EQUIVALENT NOTIONS OF ENTROPY UNDER ERGODICITY

HYE WOONG JEON

ABSTRACT. In this paper, we first discuss ergodicity and give a proof of the
Birkhoff Ergodic Theorem. We then show how the Birkhoff Ergodic Theorem
affects results in measure-theoretical entropy, giving a proof of the Brin-Katok
formula for local entropy. Finally, we show that on expanding C? maps on the
unit circle, the Lyapunov exponent is equal to the entropy. We assume the
reader has an understanding of Lebesgue integration and measure theory, but
an appendix is included with background material.
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1. INTRODUCTION

We begin with a motivating exercise: the flipping of a fair coin. Although coin
flipping is the archetypal probability exercise, how it can be rigorously modelled may
be unclear. As we will demonstrate, measure theory presents various structures to
represent the events of coin flipping, and ergodic theory gives further results about
the probabilities of those events.

Question 1.1. How can we model the flipping of a fair coin?

Suppose we were to flip a fair coin every second for eternity!. Representing heads
as 0 and tails as 1, the series of outcomes can be written as a sequence of Os and

1Sisyphus: The Probabilist Version
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1s i.e. a binary sequence. The probability of heads is equivalent to how frequently
we encounter 0 in any binary sequence.

Let x1x2x3... be a binary sequence. The average frequency of Os in this sequence
can be expressed as

(1.2) . # of times 0 appears in first n digits of x1x2x3...
. im .

n—00 n

To represent the binary sequence as a single real number, let

e X; X X
1.3 L N
(1.3) T 2575 + 5

z3

+23

+ .

Call x the unit representation of x1xox3.... We now introduce the doubling map,
the model of coin flipping. Let T : [0,1) — [0,1) be the doubling map, defined as
2 0<z<3

T(z) = x )< r <3

20 -1 L<a<l

By applying T to x, we can “shift” the binary sequence to the left by one space
i.e. T(x) is the unit representation of the binary sequence zox3xy... . To check the
number of times 0 appears in xjxsx3..., we can iterate through the sequence with
the doubling map and check if the first digit of each iterate is 0. If we let ¢, = 1 if
x1 18 0, and 0 otherwise, we can simplify (1.2) to

1 n—1
i=0
One of the main results of this paper, the Birkhoff Ergodic Theorem, shows
that (1.4) exists and equals %. Coincidentally, notice that the unit representation
of every binary sequence that starts with 0 lies in the half interval [0, %) As we will
see, the half interval and its length is intimately related to (1.4).

In the material to follow, we first introduce ergodicity and prove the Birkhoff Er-
godic Theorem. Then, we present measure-theoretical entropy and use the Birkhoff
Ergodic Theorem to prove the Brin-Katok local entropy formula. Finally, we show
that a different characterization of entropy, the Lyapunov exponent, is equivalent
to the Brin-Katok formulation of entropy in the context of expanding C? maps on
the unit circle.

2. ERGODICITY

Consider a set that is “self-contained” i.e. all of its points travel within itself, and
no points go in or out of it. Ergodicity is the property that if a “self-contained” set
exists, then it is equal in measure to the entire set or a null set. Imagine a barista
making a latte. He/she pours milk into a dark espresso, and swirls until the color
becomes homogenous. The swirling is an ergodic transformation, because the milk
does not stay in one place - instead, it permeates throughout the entire liquid.

Below, we define the notion of a “self-contained” (or almost “self-contained”)
set and formally define ergodicity. For the two definitions, let (X, S(X),u) be a
probability space.
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Definition 2.1. Let T : X — X be a transformation. Then A C X is called
strictly T-invariant® if A = T7Y(A). If A = T7'(A) mod p, then A is called
strictly T-invariant mod pu.>

Definition 2.2. Let T : X — X be a measure-preserving transformation. Then
T is said to be ergodic if for any measurable A C X that is strictly T-invariant,
p(A) =0 or u(A°) = 0. (equivalently, u(A) =1 or u(A9) = 1.)

The doubling map presented in the introduction is an example of an ergodic
transformation.

Theorem 2.3. Let T : [0,1) — [0,1) be defined as T(x) = 2 mod 1. Then T is
an ergodic measure-preserving transformation on [0, 1).

Proof. We first show that T is a measure-preserving transformation.

To show that T' is measurable, let A be a Lebesgue measurable set. Define
Ag =T7HA)N[0,4), and A; = T~1(A) N [3,1). For real numbers s,t, let sA +¢
denote the set {sa +t | a € A}. Since 4y = A, and A; = ;A + 3, both Ay
and A; are measurable. Thus T~!(A) = Ag U A; is measurable as well. To show
that T preserves measure, observe that Ay and A; are disjoint. This implies that
MT71(A)) = M(Ag)+ (A1) by countable additivity, so since both A(4g) = A\(4;) =
2A(A), we have

AT (A)) = %/\(A) + %)\(A) — A(A),

We now show that T is ergodic. Define the dyadic interval D, = [, 55L),

where n, k are integers such that n > 0, 0 < k < 2™. Let A be a strictly invariant
set. By similar proof to the above, it follows from induction that for any n > 0,

(2.4) AT (4) A D) = 5 AA) = A(Dy ) A(A).

As A is strictly invariant, T~"(A) = A, for any n > 0. Therefore, (2.4) leads to
(2.5) MAN Dy, i) = MA)A( D k)-

We have two cases on the measure of A. If A has zero measure, then we are done.
If A has positive measure, then observe that the dyadic intervals form a sufficient
semi-ring on [0,1).* For any § > 0, there exists a dyadic interval D,, j such that
MANDyE) > (1 —0)A(Dpk). Because § > 0 is arbitrary, we have A\(Dp ) <
AMAN D, ). But since AN D,, 1, is a subset of Dy, i, A(AN Dy i) < A(Dy, 1), which
means that A(AN Dy, k) = A(Dp.)- (2.5) finally gives that A(A) =1 = A([0, 1)), so
T is ergodic. (]

The lemma below gives a useful fact for ergodic transformations and invariant
functions.

Lemma 2.6. Let (X, S(X),un) be a probability space. If T : X — X is an ergodic
measure-preserving transformation, then for any measurable function f : X — R
that is invariant i.e. f(x) = f(T(x)) for a.e. x, [ is constant a.e.

2Also called strictly invariant or invariant. The same applies for strict T-invariance mod u.
3In short, the points that go in or out of A are negligible in measure.
15ee Appendix A.2.
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Proof. Let f : X — R be a measurable, invariant function. For any ¢ € R, define
the set

A =A{z| f(z) > t}.
The invariance of f implies that A; is also strictly invariant. By ergodicity,

w(A) =1 or p(Ay) = 0. If £ is not constant, then there exists a ¢ty € R such that
0 < pu(Az,) < 1, and this contradicts the ergodicity assumption. O

3. BIRKHOFF ERGODIC THEOREM

The Birkhoff Ergodic theorem asserts that given an ergodic transformation, the
average number of times that a particle passes through a set equals the size of the
set itself. Therefore, averaging over a particle’s behavior can tell much about an
ergodic dynamical system. From an applied standpoint, this means that we can
approximate the expected value of a function by computing its time average for
large values.

We introduce some notation first. From now on, given a function f and a trans-
formation T, let f,, f«, and f* be defined as:

(1) fa(2) = EiZy f(T'(x), for n > 1.
(2) fi(e) =liminf 7 S F(T ().
(8) f*(w) = limsup 3 30 f(T"()).
Furthermore, if f is integrable, then define ||f]|, := [ |f|dp.

We give a combinatorially-flavored proof of the Maximal Ergodic Theorem from
[1], which uses the following definition.

Definition 3.1. Let ay,as, ..., a, be a finite sequence of real numbers. Let m <n
be an integer. Then the term ay is called a m-leader if there exists an integer p
with 1 < p < m such that ar + ar41 + ... + arp—1 > 0.

Lemma 3.2. Let ay,...,a, be a finite sequence of real numbers. Then the sum of
all m-leaders is nonnegative.

Proof. If no m-leaders exist, then the sum of all m-leaders is 0. If m-leaders do
exist, let ap be the first m-leader. Let p; with 1 < p; < m be the least integer such
that ar, + ... + Aktpr—1 = 0.

We claim that for every h such that k < h < k+p; —1, ay is a m-leader. Assume
that there exists h such that aj is not an m-leader i.e. ap + ... + ap4p, —1 < 0. But
ag + ... + Gg4p,—1 > 0, s0 ap + ... + ap—1 > 0, which contradicts that p; is the
least integer such that the m-leader definition is satisfied. Continue inductively
through the remaining sequence ayp, ..., an to collect all the m-leaders. The sum

of the m-leaders at each step satisfies the nonnegative condition, so the assertion
holds. O

Lemma 3.3 (Maximal Ergodic Theorem). Let (X, S(X), 1) be a probability space,
and let T : X — X be a measure-preserving transformation. Let f : X — R be an
integrable function, and define

(3.4) G(f) ={=| fu(z) > 0 for some n > 0}.
Then fG(f) fdu > 0.
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Proof. Let n > 1 be an integer, and m < n. Define
Gm = {z| fp(z) > 0 for some p with 1 < p < m}.

Define s,,(x) to be the sum of all the m-leaders of the finite sequence f(x),
f(T(x)), ..., f(T"T™=1(x)). Next, define

Sy = {x | f(T"(x)) is a m-leader of f(z),..., fF(T"™ (x))}.

Using Sy and the characteristic function, s,,(x) = Zigl_l f(T*(z))-1g, > 0.
As both the measurability of S, and the integrability of s,, follow from the fact
that f is integrable, we get from Lemma 3.2 that

n+m—1
(3.5) 0< Y foT*dpu.
k=0 Sk
Observe that for k = 0, ...,n—1, f(T*(x)) is an m-leader if and only if f(T*~1(T(z)))
is also an m-leader. This means that for any 0 <k <n —1, Sy = T"1(Sx_1). By
iterating through the k’s, we get that S, = T—%(Sy). Hence, for k = 0,...,n — 1, we
have

(3.6) fodeu:/(foTk)~]lT_k(SD)d,u:/S fdu.

Sk

Since f(z) is a m-leader of f(x),..., f(T™"™ 1(z)) if and only if f,(z) > 0 for
some 1 < p < m, it follows that Sy = G,. Because f < |f|, from (3.5) and (3.6)
follows that

n+m—1

n—1
0= [ faur Y [ ferian
k=0 Gm j=n “Si

<[ gaurm [ |fldn
Gm S;

Dividing by n and taking the limit as n — oo on both sides of the inequality gives
Jo fdp > 0. Now, observe that G(f) = U,u>1 Gm. This means that lim f-1¢, =

m—r o0

[+ Lgs). Furthermore, for any m > 1, |f - 1g,,| < |f - Lg(s) |- By the Dominated
Convergence Theorem, we have

0 < lim f~]lgmdu:/ lim f-]l(;md/z:/
m—roo m—r o0

fdu.
G(f)

O

Finally, armed with the Maximal Ergodic Theorem, we prove the Birkhoff Er-
godic Theorem. The following proof comes from [5].

Theorem 3.7 (Birkhoff Ergodic Theorem). Let (X, S(X), 1) be a probability space,
and let T : X — X be a measure-preserving transformation. If f : X — R is
integrable, then the following are true:

(1) f(z) = Jim S (T () exists ae..

(2) f(T(x)) = f(2) a.c.
(8) For any measurable, strictly invariant set A, fA fdu= fA fdu.



6 HYE WOONG JEON

Furthermore, if T is ergodic, then
1 n—1 ]
(3.8) nlgr;() - ;f(T () = /fdﬂ a.e.

Proof of (1). For any «, 8 € R, define

Map={z| fu(z) <a<B < f*(z)}.

The set M, g marks the points of X where f, and f* differ. By definition,
fo < f*, but if M, g is a null set, then f, = f* almost everywhere. Hence, it
suffices to show that M, s has measure 0 to show that the limit exists almost
everywhere.

Let o, 8 € R. Assume for the sake of contradiction that p(My g) > 0. In the
style of (3.4), consider the set

G(f—=08)=A{z| (f —B)n =0 for some n > 0}.

We claim that M, g C G(f — B). If © € M, g, then there exists an N € N
such that & SN o1 f(T%(x)) > B. Hence it follows that S~ ' f(T(x)) — N§ =
(f — B)~n > 0, which means that M, 3 C G(f — ). Also, from part (2), M, g is
T-invariant, so we can restrict T' to M, g and apply the Maximal Ergodic Theorem
to get

/ (f — B)dp > 0, which implies that / fdu > Bu(My,p).
Ma,p

MQ)B
We apply similar logic to G(a — f) to get [}, . fdp < ap(M,, g), which means
that Bu(Mag) < ap(Ma,p). However, if u(Mq ) > 0, e < B cannot be true, so we
have a contradiction. Since M, g is a null set for any two rationals «, 3, the limit

exists a.e.

O

Proof of (2). We show that both f* and f, are invariant. Observe that

n

O H(T' (@) - f(=))
i=0
n+1 1

= @) - )

alT(@) =+

By taking the liminf as n goes to oo on both sides, it follows that

£.(T(2)) = liminf = £, (T(z)) = lim inf

n—o0o 1, n—oo N+ 1

fn+1(x) = f*(.'L‘)
Similar logic shows that f* is invariant, and the result follows. (I

Proof of (3). Let ft(z) = f(x) when f(z) > 0 and 0 otherwise. Similarly, let
[~ (z) = —f(x) when f(z) <0 and 0 otherwise. Because f = f* — f~, it suffices
to show part (3) for nonnegative integrable functions.

The following cases on the bounded-ness of f can be made. First, consider
if f is a bounded, nonnegative function almost everywhere. By the Dominated
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Convergence Theorem,

- n—1 ] . 1 n—1 .
(3.9) AfdMZAn1LQOEZf (Ti( —nlgr;on/A;ﬂT (2)).

Because A is strictly invariant, we have from (3.9) that

fdpfnlgrgoﬁ/Zle :/Afdu.

Hence, part (3) holds for nonnegative integrable functions that are bounded
almost everywhere. Next, consider a nonnegative integrable function f with no
condition for boundedness. By approximation of simple functions®, for any e > 0,
there exists a bounded function g such that ||f — g||1 < e. Consider | [, fdu —

/ A fdﬂ\. From the triangle inequality, we have

/Afdu—/Afdu‘S /Afdu—/Agdu‘+

As f and g are both integrable, |f — g is also integrable. By using the triangle
inequality again on the second absolute value expression, we have that the latter
expression of (3.10) is less than or equal to

(3.11) / f — gldu+

(3.10)

gdp — fdu‘-
A A

gdu gdu

gdu‘ fdu‘

Since ¢ is bounded, the second expression in (3.11) evaluates to 0 by the first
case. To set an upper bound on the third expression of (3.11), observe that by
Fatou’s Lemma,

n—1 n—1
G122 [t ST AT @) <tmin [ 717 @)
1=0 =0

Since T is measure-preserving, the last expression of (3.12) equals [ |f|dy =
[|f]]1- This implies that ||f||1 < ||f]]1- Returning to (3.11), fA If —gldu =11 —glh

and | [, gy~ [ fu| <111 = glh, s0

/fdu/fdu‘ <N — gl +11f gl < 2.
A A

Because € can be made arbitrarily small, [ A fdu =/ 4 fdu, and this completes
the proof of part (3).

Finally, the addition of ergodicity allows for the application of Lemma 2.6. Part
(2) shows that f is T-invariant and T is ergodic by assumption, so

/fdu:/fdu:fu(X):fae

5To be precise, we use that [ f is defined as the supremum of the integrals of simple functions
that are less than f.

O
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Welcome back to coin flipping. Because the doubling map is ergodic, and the
function Iy, 1 is integrable, the Birkhoff Ergodic Theorem implies that the average

frequency of heads in a binary sequence converges to the length of [0, %) In other
words, the probability of heads being % can be approximated by calculating the
average frequency of heads in a binary sequence of large length N.

4. ENTROPY

In this section, we define measure-theoretical entropy, and give a proof of the
Brin-Katok Formula for local entropy.

Entropy measures the complexity of a system. To understand complexity for
our purposes, imagine a baker thoroughly placing brown sugar balls into dough
and kneading the dough. The complexity of a kneading technique can be measured
by how quickly the sugar balls break down. For example, a technique that keeps
the original balls intact does not mix the dough as well as one that crushes the balls
very quickly. Furthermore, notice that the rate of break-down is equivalent to the
rate at which the number of distinguishable sugar fragments grows over time. We
will show that in an ergodic process such as kneading, the entropy equals the rate
of growth of the number of distinguishable orbits as time increases.

4.1. Entropy Definitions. Given a probability space (X, S(X), u), define a par-
tition of X as a countable collection of pairwise disjoint measurable sets such that
their union has full measure.%

Definition 4.1. Let o = {A4, ..., A, } be a finite partition of X. Then the entropy
of the partition” o is defined as

H(a) ==Y p(A)log p(A).
Aca

Given two partitions «a, 5, denote a V § as the partition consisting of sets of
the form AN B, where A € o, and B € §. Also, if « = {A;,..., A, }, then given a
transformation 7' : X — X, define T~*(«) as the partition {T%(41), ..., T7%(4,)}.

Definition 4.2. Let (X,S(X),u,T) be a measure-preserving dynamical system.
Let o = {Ay, ..., Ay} be a finite partition of X. Then the entropy of the measure-
preserving dynamical system with respect to « is defined as

h,(T,a) = lim lH(a VT Ha)V...vT~ " D(a))

n—oo N
1 n—1
. — —1
= nh_>rrolo nH( !) T7"()).

Note that the limit exists from Fekete’s Subadditivity Lemma (see [6]).

Definition 4.3. Let (X,S5(X),u,T) be a measure-preserving dynamical system.
Then the entropy of the measure-preserving dynamical system is defined as

hu(T) = sup{h,(T,a) | « is a finite partition}.

6The measure of their union equals the measure of X.
7Also called Shannon entropy.
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Calculating the entropy of a dynamical system is difficult; the supremum must be
taken over all possible partitions of the measure space. Thankfully, the Brin-Katok
Formula for local entropy greatly simplifies entropy calculation in the contexts
where X is also a metric space.

4.2. The Brin-Katok Formula for Local Entropy. For this section, assume
all spaces to be a topological measure-preserving dynamical system with metric d.

Define d™(x,y) := maxo<i<n—1d(T(x),T"(y)). With this, define B"(z,€) :=
{y € X | d*(z,y) < €}. Essentially, B"(z,¢) is the set of points that are indistin-
guishable from x up to error € in n iterates. The Brin-Katok formula tells us that
the size of this set decays at an exponential rate, and this rate equals the entropy
of the system.

Theorem 4.4 (Brin-Katok Formula for Local Entropy). Let (X,T) be a topological
dynamical system with a metric d, and a measure p that is ergodic and T-invariant
with entropy h. Then for a.e. x € X,

— n _ n
(4.5) h,= liH(l) <limsup log n(B (x,e))) = lim (Hminf log n(B (x’G)))
e—

n—o00 n e—0 n—00 n

Notice that calculating the measure of a specific set B™(z, €) is much easier than
computing the supremum over the set of all possible partitions.

Below are several combinatorial lemmas from [2] and [3] that are used in the
proof of the Brin-Katok Formula.

Lemma 4.6. If Ay, ..., Ay are sets in a probability space, and u(A;) > ¢, and each
x € X belongs to at most k of {A;}1, then N < .

Proof. Since each x € X belongs to at most k of the sets Aj,..., Ay, we have
ZlN:l 14,(z) < k. Integrating on both sides, it follows that

N
=[5 tad
i=1

N
=> p(la,) > Ne.

i=1

Since we are in a probability space, [ kdu = k, and the result follows. O

Lemma 4.7. Define (7)) as the number of subsets of {1,2,...,n} that are of size
less than i. Also, define H(a) = —alogy(a) — (1 — «)logy(1 — «). Then for every

0<ax< %,
( n > < gn(H(@),
an

Proof. By the binomial theorem, we have
n . .
4. = — no> 7 o n—i
(4.8) 1=(a+(1-a)) _‘Z (i)a(l @)
i<an
Because a < %, a®(1 — a)* decreases as k increases, which means that

glin{ai(l — )"} = (1 — )",
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Therefore, from (4.8) follows that

1>y (?)a“”(l —ayrer = 30 (?)2—71(1‘1(@)),

i<an i<an
Dividing by 2-(#(®) gives the desired result. [

Finally, we arrive at the proof for the Brin-Katok Formula. We follow the proof
in [2].

Proof of Brin-Katok - Part I. The goal is to show that

—1 B™
hy > lirr(l) (limsup 08 1 (x7e))> .
e—

n—o0o n
Let € > 0, and let « be a partition with atoms of diameter less than e. Then
for a.e. © € X, a®(x) C B"(z,¢).® Since u(a™(z)) < w(B™(z,¢)) and log is an
increasing function, it follows that

—1 B" —1 "
lim inf og i B" (x,€)) < liminfM = h,(T,a) < hy.
n—o0 n n—oo n
Because € is arbitrary, the result follows. O
Proof of Brin-Katok - Part II. We will show that for a.e. z € X,
-1 B"
(4.9) h, < lim (lim inf 108 HB" (2, 6))> .
e—0 n—oo n

To prove (4.9) for a.e. x € X, it suffices to show that for any p > 0,

,u<{x lim <liminf log“(Bn(x’e))> < hy, — p}> —0.

n—o00 n
To this end, let p > 0, and fix ¢ > 0. Let a = {A44,..., A;} be a partition
of X such that h,(a,T) > h, — 4, and pu(04;) = 0 for all 1 < i < k. Define
E. = UAGOZ(BA)(G)7 which is the union of the boundaries of A € a up to error e.
Also, let I,(z) = {0 <i<n-—1|T%z) ¢ E.}, and define
(@)= () (T~ ) (x).
i€l

We claim that B"(x,€) C v,(x). Let y € B"(x,€). Without loss of generality,
assume that for 1 < i < n—1, T'(z) ¢ E.. We have that d(T%z,Ty) < €, and
d(z,0((T 'a)(x))) > ¢, so T (y) € (T"'a)(x). Therefore, y € 7,(x). From this,
w(B™(z,€)) < pu(yn(z)), which means that

— n _
lim <lim inf log n(B (x,e))) > lim (lim inf ww) .
e—0 \ n—oo n e—0 n—o0 n
Thus it suffices to show that for a.e. =z,

lim (Hm inf WW) > hy, — p.
e—0 n—00

" >
Now, define another partition

B={A1NE.. . ,AxNE,X\E.}.

8Given o = {A1, ..., An} as a partition of X, define a(z) = A; if z € A; for some 1 <i < n.
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Consider the following property of Shannon entropy: if &1, £s are partitions, then
H(& VE) < H(&)+ H(E). This and the fact that T' is measure-preserving gives
that hy (T, 8) < — > pes u(B)log u(B). As e approaches 0, since i(E) approaches
0, u(A4; N E.) and log u(X \ E.) also approach 0. Hence, for sufficiently small e,
hu(T,B) < §.

Consider the following set of sets

U, = {oﬂl(];) | M(Oén(l‘)) < 2—n(h“,(T,a)_%)}’
Vi, ={B"(x) | u(8"(x)) > 2—n(hM(T,ﬁ)+§)},
Wn = {,-yn( ) ‘ ﬂ(’}/n(x)) > 27n(hufp)}’ and
Zn = {m(z) N " () | ™ (z) € Uy, B™(x) € Vi, yu(x) € Wy}
With these sets, the goal is to show that by the Borel-Cantelli Lemma, for a.e.

x € X, there are only finitely many n such that v, (xz) € W,,. Showing this means
that for a.e. z and for large N’s,

T
T

p(yn () < 27N(u=r) \which means that

“loa(uan(a) 5,

First, we show that the conditions of the Borel-Cantelli Lemma are met. Every
element of W, has measure of at least 2="("»=°) and we are in a probability space.
Assuming that {v,(z)}.cx is a partition (which it isn’t, but we will establish a
workaround later), it follows that

1> Z (v (@) > [Wal - 27 (hu),
Yn () EW,
Therefore, |W,,| < 27"=°)_ By similar logic, |V, | < 2" (T:8)+5),
Now, observe that if D € Z,, then since D = 7, (z) N " (x) C a™(z), it must

be that u(D) < p(a™(z) < 27 u(T:2)=%) Because every element of Z, is the
intersection of an element of W,, and an element of V,,,

p(UZ,) < Y (D)
DeZ,

< |[W,

< onlhu=p)  gn(hu(T'A)+7) . g=n(hu(T0)=f)

V| - 27 (Toe)=5)

Recall that h, (T, o) > h, — 4. Then p(UZ,) < 27 (TA)=5) . Also recall that
for sufficiently small €, h,(T,5) < %. This means that 2n(hu(T.8)= 1) decreases
exponentially with growing n. Therefore, Y ©(UZ,) < oo, and the conditions for
Borel-Cantelli are satisfied.

By Borel-Cantelli, a.e. € X is in finitely many Z,. This means that for a.e.
x, there exists an integer N, such that if n > N,, then = ¢ Z,,. However, for
sufficiently large n, it is true that for a.e. z, a™(z) € U, and p"(xz) € V,. By
definition of Z,,, v, () must be in finitely many W,, as well. Hence, we have shown
what we set out to prove.

However, {7, (2)}sex is not a partition, which means that the cardinality argu-
ment for W,, does not hold. We will show that that the argument above still holds
regardless. Define

Iy ={mm(x) |z € X and |I,(z)| > n(1 — 2u(E,))}.
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We want to show that for a.e. z, v, (z) € T, for large n. By the Birkhoff Ergodic
theorem, for a.e. x,

n—1

T 51 () = (B,
1=0

This is to say that the average number of times that the iterates of x visit E.
approaches u(E.). Recall that |I,| is the number of iterates that are not in E..
Therefore, there exists an integer N such that if n > N, then
n— |In(z)]

n

- mEe)] < u(E.).

From this follows that for sufficiently large n and a.e z, |I,(z)| > n(1 — 2u(E,),
s0 Yp(z) € T,. By definition of v, (), each element of T, is the intersection of
at least n(1 — 2u(E.)) of the sets a(z), (T ta)(x),...(T~""ta)(z). Furthermore,
x € v (), so each = belongs to at most (n(1—27L(E6))) = (n(2u7EEg))) elements of T',,.

By Lemma 4.7, since 2u(F.) < % for sufficiently small €, « belongs to at most
2 (H2u(Ee))) glements of T,,.

Since u(E.) goes to 0 as e goes to 0, the exponent approaches 0 as well. Finally,
re-define W,, = {C' € T, | u(C) > 27 ""«=P)}, By Lemma 4.6 and the logic showed
above for finding cardinalities,

(W, | < 20(hu=r) . g=n(H(2u(E))).
As € goes to 0, |W,,| < 2"":=+) and the argument holds. O

Example 4.10. As an example of applying the Brin-Katok Formula, we compute
the entropy of the doubling map. The goal is to calculate

lim ( i 108 M(B"(ﬂ%ﬁ))) .

e—0 \ n—oo n

As long as two points are 55 apart from each other from the outset, all of their

iterates up to the nth iteration will be at most € apart from each other. Therefore,
w(B™(x,€)) = 5. Hence, it follows that

271
—1 B" log2 —1
lim ( lim 108 (“))> — lim ( lim 282 08¢ °g€>
e—0 \ n—oo n e—0 \ n—oo n
= log 2.

5. ENTROPY CALCULATION FOR EXPANDING C? MAPS ON St

In this section, we show that the entropy of an expanding C? map on S! is equal
to its Lyapunov exponent, which we define below.

5.1. Lyapunov Exponent. Along with entropy, the Lyapunov exponent gives
another characterization of chaos. In particular, it measures the average rate at
which the iterates of two infinitesimally close points diverge (or converge).

Consider the following heuristic derivation of the Lyapunov exponent. Let z and
x + dx be points that are arbitrarily close to each other. We will observe how the
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iterates of x and x + dx travel relative to each other. Using the derivative of f, we
approximate the distance between each iterate of x and x 4+ dx inductively:

(@) = f(z + da)| ~ |f'(x)||dx]
2 (@) = £z + da)] = | (f(2))|If (2) = flo + do)| = |£'(f (@)1 f(2)l|dz|

n—1

" (2) = " (@ + da)| = |da| T 1f/(f(@)]-

i=0
The Lyapunov exponent X\ at x, the average rate at which the iterates of = and
x + dx diverge, is therefore defined as

(5.1) Mw) = im L3 1og(1F (F@)).
1=0

The right-hand side of (5.1) looks suspiciously like a Birkhoff sum. Indeed, if f
is ergodic, then by the Birkhoff Ergodic Theorem, (5.1) is guaranteed to converge
almost everywhere to [ log|f|.

5.2. Connecting Entropy and Lyapunov Exponents. From now on, assume
all maps are expanding C? maps on S°. L. We say f is C? expanding on S I if there
exists f € C2(R,R), with f/ > 1 and f(z + 1) = f(), such that f(z) = f(z
mod 1) mod 1.

These two lemmas from [4] are used in the main proof.

Lemma 5.2 (Existence of Unique Continuous Invariant Measure). There exists a
unique, continuous function ¢ : St — [0, 4+00) such that du = ¢ - dX is ergodic and
invariant under f, where \ is the Lebesque measure.

Proof. See [4, p. 191]. O

Lemma 5.3 (Distortion Lemma). There ezists ¢ € R such that for all z € S and
y € B™(x,¢),

(5.4) 1 (f’”)/(m)

Proof. By the chain rule, we have

l

1 (fi() J“ 5 (z)) = f'(f'(¥)
() () H ( H( f/(fi(y)) )

Because f is a C? map, for 0 < i < n — 1, there exists some point z; in between

fi(x) and f'(y) such that f'(f'(z)) = f'(f'(y)) = f"(2:)(f'(x) — f'(y))- Further-

more, since f is continuous and S! is compact, let M = sup, g1 (f”(z)). It follows

that
, n—1 i
(z) M|f'(z) — f’(y)l)
< 1+ .
f"’y H( ()
Since f’ is also continuous, let A™! > 1 be the lower bound of f’. Again, by the

Mean Value Theorem, it follows that for 0 <i <mn—1, W < AT () —
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f™(y)|, which means that

n—1 1 i n—1
M f2 x) — fZ Yy n—i| fn n
55 T (1+ ML) < TT a0 - ).
bl f1(fiy) Pl
We want to establish an upper bound on the right hand side of (5.5). Observe
that given a sequence {a,}, log (IT7—,(1+a,)) = > o (1 + a,). Furthermore,
log(1 + ay) < ay, if a, is positive, so it follows that >~ (1 +a,) < Y07 an.

Now, observe that in (5.5), M is a constant value, and |f™(z) — f"(y)| is bounded
above by the fact that y € B"(z,¢€). Since A™! > 1, the argument above leads to
an infinite geometric series with a finite sum, so we have a global upper bound cy.
By similar logic, there exists ¢; such that é < E;:;:gg Let ¢ = max(cg,c1) and

the result follows. O

Theorem 5.6. Let f : S* — S be an expanding C? map, and p be the unique,
ergodic, and invariant measure given by Lemma 5.2. Then

hy = /loglf’ldu.

Proof. The goal is to use the Brin-Katok Formula to connect entropy with the
Lyapunov exponent. To this end, we will first calculate u(B"(z,¢)) for any z € S*.

Let « € S*. Because f’ is continuous and S* is compact, let M = sup,c¢: f'(z),

and set € < ﬁ For any n > 1, we first show that f"|gn(y.e) @ B"(2,€) —

B(f™(x),€) is bijective and that its inverse exists.

For surjectivity, the definition of B™(z,€) gives f™*(B"(x,¢)) C B(f"™(x),¢). To
show the other inclusion, it suffices to prove that B(f(z),e) C f(B(z,¢)), because
this implies that for all k such that 0 < k < n, B(f(x),¢) C f**(B(f*
an inductive argument.

Recall that there exists f € C2(R,R), with f/ > 1 and f(z+1) = f(z), such that
f(z) = f(z mod 1) mod 1. It thus suffices to show that f maps a ball of diameter
€ to a ball of diameter greater than e. Observe that because f is continuous and
monotone, f(B(z,€)) = (f(z — €), f(z +€)). Showing that f(z +¢€) > f(x) + € and

f(z —€) < f(x) — € proves that B(f(z),e) C f(B(z,¢)). Using the Fundamental

Theorem of Calculus and the fact that " > 1, we have

- - Tte z+e
fero-Ffa = [ Fwaw> [ aw=e

The other inequality follows by similar logic, so the surjectivity of f"|gn (4.
follows. We now show injectivity. It suffices to show that, for 0 < k < n — 1,
flpr(Bn(2,e)) 18 injective, because f™|pn (s, is the composition of these restricted
[’s. Because f*(B"(x,€)) C B(f*(x),€), flpr(pn(z,e) is restricted to a set that is
smaller than a ball of diameter € in R. Working with f again, if a ball of diameter
€ in R maps to a ball of diameter less than 1, then f must be injective on the unit
circle. To show this, we have

z+€

foro-Ffa-o= [ 1) dw <@mne<t,

Tr—€

Therefore, f"|pn (4, is bijective onto B(f",¢).
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Now, let g = f"|gn(a,). Lemma 5.3 gives a ¢y such that for all z € B"(z,¢),

% < z;gg < ¢g. By bijectivity, g1 exists, so + < ég:;:% < ¢g. Therefore, for

co
any y € B(f"(x),€), we have that
1 ()

— < L 2T <.

co (971 (9(x))
By Lemma 5.2, let ¢ : S* — [0,+00) be the unique, continuous function such

that du = ¢ - dX is invariant and ergodic. The continuity of ¢ implies that ¢
is bounded on B(f™(z),€), so there exists ¢; such that for all y € B(f"(x),e€),

= <oly) <.

Set ¢ = max(cg, ¢1). We return to the estimation of u(B™(x,¢€)) with the change
of variables formula, which gives

(B (x,€)) = / (67 () du(y)

B(f™(x),€)

_ / (™)' () - 6y) dA(y).
B(f"(x),e)

By using the lower bound % and the upper bound c¢, it follows that

2 (@Y (g(@) < / (67 (W) - 6(y) dA@w) < 2ec? - (971 (9(x).
(fm(x),e)

2
Applying the log and dividing by n on all sides, we get

1 1
log (%) +1°g(<f”>'<?>) < log(u(B"(2,0)) _ log (2¢?) +10g(<fn>’<w>)'
- n

n n n - n

Taking the limit as n goes to infinity, we get

5 L —log(u(BM(,e)) _ Tog((f")'(2)

n—00 n n—00 n

Keeping in mind that f’ > 1, applying the chain rule equates the right hand side
of (5.7) to

. 1 = / 1 . . .
nh_)rréo - Z:O log(|f'(f*(x))]), which is a Birkhoff sum.

The Birkhoff Ergodic theorem gives that (5.7) equals [log|f’|du. By the Brin-
Katok Formula, h,, is the limit of (5.7) as e approaches zero, so the desired result
follows. ([

Remark 5.8. Notice that this result gives an extremely easy proof that the entropy
of the doubling map is log 2.
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APPENDIX A. MEASURE THEORY AND INTEGRATION

A.1l. Introduction to Measure Theory. As mentioned in the introduction, the
length of the half interval is related to the probability of heads turning up in a series
of coin flips. However, what is “length”, and can we measure the length or size of
other objects? Although “size” and “length” are easy concepts to grasp as far as
intervals are concerned, defining them in generality proves to be more difficult.

Definition A.1. A o-algebra on a nonempty set X is a collection S(X) of subsets
of X such that
e S(X) is nonempty.
e S(X) is closed under countable unions.
e S(X) is closed under complements.
That S(X) is closed under countable intersections follows from the second and
third conditions.

With the o-algebra forming the sets that can be measured, the natural next
question is what unit of measure can be used for the o-algebra.

Definition A.2. Let S(X) be a o-algebra. Then the function p : S(X) — [0, 0]
is called a measure on S(X) if

(1) u(0) =o.

(2) p is countably additive i.e. for any collection of disjoint sets {X,,}n>1 in

5(X),

Definition A.3. Let X be a nonempty set, S(X) be a o-algebra on X, and u be a
measure on S(X). A measure space is a tuple (X, S(X), u). The members of S(X)
are called measurable sets.

A measure space (X, S(X), p) is called o-finite if there is a countable collection
{A, }n>1 of measurable sets of finite measure such that X = J,~; A,,. If u(X) =1,
then (X, S(X), ) is called a probability space. Notice that in a probability space,
1 can be seen as the probability, and X as the event space.

Definition A.4. Let A,B C X. Then A = B mod p if u(AAB) = 0, where A

denotes the symmetric difference?.

Having established measurable sets and measure, we turn to functions that pre-
serve measure-related properties while moving the points within a space.

Definition A.5. Let (X, S(X), u) be a measure space. A transformation 7' : X —
X is measurable if for any A € S(X), T"*(A) € S(X), where T1(A) = {z €
X | T(x) € A}. T is called measure-preserving if it is measurable and if for any
A€ S(X), p(A) = (T~ (4)).

As far as ergodicity and entropy are concerned, measure spaces can be viewed
as dynamic objects. When observing the movement of a point x throughout space,
T"(x) gives the position of z at second n.'% Thus, the sequence z,T(x), T?(z), ...
captures the movement of z at every second.

9AAB = (A\ B)U (B\ A).
10Composing T with itself n times is denoted as T™.
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Below is the Borel-Cantelli Lemma, which is central in the proof of the Brin-
Katok formula. It asserts that if the sum of the measures of a countable collection’s
measurable sets is finite, then almost every point in the space lies in at most finitely
many of those measurable sets.

Lemma A.6 (Borel-Cantelli Lemma). Let (X, S(X), 1) be a probability space. Let
{E,}n>1 be a countable collection of measurable sets. If > ", u(E,) < oo, then

(YU E) =

i=1j=i

Proof. By measure properties, we have that for all i € N,

(A7) ﬂUE <uE) <3

By the assertion, lim Zj:iﬂ(Ej) = 0. The LHS of (A.7) is a lower bound
1—> 00

of the RHS expression, so it follows that (N2, U;Z; £;) < 0. But measure are
nonnegative only, so the result follows. 0

A.2. Approximations with Sufficient Semi-Rings. Sometimes, proving prop-
erties about measurable sets with a specific collection of sets is difficult. The con-
cepts below allow us to manipulate properties of measurable sets by using approx-
imations or generalizations of a specific collection of sets.

Definition A.8. A semi-ring on a nonempty set X is a collection R(X) of subsets
of X such that

e R(X) is nonempty.

e R(X) is closed under intersection.

o If A, B € R(X), then A\ B =J;_, E;, where E; € R are disjoint.

Definition A.9. Let (z,S5(X),u) be a measure space. Then a semi-ring R of
subsets of X with finite measure is called a sufficient semi-ring of (X, S(X), p) if
for every A € S(X),

mf{Zu )| AC U , where E; € R for a11j>1}.

Sufficient semi-rings allow us to approximate the main property with another,
more suitable collections of sets. For instance, consider the unit interval [0,1). The
collection of intervals on [0,1) is a o-algebra, but to prove a result with it may
be cumbersome. Instead, consider the dyadic intervals [%, k;;l), which form a
sufficient semi ring on [0,1). They are approximations of the possible intervals on
[0,1) but more specific. Often times, proving a result on a sufficient semi-ring is

sufficient to prove it for the o-algebra.

A.3. Lebesgue Integration Theorems. We now present the most important
results of Lebesgue integration. These results aid in showing the required limiting
arguments in the Birkhoff Ergodic Theorem. The proofs of Fatou’s Lemma and the
Dominated Convergence Theorem can be found in [5].
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Lemma A.10 (Fatou’s Lemma). Let {f,} be a sequence of nonnegative measurable
functions. Then

/hminf fndp < liminf/fndu.
n— oo n— oo

Theorem A.11 (Dominated Convergence Theorem). Let h be an integrable non-
negative function. Let {f,} be a sequence of measurable functions such that lim f,
n—oo
exists a.e.
Set f(x) = lm f,(z). If |fu] < h a.e. for any n >0, then f is integrable, and
n—oo

lim [ fudy = / fdp.
n—oo
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