CHARACTERISTIC CLASSES

JUDSON KUHRMAN

ABSTRACT. Characteristic classes are powerful tools in algebraic topology which
allow one to study properties of vector bundles. They therefore have applica-
tions throughout mathematics, especially in geometry. We give an introduction
to characteristic classes and some examples of their use in studying manifolds.
We presume not much more than basic knowledge of the tangent bundle, and
of elementary algebraic topology (namely, singular cohomology and properties
of the classifying space).
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1. PRELIMINARIES: MAPS AND OPERATIONS OF VECTOR BUNDLES

Vector bundles are fundamental objects which arise naturally in differential ge-
ometry and topology, as well as other areas of mathematics. As a reminder, a vector
bundle of dimension n over a space B is a surjective map

¢EEFE—B
such that for all b € B,
(i) the preimage, or “fiber” Fj, = £~1{b} is a topological vector space of (real
or complex) dimension n and

(i) There is a neighborhood U of b such that £ ~1(U) is homeomorphic to U x Fy,
and ¢ restricts to the projection onto U.

We may also be interested in cases where the fiber has the structure of a module
over the quaternions, although perhaps this should not really be called a “vector”
bundle. We may refer to a vector bundle as the triple (£, E, B), or simply as £ or
FE if the other data are understood.

Examples 1.1. (i) Given a vector space V, there is always the “trivial bun-
dle” which projects B x V onto B.
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(ii) Given a smooth manifold M, we may consider the tangent bundle TM,
the cotangent bundle T*M, and the exterior powers A*T*M, among other
related constructions.

(iii) Consider the real projective space RP™. There is canonical line bundle over
RP" which associates to each point the corresponding line in R*t!. We
may also consider the analogous constructions for CP™ and HP™.

To study vector bundles, we need to consider maps between them. We have the
following definition:

Definition 1.2. Given two vector bundles (¢, E, B) and (n, E’, B') of dimension
n, a morphism or “bundle map” (f, f) : &€ = nis a pair of maps f : E — E' and
f : B — B’ such that

(i) The following diagram commutes:

(ii) For all points b € B, f restricts to a linear isomorphism £ ~1(b) — 5= (£ (b)).

Given a field (or skew-field) K we will denote the sets of isomorphism classes of
n-dimensional K-vector bundles over B as Vect’ (B).

Now, given a vector bundle (£, E, B) and a map f : B’ — B we can construct
a vector bundle (f*¢, f*E,B’), called the pullback of £ by f, and a bundle map
f*¢ — £ as follows: let f*E C FE x B’ consist of those pairs (e,b) such that
e € £71(f(b)). Then, define f*¢ to be the projection onto the second coordinate,
and f to be projection onto the first, giving a bundle map (f, f:fe—¢

In order to classify vector bundles via bundle maps, we will need the following
two propositions:
Proposition 1.3. Suppose that (¢, E, B) and (n,E’,B’) are vector bundles and
there exists a bundle map (f, f): & = n. Then, £ is isomorphic to f*n.

Proposition 1.4. Suppose that (£, E, B) is a vector bundle and the maps f,g :
B’ — B are homotopic maps. Then, f*£ is isomorphic to g*&.

Lastly, we may want to extend certain operations on vector spaces, such as the
direct sum and the tensor product, fiberwise to vector bundles. The details of these
constructions, as well as the proofs of Propositions 1.3 and 1.4 are presented, for
example, in [1].

2. GRASSMANNIANS AND THE UNIVERSAL BUNDLE

Here we give the definition of characteristic classes and their relationship to the
classification of vector bundles.

Definition 2.1. Let R be a coefficient ring. A characteristic class c¢ is choice of
element c(£) € H*(B; R) for each vector bundle ({, £, B) which obeys the following
naturality property: for all bundle maps (f, f) : £ — 1, we have ¢(§) = f*(¢(n)).
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Now, it turns out that we can classify vector bundles as the pullbacks of a
certain “universal bundle”. This will allow us to realize all characteristic classes by
evaluation on this bundle. To construct the universal bundle we first need some
definitions.

Definitions 2.2. Let W be a vector space with inner product (of possibly infinite
dimension). Then, we have the following:

(i) The Stiefel “manifold” V,,(W), whose points are orthonormal® k-frames in
w.

(ii) The Grassmannian Gr, (W), whose points are k-dimensional subspaces of
w.

There is a surjective map p : V(W) — Gr,(W) given by y(x1,22...,2,) =
span{xy,Ta,...,2,}. We topologize V,, (W) as a subspace of W™ and then topolo-
gize Gr, (W) so that p is a quotient map.

Now, let E,(R) be the subspace of Gr,(R>) x R* consisting of those pairs
(X, x) such that x € X. We have a vector bundle

T En(R) = Gr, (R™)
(X,x) — X.
Then, consider the following:

Theorem 2.3. Let (€, E, B) be any real n-dimensional vector bundle, where B 1is
paracompact. Then, there exists a bundle map § — Vg.

The proof of Theorem 2.3 relies on a lemma, proved in [1]:

Lemma 2.4. Let B be paracompact and let (€, E, B) be a fiber bundle. Then, there
exists a countable open cover Uy,Us, ... of B such that £ is trivial on each U;.

Now we can prove Theorem 2.3.

Proof of Theorem 2.3. Let Uy, Us, ... be a countable open cover of B such that ¢ is
trivial on each U;. Since B is paracompact, B is normal, so there exist open covers
Vi,Va,...and Wy, Ws,... of B such that

W, CV,CV,CU,,

and there exist continuous functions ¢; : B — [0,1] such that ¢;(W;) = {1} and
¢;(B\ U;) = {0} for all 4. Since £ is trivial over each U;, there are projection maps
pi; : £1(U;) — R™. Using the fact that ¢; is zero outside U;, we may define

ha(e) = {g’i@(e))m(e), €60
Then, since at any point, h; is zero for all but finitely many ¢, we have a map
h:E — (R")*® ~R*
e (hi(e), ha(e),...)

Lin lieu of an inner product, we may replace “orthonormal” with “linearly independent” and
the space will be the same up to homotopy equivalence.
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Then, the bundle map ( 1, f) is given by
f(e) = (h(e), h(¢™"(&(e)))

fle) =k (f(e)).
O

In the case of the universal bundle, the homotopy-invariance of the pullback is
strengthened to the following theorem from [1]:

Theorem 2.5. A real n-dimensional vector bundle (¢, E, B) determines a unique
homotopy class of maps B — Gr,(R*>). Two such bundles are isomorphic if and
only if they determine the same class of maps.

Remark 2.6. Theorem 2.5 can be restated as follows: there exists a natural isomor-
phism between the set-valued functors Vect’: (—) and [—, Gr,, (R>)]. We may there-
fore realize Theorem 2.5 for a more fundamental reason: (p, V,(R*), Gr,(R*>)) is
a principal O(n)-bundle, and V,,(R*) is contractible. Therefore, Gr,(R>) is the
classifying space BO(n). This perspective has the advantage that we can utilize
the functorality of B. Likewise, we can realize BU(n) as Gr,(C*>) and BSp(n) as
Gry, (H*).

The punchline to all of this is that by naturality, every characteristic class of real,
complex, or quaternionic vector bundles is uniquely determined by its evaluation
on the universal bundle, hence there is a bijection between the set of all charac-
teristic classes and the cohomologies of a Grassmannian. Therefore, with the goal
of describing characteristic classes, we can make significant progress by calculating
the cohomology of Grassmannians.

3. THE CHERN AND STIEFEL-WHITNEY CLASSES.
We state here the cohomolgies of BU(n) and BO(n):

Theorem 3.1 (Universal Chern Classes). H*(BU(n);Z) = Z|co,c1, - .. ,cn] where
the classes ¢; = (p*)~1(0;) lie in degree 2i. They satisfy and are uniquely charac-
terized by the following axioms:
(i) co=1andc; =0 fori>n
(ii) ¢1 is the canonical generator for H*(CP>;7)
(iil) (i) = ¢
( ) pm n(ck) Zi+j=k- Ci ®cj‘
The analogous classes for real vector bundles are the Stiefel-Whitney classes,

which lie in the mod 2 cohomology, and their existence and uniqueness is proved
similarly. We have:

Theorem 3.2 (Universal Stiefel-Whitney Classes). H*(BO(n);Z/2) = Z/2wg, w1, - . .

where the classes w; lie in degree i. They satisfy and are uniquely characterized by
the following axioms:
(i) wo=1andw; =0 ifi >n
(ii) wy is the unique nonzero element of H?(RP>;7Z/2)
(iil) X (w;) = w;
)

(IV pm n(wk) ZiJrj:k w; @ Wi .

, Wy
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The same method of proof verifies both cases. The proof can take on many “fla-
vors,” although they all boil down to the same essential ingredients. An approach
using only elementary methods (i.e. only basic cohomology) can be found in [2].
However, we can amp this up to a more modern and general approach. The main
point of this approach is the same as that of Hatcher’s proof: we can obtain an
injective homomorphism whose domain is H*(BU(n);Z) and whose image is the
ring generated by the elementary symmetric polynomials in even degrees, but the
methods to obtain this map and to prove its injectivity and image are different.
We'll outline the idea of this approach here.

First, one can use the fact that H*(U(n),Z) is an exterior algebra on n genera-
tors in degree 2 to obtain the rank of H*(BU(n);Z). The details of this are handled
in [3]. Thus, we only need to obtain our desired map and show its injectivity. In
fact, this map arises naturally in the following way: consider the inclusion of a max-
imal torus T" = U(1)" < U(n). We obtain a classifying map BU(1)" — BU(n).
The generalized splitting principle (see [4]) then tells us that this map induces an
injective map ¢* on cohomology.

Now, using the fact that H*(BU(1);Z) is a polynomial ring with one generator
in degree 2, the Kunneth theorem tells us that H*(BU(1)™;Z) is a polynomial ring
with n generators in degree 2. We have an action of the symmetric group %, on
U(n) by permutation of rows. This action fixes U(1), so in fact our map ¢* lands
in those elements of H*(BU(1)";Z) which are invariant under the action. That is,
the symmetric polynomials. Since we know * is injective and we know the rank of
H*(BU(n);Z), the map must be an isomorphism.

Thus we have two important examples of characteristic classes. Given a complex
vector bundle ¢, we will denote by ¢;(€) the pullback of ¢; by the classifying map
corresponding to . Likewise, if £ is a real vector bundle, then we may consider
w;(§). We can also define the total Chern and Stiefel-Whitney classes as

In the following sections, we will see some examples which demonstrate the use of
characteristic classes.

4. THE EULER CLASS

The Euler class is a particular example of a characteristic class which encodes
information about the existence (or non-existence) of non-zero sections of an ori-
ented vector bundle. To define the Euler class, we need to get some preliminaries
out of the way. Throughout this section, we will consider only real vector bundles.

Definition 4.1. An orientation on a vector space is an equivalence class of ordered
bases related by positive-determinant coordinate transformations. An orientation
on a vector bundle (£, E, B) is a choice of orientation for each fiber such that every
point of the base space has a neighborhood U on which ¢ is trivial and where
the associated homeomorphism U x R™ — ¢~1(U) preserves the orientation of the
fibers.



6 JUDSON KUHRMAN

The classical example is, of course, an oriented n-manifold M. In this case, an
orientation on M is equivalent to an orientation on T'M, which is in turn equivalent
to an orientation on A"T™M.

Proposition 4.2. A real vector bundle (§, E, B) is orientable if and only if the
first Stiefel-Whitney class w1 (&) is zero.

Proof. Oriented real vector bundles are classified by BSO(n). Consider the exact
sequence of groups
SO(n) —-= O(n) -2~ O(1).
We have an induced fibration
BSO(n) —2~ BO(n)
and hence an exact sequence

B det BO(l)

[B, BSO(n)] —== [B, BO(n)] 2X% [B, BO(1)).

Now, ¢ is classified by a map fe € [B,BO(n)], and is orientable if and only
if fe comes from [B, BSO(n)], which is to say that Bdet.(f:) = 0. Now, since
[—, —] is contravariant in the first variable and covariant in the second, we have a

commutative diagram

[BO(n), BO(n)] 245 [BO(n), BO(1)] ~ H'(BO(n); Z/2)

lfa* J/fé*
B det,
[B, BO(n)] [B,BO(1)] ~ HY(B;Z/2)
The isomorphisms on the right come from the general fact that H™(X; A) is nat-
urally isomorphic to [X, K (A, n)] for abelian groups A, a special case of Brown’s
representability theorem. Consider the element idpo,) € [BO(n), BO(n)]. Its
image Bdet,(idgo@m)) € H*(BO(n);Z/2) restricts under inclusion to a nonzero

element of H*(BO(1);Z/2) and is therefore equal to wq (). Thus, we have

fe,(Bdet.(idpom))) = w1 (§).
On the other hand, going the other way around the diagram gives B det, (f¢), which
is necessarily zero. Therefore, £ is orientable if and only if w;(§) = 0. g

There is an alternative, algebraic formulation of an orientation on a vector bun-
dle which we will use to define the Euler class. We first note that an orientation on
a vector space W is equivalent to a choice of generator for H™(W, W\ {0};Z) ~ Z,
since an orientation-preserving isomorphism of W induces the identity on said co-
homology group. In general, an orientation on W gives rise to a choice of generator
of H*(W,W \ {0}; R) ~ R for an arbitrary ring R, which in turn gives rise to
a preferred generator for the cohomology H™(Sph(W); R), where Sph(W) is the
sphere obtained from W by applying one-point compactification.

In order to extend our new definition of orientation to vector bundles, we can
define the Thom Space of a vector bundle. Given a vector bundle (¢, E, B) we can
apply one-point compactification to each fiber in E to obtain the associated bundle
Sph(E) whose fibers are n-spheres, and whose local trivializations are inherited
from those of E. Then, we obtain the Thom space T'(£) as the quotient of Sph(E)
by the compactification points. As a geometric example, if F is the trivial bundle
on S!, (i.e. an infinite cylinder), then Sph(E) is a torus and T'(€) is the quotient
of the torus by its equatorial circle.
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Now, we have the following definition:

Definition 4.3. A Thom class of an R-oriented vector bundle (&, E, B) is an ele-
ment p € H™(T(€); R) which pulls back under the composition
Sph(Fy) —"—> Sph(E) ——>T(¢)
to the preferred generator for the cohomology of each fiber of Sph(E).
Every oriented vector bundle has a Thom class for arbitrary coefficients. See [1]
for the proof. We can state the Thom isomorphism theorem:

Theorem 4.4 (Thom Isomorphism). Let (£, E, B) be an R-oriented n-plane bundle
and let p € H"(T(€); R) be its Thom class. Then the map

H'(B;r) — H™"™(T(€); R)
T =X — [
is an tsomorphism.

of course, we have to be p~recise about what the cup product here (really, a map
HYB;R)® H(T(£); R) — H(T(€); R) means. The details, as well as the proof
of 4.4 can be found in [5]. Now, we can define the Euler class:
Definition 4.5. Let (&, E, B) be an oriented vector bundle with Thom class p €

H™(T(£);Z). Then, the Euler Class e(€) is the inverse image of y — p under the
Thom isomorphism.

In fact, we have already seen a particular case of the Euler class: when £ has
the structure of a complex vector bundle, and therefore an oriented real 2n-plane
vector bundle, e(§) is just the Chern class ¢, (§). In fact, one can construct the
Chern classes using the Euler class. See [1] for this approach.

We list some important properties of the Euler class:

Theorem 4.6. The Euler class e satisfies the following:

(i) Naturality, i.e. f*e(§) =e(f*(£). That is, e is a characteristic class.
(ii) Let & be the same bundle as & but with opposite orientation on the total
space. Then, e(&') = —e(£). As a consequence, if the dimension of £ is odd,
the e(§) +e(§) = 0.
(iii) Reduction to mod 2 coefficients takes e(€) to wy ().
(iv) For bundles (¢, F, B) and (n, E', B) we have

e(€on) =e(§) — e(n).
Likewise, for cartesian products
e(§ xn) = e(§) x e(n).
The proof of 4.6 can be found in [1]. The primary significance of the Euler class

lies in the following theorem:

Theorem 4.7. Let (¢, E,B) be an oriented vector bundle. If §& admits a non-
vanishing section, then e(€) = 0.

Proof. For the proof of this theorem, we will need to make use of the isomorphism
H*(T(&);R) = H*(E, Ep; R), where Ejy is the collection of nonzero vectors in F
(see [5]). We can obtain this isomorphism as a sequence of isomorphisms

H*(T¢) ~ H*(Sph(E), B) ~ H*(Sph(E), Sph(E)o) ~ H*(E, Ey).
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For the first isomorphism we make use of the fact that for pairs (X, A) where A is a
neighborhood deformation retract (i.e. the inclusion is a cofibration), H™(X/A) ~
H(X, A), where in this case X = Sph(E) and A is the zero section, which is the
homeomorphic image of B. For the second isomorphism, we can make use of an
alternate embedding of B in Sph(E) as the “points at infinity”. Then, we can
consider the triple (Sph(E), Sph(E)o, B). We can deformation retract Sph(E)g
onto B, so the long exact sequence of this triple gives the desired isomorphism.
The last isomorphism is obtained by excising a neighborhood of the section at
infinity.

Then, the Thom class can be thought of as an element u € H"(FE, Ey;Z), and
the Thom isomorphism is the map ® : x — ({fx) — p.

Consider a section o of £, i.e. a right inverse. If ¢ is nonzero, then the following
composition gives the identity:

B—2+E,—>E—‘+B

where ¢ is the inclusion. Let j : (E,0) — (E, Ep) be the inclusion of pairs. Now,
J*(p) — p = p?, so by definition we have £*e(¢) = 5*(u1). But the composition *j*
is zero, so we have e(§) = o*i*¢*e(€) = 0. O

As a corollary, we have the classical “hairy ball theorem”:

Theorem 4.8. Let n be even. Then, T'S™ has no non-trivial sub-bundles. In
particular, there is no non-vanishing vector field on S™.

Proof. Let all cohomology here have coefficients in Z. First, we can describe the
geometric tangent bundle of S™. For each p € S, we can naturally identify 7,S"
with the affine space p + span{p}* C R"*!. Then, we can consider 7'S™ as

TS™ = {(p,v) € S" x R"' . v € T,,S"}.

Let A = {(p,—p) : p € S™}. With our description of T'S™ in mind, we can stereo-
graphically project S™ \ {—p} onto T,,S™ for each p, and this extends to a homeo-
morphism S™ x ™\ A — T'S™. Notice that under this homeomorphism, the image
of the zero section is taken to the diagonal A C S™ x S™. Thus, we have an iso-

morphism H*(T'S™, TS§) = H*(S™ x S"\ A, 5™ x S™\ (AU A)).
By excising A from the pair (S™, 5™\ A), we get the isomorphism
H*(S" x S™\ A, 8" x S"\ (AUA)) = H*(S" x 8™, 8" x §"\ A).
Now, for any p € S", the identity idgn\p} is homotopic to the constant map at
—p. To see this, let 7 : 8™\ {p} — T_,S™ be stereographic projection, and let h
be the straight-line homotopy 7_,5™ ~ c_,. The homotopy we are interested in is
H = 5" \{p} x I = 5"\ {p}
(z,t) = 7~ (A(x(2), 1))

Then, H extends to a homotopy idgnygn\a = r where r is the retraction onto A.
Lastly, the map

(8™ x S, A) = (S™ x 8™, A)
((z,y), (p —p)) = ((x, —y), (P, p))

Is a homeomorphism of pairs. Thus, we have a chain of isomorphisms giving

(4.9) H*(TS™, TSY) ~ H*(S™ x S™, A).
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Let p € H™(T'S™, TS}) be the Thom class (using the identification of H*(T'(£))
and H*(E, Ey) discussed in the previous proof). We can show that p? is twice a
generator of H2"(T'S™, T'SY) and hence that e(T'S™) is twice a generator of H™(S™).
The long exact sequence of the pair (S™ x S™ A) gives a short exact sequence

0 — H™(S™ x S™,A) — H"(S™ x S™) — H"(A) — 0.

The Kunneth theorem tells us that H™(S™ x S™) is generated by a pair of elements
«a and f, the pullbacks of the generator of H™(S™) under each projection. The
images of o and B in H™(A) are the same, and this element is a generator, so a —
generates H™(S™ x S™, A). Therefore, & — 3 corresponds (up to sign) to the Thom
class under the isomorphism (4.9).

Since n is even, the cup product is commutative in degree n and hence (a—f3)? =
—2af3 is twice a generator of H?"(S™ x S™ A). Thus, the Euler class is twice a
generator of H™(S™).

Now, suppose we can decompose T'S™ as the direct sum £ & n. By naturality
and Proposition 4.2, we find that £ and n are both orientable. Thus, we have
e(TS™) = e(¢) — e(n) by Theorem 4.6 (iv). But H(S™) = 0 for 0 < i < n, so
e(TS™) = 0, and we have a contradiction. Therefore, no such decomposition exists.
Therefore, no non-trivial sub-bundles exist, since S™ is a Riemannian manifold and
hence we can always find the orthogonal complement to a sub-bundle of the tangent
bundle. Moreover, since two trivial bundles sum to a trivial bundle, there are no
non-zero sub-bundles of T'S™. Hence, there is no non-vanishing vector field on S™
since such a section would span a line bundle. (I

In fact, the hairy ball theorem is a corollary to another classical theorem, the
Poincare-Hopf theorem, a statement about the Euler characteristic of a space. We
should expect the Euler class to arise in these sorts of situations. Given a compact
oriented manifold M, there exists a fundamental class (preferred generator) [M] €
H, (M, M\ {z};Z), and it turns out that (e(TM),[M]) = £(M). See, for example,
Theorem 3.3 in [6]. Notice that the proof employs intersection theory. In particular,
given a vector field X € I'(T'M) whose image I in TM intersects the zero section
Z transversally, the euler class e(T'M) is Poincare-dual to the fundamental class
[InZ].

Using the fact that the Euler class coincides with the top Chern class for complex
vector bundles, we have another simple application, the degree-genus formula from
algebraic geometry:

Theorem 4.10. Let X C CP? be a smooth algebraic curve of degree d. Then, the
topological genus g of X is given by
1
9= 5(‘1 - 1)(d-2).
To prove Theorem 4.10 we first need the following theorem from [1]:

Theorem 4.11. There exists a generator a € H?*(CP™,Z) so that ¢(TCP") =
(1 +a)n+1'

In particular, ¢;(TCP™;Z) = (n + 1)a. In fact, a is Poincaré dual to the funda-
mental class of CP™.

Proof of the Degree-Genus Formula. Throughout this proof denote CP? by P2
Consider the three bundles TX, NX, and TP? x over X. We have TP?|xy =
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TX & NX, so

c(TP%x) = c¢(TX) — ¢(NX).
In particular, since TX and N X have complex dimension one, we have c; (T P?|x) =
e(TX) + e(NX). We know (e(TX),[X]) = x(X) = 2 — 2¢g. By naturality,
c1(TP?|x) = i*c1 (T P?), where i is the inclusion of X in P2 and from the previous
theorem we find that (c;(TP?|x),[X]) = 3d. Lastly, we have e(NX) = PD[NX]?,
where PD is Poincaré duality, so we have (e(NX), [X]) = d? O

5. EMBEDDINGS OF MANIFOLDS IN R"™

Throughout this section, any “manifold” mentioned is assumed to be a real
smooth manifold. We have so far seen some basic applications of characteristic
classes, mostly expressing in some form or another the relationship between the
Euler class and Euler characteristic. However, there is a broader scope of informa-
tion which characteristic classes can contain.

For example, what sort of information do the Stiefel-Whitney classes encode?
We saw in the previous section that the first Stiefel-Whitney class is the primary
obstruction to a real vector bundle being orientable. In particular, consider the
application of w; to the normal bundle NM of a manifold M. The tubular neigh-
borhood theorem tells us that for a closed embedded submanifold M C R7+!
N M is orientable, and so w; is zero. In fact, this generalizes as:

Proposition 5.1. Let M = M™ C R™"* be a closed embedded submanifold. Then,

Proposition 5.1 follows as an immediate corollary to a more technical theorem
in [1] (namely, Theorem 11.3). We can see that the Stiefel-Whitney classes contain
information about the embeddability of a manifold in Euclidean space. We would
like to be able to say something about when, a priori, M™ can be embedded as a
closed submanifold of R"**. Unfortunately, Proposition 5.1 only tells us informa-
tion about the normal bundle, which only exists after an embedding has already
been given. To make any real use of Proposition 5.1, we first need to convert the
statement to one which is intrinsic to the manifold M, i.e. a statement in terms of
the tangent bundle. Theorem 3.2 (iv) tells us generally that w(&)w(n) = w(€ &n),
and in particular w(TM)w(NM) = 1. So, in order to calculate w(NM) using
information about T'M, we just need a way to calculate the multiplicative inverse
of w(T'M). In fact, the group of units in mod 2 cohomology is a subgroup of a nice
group, and we can do this fairly easily.

Let H'(M;Z/2) denote the collection of formal infinite series a = Y ;- a; where
a; € HY(M;Z/2). Then, H(M;Z/2) is endowed with the structure of a ring by
taking addition to be formal addition and distributing the cup product. Consider
the following theorem:

Proposition 5.2. Let HIY(M;Z/2) C HY(M;7Z/2) consist of those series a for
which ag = 1. Then, H{Y(M;Z/2) forms a group under the given multiplication.
Proof. That H{Y(M;Z/2) is closed under multiplication is immediate from the def-

inition, so we just have to check the existence of inverses. Let al'(M;Z/2) and let
@o = 1. Inductively, define @11 = Z?:_ll Qn_i@; + any1. Then, aa = 1. O

Now, we define the normal Stiefel-Whitney classes of a manifold to be the classes
w;(TM). Now that we have a way of actually calculating the multiplicative inverses
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in H(M;7Z,/27), we can determine the embeddability of M in R"** by knowing the
Stiefel-Whitney classes of TM. As an example, we can give some partial results for
when RP™ can be embedded in R™**. Similar to the total Chern class for complex
projective space, there exists a generator a € H'(RP";Z/2) so that w(TRP") =
(1 + a)"*L. In particular, when n = 2", we have w(TRP™) = 1 + a + a", and this
gives
W(TRP™") =1+a+a®>+...+a" L.

Therefore, RP?" cannot be embedded in R?"~!. In this case, the Whitney embed-
ding theorem therefore gives the best possible lower bound for dimensions in which
RP?" embeds.

In fact, we can say more. For example, consider the following theorem, originally
due to Thomas:

Theorem 5.3. Let n = 8s+t where s is a positive integer, not a power of 2, and
0 <t <7. Let a(n) be the number of ones in the binary expansion of n, and assume
that either t is neither 1 nor 2, or that a(n) > 4. Then, RP™ embeds in R?"~6,

See [7]. The proof still ultimately comes down to determining normal Stiefel-
Whitney classes, but is much more computationally involved than in the proof for
the 2" case. In general, it is still an open question as to what the best lower bound
is for dimensions which admit embeddings of RP™.

We can use the Stiefel-Whitney classes to study not only embeddings, but im-
mersions of manifolds. Suppose that M = M™ embeds in R"**. Then, M has a
well-defined, but not necessarily trivial, normal bundle N M, with fiber dimension
k, and the Whitney duality theorem still holds. Thus, w;(T'M) = 0 for ¢ > k. This
tells us, for example, that RP?" cannot be immersed in RN for N < 2" —1. In fact,
any n-manifold can be immersed in R2"~!, so this is the best possible estimate.
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