integrable Ft-measurable random variable.
• For all s < t, E[Mt | Fs] = Ms with probability one.

It is useful to think of a filtration as an increasing amount of information. When
no filtration is given explicitly, one assumes that Ft is the information contained
in {Ms : s ≤ t}. We can extend our definition of Brownian motion to say that
a process Bt is a Brownian motion with respect to a filtration {Ft} if each Bt is
Ft-measurable and Bt satisfies the conditions of Definition 3.1, replacing condition
(iii) with

(iii) If s < t the random variable Bt −Bs is independent of Fs.

If Bt is a Brownian motion with respect to the filtration {Ft} and with drift zero,
then for s < t,

E[Bt | Fs] = E[Bs | Fs] + E[Bt −Bs | Fs] = Bs + E[Bt −Bs] = Bs
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by (2.19), (2.20), and (2.21). Therefore, Bt is a continuous martingale. In other
words, given any amount of information about the path of a Brownian motion up
to some time, the expectation of its value at a future time is equal to its current
value.

Definition 3.3. A continuous time process Xt is called Markov if for every t,
the conditional distribution of {Xs : s ≥ t} given {Xr : r ≤ t} is the same as
the conditional distribution given Xt. In other words, the future of the process is
conditionally independent of the past given the present value.

Suppose Bt is a Brownian motion. For every t, if s ≥ t, the distribution of
Bs−Bt is independent of {Br : r ≤ t}, so the distribution of Bs = Bt + (Bs−Bt)
given Bt is the same as the distribution given {Br : r ≤ t}, so Bt is a Markov
process.

4. Quadratic Variation

We will now discuss a result that does not immediately appear to be useful but
will serve in our discussion of Itô’s Formula later on.

Suppose X(t) is a stochastic process indexed by times t, and suppose Π is a
partition of [0, t], that is, Π = {t0, . . . , tn} such that 0 = t0 < t1 < · · · < tn = t,
and write ‖Π‖ = max

1≤j≤n
{tj − tj−1}. Let

QX(t; Π) =

n∑
j=1

[X(tj)−X(tj−1)]2.

Definition 4.1. Suppose X(t) is a stochastic process. The quadratic variation,
denoted 〈X〉t is the limit of QX(t; Πn) for a sequence of partitions {Πn} such that
‖Πn‖ → 0.

This definition requires the existence of this limit, and uniqueness for all such
sequences of partitions. We will prove these conditions for Brownian motion.

Let B(t) be a standard Brownian motion. For the remainder of this section, we
will use Q(t; Π) = QB(t; Π). Since B(tj)−B(tj−1) is distributed as

N(0, tj − tj−1) =
√
tj − tj−1N(0, 1),

we find

E[Q(t; Π)] = E

 n∑
j=1

(B(tj)−B(tj−1))2


=

n∑
j=1

E
[

(B(tj)−B(tj−1))2
]

=

n∑
j=1

E
[ (√

tj − tj−1N(0, 1)
)2]

=

n∑
j=1

(tj − tj−1)E
[
N(0, 1)2

]
=

n∑
j=1

(tj − tj−1) = t.
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Additionally, using the fact that subsequent increments of Brownian motion are
independent and that Var[N(0, 1)2] = 2, we find

Var[Q(t; Π)] =

n∑
j=1

Var
[

(B(tj)−B(tj−1))2
]

=

n∑
j=1

Var
[

(tj − tj−1)N(0, 1)2
]

=

n∑
j=1

(tj − tj−1)2 Var
[
N(0, 1)2

]
= 2

n∑
j=1

(tj − tj−1)2

≤ 2‖Π‖
n∑

j=1

(tj − tj−1)

= 2‖Π‖t.

So we find that as our partition becomes finer, ‖Π‖ approaches zero, and conse-
quently the quadratic variation with respect to Π approaches a constant value of t.
This observation is made precise by the following theorem.

Theorem 4.2. Suppose B(t) is a standard Brownian motion and {Πn} is a se-
quence of partitions on [0, t] with ‖Πn‖ → 0. Then Q(t; Πn) → t in probability,
that is, for all ε > 0,

(4.3) lim
n→∞

P( |Q(t; Πn)− t| > ε) = 0.

Moreover, if

(4.4)

∞∑
n=1

‖Πn‖ <∞,

then with probability one, Q(t; Πn)→ t.

Proof. By Chebyshev’s inequality, for all k ∈ N,

P
{
|Q(t; Πn)− t| > 1

k

}
≤ Var[Q(t; Πn)]

(1/k)2
≤ 2k2 ‖Πn‖ t,

which limits to 0 as n→∞, satisfying (4.3).
If (4.4) holds, then

∞∑
n=1

P
{
|Q(t; Πn)− t| > 1

k

}
≤ 2k2 t

∞∑
n=1

‖Πn‖ <∞,

and so by the Borel-Cantelli lemma, with probability one, there exists N such that
for all n ≥ N ,

|Q(t; Πn)− t| ≤ 1/k. �

So far, we have discussed the quadratic variation on [0, t]; however, because for
all s < t, the distribution of Bt − Bs is the same as that of Bt−s − B0, it follows
that the quadratic variation of a standard Brownian motion on the interval [s, t] is
equal to t− s.
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In the following theorem we show that for a general Brownian motion, not only
is the quadratic variation a constant variable, but it depends only on the variance
and not on the drift.

Theorem 4.5. For a general Brownian motion Wt = mt+σ Bt with mean m and
variance σ2, 〈W 〉t = σ2 t.

Proof. Let Πn be the partition {0, t/n, 2t/n, . . . , (n−1)t/n, t}. {Πn} is a sequence
of partitions such that ‖Πn‖ → 0, so 〈W 〉t is equal to the limit as n→∞ of

QW (t; Πn) =

n∑
j=1

[
W

(
t j

n

)
−W

(
t (j − 1)

n

)]2

= (A) + (B) + (C),

where

(A) = σ2
n∑

j=1

[
B

(
t j

n

)
−B

(
t (j − 1)

n

)]2

,

(B) =
2σmt

n

n∑
j=1

[
B

(
t j

n

)
−B

(
t (j − 1)

n

)]
,

(C) =

n∑
j=1

m2t2

n2
,

and as n→∞,

(A)→ σ2〈B〉t = σ2 t,

(B) =
2σmt

n
(Bt −B0)→ 0,

(C) =
m2t2

n
→ 0. �

5. Stochastic Integration

In standard calculus, a differential equation of the form

df(t) = C(t, f(t)) dt

says that the rate of change with respect to t of the function f(t) is equal to
C(t, f(t)), which, of course, can depend on both t and the value of f at time t.
One can describe the value of f(t) given an initial condition by the integral

f(x) = f(x0) +

∫ x

x0

C(t, f(t) dt,

which can be calculated whether by solving the differential equation directly when
possible or by numerical approximation of the integral.

Similarly, we can describe a process by a stochastic differential equation (SDE)
of the form

(5.1) dXt = m(t, Xt) dt+ σ(t, Xt) dBt,

where Bt is a standard Brownian motion. This equation says that the process Xt

evolves at time t like a Brownian motion with drift m(t, Xt) and variance σ(t, Xt)
2.
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Xt can be described as

Xt = X0 +

∫ t

0

m(s, Xs) ds+

∫ t

0

σ(t, Xt) dBt.

The first integral is the standard integral, although it is worth noting that the
integrand is random; nonetheless, the definition of integration still applies. To
make sense of the second term we must give a definition of∫ t

0

As dBs

for a more general process As. The definition we will use will be that of the Itô
integral.

To help us understand stochastic calculus, before we define the stochastic inte-
gral, we will discuss how to approximate the solution to an SDE by the stochastic
Euler method. If Xt is described by the SDE in (5.1) then we can simulate Xt in
discrete steps of size ∆t by the formula

(5.2) Xt+∆t = Xt + ∆tm(t, Xt) +
√

∆t σ(t, Xt)N(0, 1).

This is equivalent to assuming m and σ are constant on the interval [t, t + ∆t),
and thus, on that interval, Xt will increase according to a normal distribution with
mean ∆tm(t, Xt) and variance ∆t σ(t, Xt)

2. The variance function can be thought
of as a “bet” on the Brownian motion, where the change in Xt is the change in
Bt amplified by the value of σ(t, Xt), and a negative value of σ(t, Xt) is betting
against the Brownian motion, that is, Xt will increase in proportion to how much
Bt decreases.

We will first define the stochastic integral for simple processes. In the discussion
that follows, assume Bt is a Brownian motion with respect to the filtration {Ft}.

Definition 5.3. A process At is a simple process if there exist times

0 = t0 < t1 < · · · < tn < tn+1 =∞
and random variables Yj for j = 0, 1, . . . , n that are Ftj -measurable such that

At = Yj , tj ≤ t < tj+1

and that E[Y 2
j ] <∞. Note that since Yj is Ftj -measurable, At is Ft-measurable.

Definition 5.4. If At is a simple process, we define the stochastic integral

Zt =

∫ t

0

As dBs

by

Ztj =

j−1∑
k=0

Yk [Btk+1
−Btk ],

and more generally by

Zt = Ztj + Yj [Bt −Btj ], tj ≤ t < tj+1,∫ t

r

As dBs = Zt − Zr.

Note that this is essentially the same as (5.2), except that because this is not a
simulation, instead of a generic normal distribution, we use the change in value of
the Brownian motion, which is normally distributed.
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To define the integral for continuous processes, we must first provide a lemma
regarding approximation by simple processes. We say that a process At is adapted
to the filtration {Ft} if for all t, At is Ft-measurable.

Lemma 5.5. Suppose At is a process with continuous paths, adapted to the filtration
{Ft}, and suppose that there exists C <∞ such that with probability one, |At| ≤ C
for all t. Then there exists a sequence of simple processes A

(n)
t such that for all t,

(5.6) lim
n→∞

∫ t

0

E
[
|As −A(n)

s |2
]
ds = 0.

Moreover, for all n and t, |A(n)
t | ≤ C.

The following proof relies on the bounded convergence theorem, a corollary of
Lebesgue’s dominated convergence theorem, and Fubini’s theorem. The unfamiliar
reader can either trust these results or consult [2] or [3].

Proof. It suffices to show (5.6) for any fixed value of t. Assume without loss of
generality that t = 1, and let

A
(n)
t = A(j, n) := n

∫ (j+1)/n

j/n

As ds,
j

n
≤ t ≤ j + 1

n
.

Note that A(j, n) is the mean of At on the interval
[
j
n ,

j+1
n

]
, and so |A(n)

t | ≤ C.
Because the function t 7→ At is continuous,

A
(n)
t → At.

Let

Yn =

∫ 1

0

[A
(n)
t −At]

2 dt.

By the bounded convergence theorem,

lim
n→∞

Yn = 0.

Since the random variables {Yn} are uniformly bounded, then by the bounded
convergence theorem and Fubini’s theorem,

lim
n→∞

∫ t

0

E[|As −A(n)
s |2] ds = lim

n→∞
E[Yn] = E

[
lim
n→∞

Yn

]
= 0. �

Definition 5.7. For a bounded, continuous process As adapted to the filtration
{Fs}, we define the stochastic integral as∫ t

0

As dBs = lim
n→∞

∫ t

0

A(n)
s dBs,

where A
(n)
s is a sequence of simple processes satisfying (5.6).

The existence of this limit can be shown but will not be proven here; a proof can
be found in [1].

We can also define the integral for processes with piecewise continuous paths. If
At is a bounded, adapted process with paths that are continuous on [0, t] except
at t0, then we can define the integral (by (5.9) in the following proposition) as∫ t

0

As dBs =

∫ t0

0

As dBs +

∫ t

t0

As dBs.
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Proposition 5.8. Suppose Bt is a standard Brownian motion with respect to a
filtration {Ft}, and At, Ct are bounded, adapted processes with piecewise continuous
paths.

• Linearity. If a and b are constants, then∫ t

0

(aAs + bCs) dBs = a

∫ t

0

As + b

∫ t

0

Cs dBs.

Also, if r < t, then

(5.9)

∫ t

0

AsBs =

∫ r

0

AsBs +

∫ t

r

AsBs.

• Martingale property. The process

Zt =

∫ t

0

As dBs

is a martingale with respect to {Ft}.
• Variance rule. Zt is square integrable and

Var[Zt] = E
[
Z2
t

]
=

∫ t

0

E
[
A2

s

]
ds.

• Continuity. With probability one, t 7→ Zt is a continuous function.

Suppose we have a function f(Bt) and we want to determine its value at a time
t given an initial value of f(B0). In standard calculus, we can often apply the
fundamental theorem of calculus to calculate

f(x) = f(0) +

∫ x

0

f ′(t) dt.

The stochastic analogue of the fundamental theorem of calculus is Itô’s formula,
which we will now prove.

Theorem 5.10 (Itô’s formula). Suppose f is a C2 function and Bt is a standard
Brownian motion. Then for every t,

f(Bt) = f(B0) +

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds,

or, written in differential form,

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt.

Proof. Let {Πn} be a sequence of partitions

0 = t0, n < t1, n < · · · < tkn, n = t,

such that
∞∑

n=1

‖Πn‖ <∞, ‖Πn‖ = max
1≤j≤kn

{tj, n − tj−1, n}.

For any n, we can write the telescoping sum (denoting Bt as B(t) and tj, n as tj),

f(B(t))− f(B(0)) =

kn∑
j=1

[ f(B(tj))− f(B(tj−i)) ].
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Let m(j, n) and M(j, n) be the minimum and maximum, respectively, of f ′′(x) for
B(tj−1) ≤ x ≤ B(tj). By Taylor’s theorem,

f(B(tj))− f(B(tj−1)) = f ′(B(tj−1)) [B(tj)−B(tj−1) ] + ξn,

where

m(j, n)

2
[B(tj)−B(tj−1) ]2 ≤ ξj, n ≤

M(j, n)

2
[B(tj)−B(tj−1) ]2.

Hence if we let

Q1(Πn) =

kn∑
j=1

f ′(B(tj−1)) [B(tj)−B(tj−1) ],

Q2
−(Πn) =

kn∑
j=1

m(j, n)

2
[B(tj)−B(tj−1) ]2,

Q2
+(Πn) =

kn∑
j=1

M(j, n)

2
[B(tj)−B(tj−1) ]2,

then we have

(5.11) Q2
−(Πn) ≤ f(B(t))− f(B(0))−Q1(Πn) ≤ Q2

+(Πn).

First we will try to understand Q2. By Theorem 4.2, with probability one, for all
0 < q < r < t,

lim
n→∞

∑
q≤tj,n<r

[B(tj, n)−B(tj−1, n) ]2 = q − r.

On the event that this is true, by the continuity of Bt and f ′′, we have

lim
n→∞

Q2
−(Πn) = lim

n→∞
Q2

+(Πn) =
1

2

∫ t

0

f ′′(B(s)) ds.

Now we will try to understand Q1. We will prove the theorem under the addi-
tional assumption that there exists K <∞ such that |f ′′(x)| ≤ K for all x. By the
mean value theorem,

|f ′(B(s))− f ′(B(tj−1, n))| ≤ K |B(s)−B(tj−1, n)|.

Let the simple process

A(n)(s) = f ′(B(tj−1, n)), tj−1, n ≤ s < tj, n.

For s ∈ [tj−1, n, tj, n),

E
[
|f ′(B(s))−A(n)(s)|2

]
≤ K2 E

[
|B(s)−B(tj−1, n)|2

]
= K2 Var [B(s)−B(tj−1, n)] = K2 [s− tj−1, n] ≤ K2 ‖Πn‖,

Therefore,

0 ≤ lim
n→∞

∫ t

0

E
[
|f ′(B(s))−A(n)(s)|2

]
ds ≤ lim

n→∞
tK2 ‖Πn‖ = 0,

which satisfies (5.6), so∫ t

0

f ′(B(s)) ds = lim
n→∞

∫ t

0

A(n)(s) ds = lim
n→∞

Q1(Πn).
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So by taking the limits in (5.11), we see that

f(B(t))− f(B(0)) =

∫ t

0

f ′(B(s)) ds+
1

2

∫ t

0

f ′′(B(s)) ds. �

Example 5.12. We can use Itô’s formula to solve stochastic integrals such as∫ t

0
Bs dBs. If we let f(x) = x2, then we find that

B2
t = f(Bt) = f(B0) +

∫ t

0

f ′(Bs) dBs+
1

2

∫ t

0

f ′′(B(s)) ds

= B2
0 + 2

∫ t

0

Bs dBs + t.

Therefore, ∫ t

0

Bs dBs =
1

2

[
B2

t − t
]
.
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