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Abstract. In this paper, we prove the known result of the expectation of the

number of intersections and collisions of two independent simple symmetric
random walks on Zd. We also present a demonstration of the calculated result

using simulations and plot the empirical expectation obtained for both the

intersections and collisions. One of the main tools used to compute the result
is the local central limit theorem which is used to estimate the probability of

finding the random walk at a point x after n steps.
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1. Introduction

In “Two incidents”[1], George Pòlya talks about the incident that led him to
study the intersections of random walks, and his famous result on recurrence and
transience.

I had then the habit of doing my mathematical work in an agree-
able and healthy way in strolling through the woods. I carried paper
and pencil and occasionally a few books. Sometimes I sat down at
a table and scribbled a few formulas. Then I continued my leisurely
walk in thinking about my problem until another table invited me to
sit down and scribble a little more or look up something in a book.
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At the hotel there lived also some students with whom I usually
took my meals and had friendly relations. On a certain day one of
them expected the visit of his fiancée, what I knew, but I did not
foresee that he and his fiancée would also set out for a stroll in the
woods, and then suddenly I met them there. And then I met them
the same morning repeatedly, I don’t remember how many times,
but certainly much too often and I felt embarrassed: It looked as if
I was snooping around which was, I assure you, not the case.

I met them by accident–but how likely was it that it happened by
an accident at not on purpose? There is a question of probability–
but if the question is conceived too narrowly, too realistically, au
pied de la lettre, with the actual data about the network of wind-
ing footpaths behind the hotel, it becomes unmanageably complicated
and, moreover, uninteresting.

One reason to study the intersections of random walks is to understand better
the random walks where no intersections occur. These walks are called self avoiding
walks, and have significance in many subjects other than mathematics. In biology,
self avoiding walks are a model used to study the folding of protein molecules. Self
avoiding walks is also a tool used to study the structure and geometry of long chain
polymer molecules. They have also found applications elsewhere in the sciences,
such as the physics of magnetic materials and the study of phase transitions. Many
of the problems involving intersections of random walks arise in studying statistical
physics and other critical phenomena.

Problems dealing with the non-intersection of paths of random walks have been
studied in detail by Professor Gregory F. Lawler, in his book “Intersections of
Random Walks”[2].

1.1. Definitions.

The random walks considered in this paper are all on the d dimensional integer
lattice Zd.

Definition 1.1. Let X1, X2, . . . , Xn be independent and identically distributed
random variables defined on Zd. They take values in

Range(Xi) := {e1, e2, . . . , ed,−e1,−e2, . . . ,−ed}

where eis are the standard basis for Rd. The probability distribution of Xi for
i ∈ {1, 2, . . . , n} is given by

P{Xi = x} =
1

2d
for x ∈ {e1, e2, . . . , ed,−e1,−e2, . . . ,−ed}.

The simple symmetric random walk, starting at a point x, is a stochastic process
Sn indexed by non-negative integers, with S0 = x and

Sn = S0 +X1 +X2 + · · ·+Xn.

The probability distribution of Sn is denoted by Px{Sn = y} for every y ∈ Zd.
All the random walks in this paper have been assumed to start at 0 (i.e., S0 = 0).

Hence, Sn = X1 +X2 + · · ·+Xn.
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Calculating P{Sn = y} := P0{Sn = y} for some y ∈ Zd is non-trivial. One
combinatorial approach to calculate the required probability is by counting the
number of possible walks in n steps and then multiplying it with the probability of
getting a particular walk1. This method works exceptionally well for random walks
on Z, where P{Sn = y} can be calculated precisely to get

P{Sn = y} =

{ (
n
n+y
2

) (
1
2

)n
, n+ y even and |y| ≤ n,

0, Otherwise.

This method of counting the number of n step walks becomes increasingly harder
to calculate for random walks on Zd, for d greater than 1.

Another method to estimate P{Sn = y}, is using the characteristic function,
which will be described in detail in Section 3.1.

Definition 1.2. A random walk is called time reversible if the probability of P{S0 =
x0, S1 = x1, . . . , Sk = xk} and P{S0 = xk, S1 = xk−1, . . . , Sk = x0} are equal.

It can be noticed that the simple symmetric random walk on Zd is time reversible
as

P{S0 = x0, S1 = x1, . . . , Sk = xk} = P{X1 = x1−x0, . . . , Xk = xk−xk−1} =
1

(2d)k

and

P{S0 = xk, S1 = xk−1, . . . , Sk = x0} = P{X1 = xk−1−xk, . . . , Xk = x1−x0} =
1

(2d)k
.

Since the probability of a walk traversing the path {x0, x1, x2, . . . , xk} is the same as
that of traversing it’s reverse, {xk, xk−1, . . . , x1, x0}, the walks are time reversible.

Definition 1.3. Let S1 and S2 be two independent simple random walks on a
given lattice. The number of intersections of the two random walks in the first n
steps is denoted by a random variable Rn given by

Rn =

n∑
i=1

n∑
j=1

1{S1
i = S2

j }.

Given any two random walks, S1 and S2, an intersection is said to have occured
when for any two times (they may be same or different), both the random walks
have been at the same point in the state space.

Definition 1.4. Let S1 and S2 be two independent simple random walks on a
given lattice. The number of collisions of the two random walks in the first n steps
is denoted by a random variable Cn given by

Cn =

n∑
i=1

1{S1
i = S2

i }.

1In the case of a simple symmetric random walk on Zd, this will be 1
(2d)n

for each walk of n

steps.
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For a collision to occur, both the random walks require to be at the same point
in the state space at the same time. To count the number of intersections, the path
travelled by the random walks need to be drawn out and for each pair of indices
(i, j) where 1 ≤ i, j ≤ n, it must be checked if an intersection has occured. For the
collisions of random walks, the number of times the two random walkers meet is
counted. 2

It can be observed that every collision is an intersection but the converse isn’t
true. Therefore, for any given pair of random walks Rn ≥ Cn, for all n.

1.2. Results.

In this paper, we calculate the expected number of collisions and intersections
of simple symmetric random walks in Zd.

Theorem 1.5. Let S1 and S2 be two simple random walks on Zd starting at the
origin. Let Rn be the number of intersections between the first n steps of S1 and
the first n steps of S2. As n→∞,

(1.6) E[Rn] =


c1n

3
2 +O(n

1
2 ), d = 1,

c2n+O(ln(n)), d = 2,

c3n
1
2 +O(1), d = 3,

c4 ln(n) +O(1), d = 4,

cd +O(n
4−d
2 ), d ≥ 5.

Theorem 1.7. Let S1 and S2 be two simple random walks on Zd starting at the
origin. Let Cn be the number of collisions occuring in the first n steps of S1 and
S2. As n→∞

(1.8) E[Cn] =


c1
√
n+O(1), d = 1,

c2 log(n) +O(1), d = 2,
cd +O( 1

n
d
2

), d ≥ 3.

The above theorems have been proved using the local central limit theorem.

The rest of the paper is organised as follows: In Section 2, we will take a nu-
merical approach where we simulate 100 pairs of random walks and count their
intersections and collisions. We also verify the result using these simulations. In
Section 3, we discuss some preliminaries, which will be used to prove the above
result on the expected number of random walks. These include the characteristic
function (see Section 3.1) and the local central limit theorem (see Section 3.2). In
Section 4, we will calculate the expected number of intersections and collisions of
two simple symmetric random walks on Zd.

2. Simulations

To understand the order of the expected number of intersections, we can simulate
random walks and count their intersections and collisions. This approach provides

2George Pòlya meeting his student would be a collision not an intersection.
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Figure 1. For the simulation as explained in Section 2.1, the
following result is seen for the expected number of intersections for
n steps of the random walks on Zd for d = 1, 2, . . . , 6.

an intuition on what the result should look like. In this section, we simulate 100
pairs of simple symmetric random walks in Zd, for d = 1, 2, . . . , 6 and find the
empirical average of the number of intersections and collisions.

2.1. Intersections of Random Walks.

For random walks on Zd, the following procedure is performed.

• Choose some dimension d.
• Simulate a pair of simple random walks till 1000 steps.
• Count the number of intersections after n steps for n = 1, 2, . . . , 1000.
• Repeat this experiment 100 times.
• Take the means of the 100 counts of intersections for each n, this should

give an approximate value of E[Rn] for n = 1, 2, . . . , 1000.

The values of E[Rn] calculated in the above method have been plotted in Figure
1.

Several observations can be made from the graphs. First, it is visible that the
behaviour across different dimensions is very different.

For dimension 1, we observe that the number of intersections increases very
quickly. Another observation from the simulations is that out of the 100 pairs of
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random walks observed, the minimum number of intersections was 301 while the
maximum number of intersections was 40371.3

It can be seen that for dimensions 1 to 4, as n increases, the number of inter-
sections keeps on increasing with n, whereas for dimensions 5 and 6, in less than
250 steps, the mean number of intersections becomes a constant. This means that
for the 100 pairs of random walks observed here for dimensions 5 and 6 each, af-
ter around 250 steps, no new intersections were observed. This indicates that the
critical dimension here is 4, since for larger dimensions, the number of intersections
becomes constant very quickly.

2.2. Collisions of Random Walks.

Now, we describe a similar procedure for the collisions of the random walks. For
d = 1, 2, 3, 4, we count the average number of collisions for 100 pairs random walks
on Zd taken up to 1000 steps.

The steps followed are the same as those described for the intersections in Section
2.1. Figure 2 contains the empirical means of the collisions (i.e., E[Cn]) that occured
during the first n steps for 1 ≤ n ≤ 1000.

In Figure 2, for dimensions 1 and 2, the expected number of collisions (i.e., E[Cn])
continues to increase with n. While for dimensions 3 and 4, after the first 100 steps,
no further collisions are observed. This indicates that the critical dimension is 2.

On comparing Figure 1 Figure 2, it can be observed that the expected number
of collisions and intersections differ very much for all the values of d observed.
Observing only the random walk on Z, it is seen that the empirical mean number
of intersections exceeds 10000 while the mean number of collisions reaches only 30.

Furthermore, it can be observed that the critical dimensions for the expected
number of collisions and intersections are quite different. For the intersections
of random walks, the critical dimension for the expectation is observed to be 4,
whereas for the collisions, it is observed to be 2.

2.3. Verification.

It can be observed that the expected number of simulations as seen in Figures
1 and 2 resembles the results as seen in the proofs of Theorem 4.1 and Theorem
4.17. The critical dimension for the intersections and collisions can be seen clearly
in the graphs as 4 and 2 respectively, which matches the result from Theorem 4.1
and Theorem 4.17. It is clearly seen that for simple symmetric random walks on
Zd, for d ≥ 5, the number of intersections eventually resembles a constant. And
similarly for collisions of random walks and d ≥ 3.

To further confirm the order of the first term in the simulations seen in Figure
1 for random walks on the integer lattice for dimensions 1 to 4, the following has
been done. Figure 3, contains the simulations for the random walks simulated in

Section 2. For d = 1, the plot is that of E[Rn]
n

3
2

against n, for d = 2 we plot E[Rn]
n

3Since while counting the number of intersections of random walks, we consider every pair of

indices, 40371 is a valid number of intersections for a pair of random walk to have traversed 1000
steps.
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Figure 2. For the simulation as explained in Section 2.2, the
following result is seen for the expected number of collisions for n
steps of the random walks on Zd for d = 1, 2, 3 and 4.

against n, for d = 3 we plot E[Rn]
n

1
2

against n and for d = 4 the plot is of E[Rn]
log(n)

against n.
As n → ∞, it can be seen that the error term divided by the order of the first

term goes to 0. Hence, Figure 3 should resemble a non-zero constant function as
n→∞.

A similar analysis for the collisions of random walks, requires us to plot for d = 1,
E[Cn]√

n
against n and for d = 2, we plot E[Cn]

logn . These plots should resemble a non-zero

constant functions as n→∞.
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Figure 3. For the simulation seen in Figure 1, the following result
is the expected number of intersections divided by the order of
the leading term of the result as seen in Theorem 4.1 for d =
1, 2, 3 and 4.
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Figure 4. For the simulation seen in Figure 1, the following result
is the expected number of intersections divided by the order of
the leading term of the result as seen in Theorem 4.1 for d =
1, 2, 3 and 4.

It can be seen that in Figure 4, that both the plots resemble a non-zero constant
function.

3. Preliminaries

For a simple symmetric random walk on Zd, since the combinatorial method is
technically tedious to calculate P{Sn = x} for dimensions greater than 1, we out-
line an alternative method. Computing the characteristic function of each of the
Xi’s is easier than the probability that the walk is at a particular location after n
steps. Hence, a method to calculate P{Sn = x} using the characteristic function
is described in this section. Using the characteristic function, we prove the local
central limit theorem. While the local central limit theorem has been proven here
for simple symmetric random walks on Zd, it can be proven for any random walk
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whose increments have mean zero and finite variance.

3.1. Characteristic Function.

Definition 3.1. The characteristic function of a random variable Y = (Y1, Y2, . . . , Yd)
taking values in Rd is a function φ : Rd → C given by

φY (θ) = E[eiθ·Y ]

for θ ∈ Rd.
Let us calculate the characteristic function for X1 following the distribution

described in Definition 1.1. Let θ = (θ1, . . . , θd) ∈ Rd.

φX1(θ) = E[ei·X1θ] =
∑

y∈Range(X1)

P{X1 = y}eiy·θ

=
1

2d

∑
y∈Range(X1)

eiy·θ

=
1

2d

d∑
j=1

(
eiθj + e−iθj

)
=

1

2d

d∑
j=1

2 cos(θj) =
1

d

d∑
j=1

cos(θj).(3.2)

Equation (3.2) describes the characteristic function for X1. Since each of the Xi’s
follow the same distribution as X1, their characteristic function can be calculated
in the same way to give the same result. Let this function be denoted as φX . For
some θ = (θ1, . . . , θd) ∈ Rd,

(3.3) φX(θ) := φX1
(θ) = φX2

(θ) = · · · = φXn(θ) =
1

d

d∑
j=1

cos(θj).

Since, Sn is the sum of the Xi’s, its charactersistic function can be found in the
following way

φSn(θ) = E[ei(X1+···+Xn)θ]

= E[eiX1θeiX2θ · · · eiXnθ]

= E[eiX1θ]E[eiX2θ] · · ·E[eiX2θ]

= [φX(θ)]
n

= φnX(θ)

=
1

dn

 d∑
j=1

cos(θj)

n

.(3.4)

Above, the third equality follows from the fact that the Xis are independent and
the fifth equality follows from Equation (3.2).

We observe that for random walks on Zd, for dimensions greater than 1, it is eas-
ier to compute the characteristic function of Sn when compared to the probability
distribution of Sn. Furthermore, inverting the characteristic function as described
below can be used to calculate P{Sn = x}.
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Theorem 3.5. If Y = (Y1, . . . , Yd) is a Zd-valued random variable whose charac-
teristic function is given by φY (θ), then the following equation holds

(3.6) P{Y = x} =
1

(2π)d

∫
[−π,π]d

φY (θ)e−iθ·xdθ.

Proof. From the definition of the characteristic function we have

φY (θ) =
∑
y∈Zd

P{Y = y}ei·yθ.

For x ∈ Zd,

φY (θ)e−iθ·x =
∑
y∈Zd

P{Y = y}eiθ·ye−iθ·x.

On integrating both sides the equation over [−π, π]
d
, we get

(3.7)

∫
[−π,π]d

φY (θ)e−iθ·xdθ =

∫
[−π,π]d

∑
y∈Zd

P{Y = y}eiθ·(y−x)
 dθ.

Verifying the condition for Fubini’s theorem (See [4]) on the right side of Equation
(3.7) above we get∫

[−π,π]d

∑
y∈Zd

∣∣∣P{Y = y}eiθ·(y−x)
∣∣∣ dθ =

∫
[−π,π]d

∑
y∈Zd

P{Y = y}

 dθ

=

∫
[−π,π]d

dθ = (2π)d <∞.

Hence we can apply Fubini’s Theorem to Equation (3.7) to get

(3.8)

∫
[−π,π]d

φY (θ)e−iθ·xdθ =
∑
y∈Zd

P{Y = y}
∫
[−π,π]d

eiθ·(y−x)dθ.

If y 6= x+ 2πk for any k ∈ Zd, then∫
[−π,π]d

eiθ·(y−x)dθ = 0.

If y − x = 2πk for some k ∈ Zd, the integral becomes∫
[−π,π]d

ei(2πk)θdθ =

∫
[−π,π]d

1dθ = (2π)d.

Substituting the above values in (3.8) and rearranging, we have:

(3.9) P{Y = y} =
1

(2π)d

∫
[−π,π]d

φY (θ)e−iθ·ydθ.

�

Corollary 3.10. In the above equation, replacing Y with Sn, we get

(3.11) P{Sn = x} =
1

(2π)d

∫
[−π,π]d

[φX(θ)]
n
eiθxdθ.
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Further, on replacing the value of φX(θ) from Equation (3.4), we get the following
equation

(3.12) P{Sn = x} =
1

(2π)d
1

dn

∫
[−π,π]d

 d∑
j=1

cos(θj)

n

eiθxdθ.

3.2. The Local Central Limit Theorem.

We aim to estimate P{Sn = x} for large n, where Sn is a random variable
denoting the position of a simple symmetric random walk in Zd after n steps.

If we consider d = 1, we have Xis to be real valued variables and Sn to be their
sum. Since X1, X2, . . . , Xn are independent and identically distributed, the central
limit theorem can be applied here.

The central limit theorem states that,

(3.13) lim
n→∞

P{a ≤ Sn√
n
≤ b} =

∫ b

a

1√
2πσ2

e−
y2

2σ2 dy.

As Sn is a discrete random variable and the normal distribution is a continuous
distribution, to approximate the value of P{Sn = x}, one can consider a = x√

n
and

b = x+1√
n

. The right side of equation (3.13) becomes∫ x+1√
n

x√
n

1√
2πσ2

e−
y2

2σ2 dy =

∫ x+1

x

1√
2πσ2n

e−
u2

2σ2n du

≈ 1√
2πσ2n

e−
x2

2σ2n .(3.14)

Equation (3.14) uses the Riemann sum to approximate the integral.
The points of Zd can be partitioned into odd and even points, where odd points

are the ones that can be reached in an odd number of steps and even points are
those that can be reached in an even number of steps.

Definition 3.15. Consider a simple random walk on Zd. Let x = (x1, x2, . . . , xd) ∈
Zd and n ∈ N∪{0}. We say that n and x have the same parity if n+x1+x2+· · ·+xd
is even.

For any n, every alternate point will have the same parity as n. Hence, we can
approximate Equation (3.14) to the following

(3.16) P{Sn = x} = pn(x) ≈ 2√
2πσ2n

e−
x2

2σ2n .

The local central limit theorem makes Equation (3.16) precise by justifying the
approximation.

Theorem 3.17. Local Central Limit Theorem
Let Sn denote a simple symmetric random walk in Zd. For a positive integer n

and a point x ∈ Zd, define

pn(x) := P{Sn = x}
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and

pn(x) := 2

(
d

2πn

)d/2
e−

d|x|2
2n .

Then, for n and x having the same parity,

(3.18) pn(x) = pn(x) +O

(
1

n
d
2+1

)
.

3.3. Proof of the Local Central Limit Theorem.

Local central limit theorem is proven by splitting the domain of the integral in
Equation (3.11). The different integrals are approximated differently.

From Equation (3.11), we have

P{Sn = x} =
1

(2π)d

∫
[−π,π]d

[φX(θ)]
n
eiθ·xdθ.

It can be noticed that in the integral above, on replacing the term θ with θ +
(π, π, . . . , π), the absolute value of the integrand doesn’t change. Hence, the integral

over A =
[
−π2 ,

π
2

]
× [−π, π]

(d−1)
, will be half of the original integral.

Hence, the above equation can be rewritten to give

(3.19) P{Sn = x} =
2

(2π)d

∫
A

[φX(θ)]
n
eiθ·xdθ.

Earlier, in equation (3.2) we saw that using the Taylor Expansion

φX(θ) =
1

d

d∑
j=1

cos(θj)

=
1

d

d∑
j=1

(
1−

θ2j
2!

+
θ4j
4!
− · · ·

)

= 1−
d∑
j=1

θ2j
2!d

+

d∑
j=1

θ4j
4!d
− · · ·

= 1− |θ|
2

2d
+O(|θ|4).(3.20)

Equation (3.20) follows from the fact that

φX(θ)−
(

1− |θ|
2

2d

)
≤

d∑
j=1

θ4j
4!d
≤

 d∑
j=1

1

4!d

 |θ|4.
Equation (3.20) can be rewritten as

φX(θ) = 1− 1

4d
|θ|2 − 1

4d
|θ|2 +O(|θ|4).

For θ close to 0,
1

4d
|θ|4 = O(|θ|4).

So, there exists r > 0 such that for |θ| < r, φX(θ) ≤ 1− 1
4d |θ|

2.
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There exists 0 < ρ = ρ(r) < 1 such that φX(θ) ≤ ρ for θ > r.
Furthermore, let us consider Equation (3.19) and split the integral as a sum of

the following two integrals as A = (A ∩ {|θ| ≤ r}) t (A ∩ {|θ| > r}) .
Let P{Sn = x} = I(n, x) + J(n, x) where,

I(n, x) =
2

(2π)d

∫
A∩{|θ|≤r}

[φX(θ)]
n
eiθ·xdθ(3.21)

J(n, x) =
2

(2π)d

∫
A∩{|θ|>r}

[φX(θ)]
n
eiθ·xdθ.(3.22)

First, we estimate J(n, x). Earlier we saw that for all |θ| > r, φX(θ) ≤ ρ < 1.
Substituting this in Equation (3.22) and simplifying we get the following:

|J(n, x)| = 2

(2π)d

∣∣∣∣∣
∫
A∩{|θ|>r}

[φX(θ)]
n
eiθ·xdθ

∣∣∣∣∣
≤ 2

(2π)d

∫
A∩{|θ|>r}

| [φX(θ)]
n
eiθ·x|dθ

=
2

(2π)d

∫
A∩{|θ|>r}

|φX(θ)|ndθ

≤ 2

(2π)d

∫
A∩{|θ|>r}

|ρ|ndθ

≤ 2ρn

(2π)d

∫
A∩{|θ|>r}

dθ

≤ 2ρn

(2π)d
C ≤ 2ρn

(2π)d
(2π)d−1π = O(ρn).(3.23)

In the above calculation, in Equation (3.23), C represents the area over which
the integral is being done (i.e., A ∩ {|θ| > r}). This area can be bounded by the
area of A.

Equation (3.23) tells us that as J(n, x) = O(ρn).
It remains to compute the integral I(n, x). It is simplified by substituting θ with
α√
n

where α ∈ Zd. Equation (3.21) can be rewritten as

I(n, x) =
2

(2π)d

∫
|θ|≤r

[φX(θ)]
n
eiθ·xdθ

=
2

(2π)d

∫
|α|≤r

√
n

e
−ix· α√

nφnX

(
α√
n

)
dα√
nd

=
2

(2π
√
n)d

∫
|α|≤r

√
n

e
−ix· α√

nφnX

(
α√
n

)
dα

(2π
√
n)d

2
I(n, x) =

∫
|α|≤r

√
n

e
−ix· α√

nφnX

(
α√
n

)
dα.(3.24)

Let I1, I2, I3 and I4 be defined as follows
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I1 =

∫
|α|≤n

1
4

exp

{
− ix · α√

n

}[
φn
(
α√
n

)
− exp

{
−α

2

2d

}]
dα(3.25)

I2 =

∫
Rd

exp

{
− ix · α√

n

}
exp

{
−α

2

2d

}
dα(3.26)

I3 = −
∫
|α|≥n

1
4

exp

{
− ix · α√

n

}
exp

{
−α

2

2d

}
dα(3.27)

I4 =

∫
n

1
4≤|α|≤rn

1
2

e
−ix· α√

nφnX

(
α√
n

)
dα.(3.28)

Let n >
(
1
r

)2
. Consider the integral I(n, x) from Equation (3.24)

(2π
√
n)d

2
I(n, x) =

∫
|α|≤n

1
4

e
−ix· α√

nφnX

(
α√
n

)
dα+

∫
n

1
4≤|α|≤rn

1
2

e
−ix· α√

nφnX

(
α√
n

)
dα

=

∫
|α|≤n

1
4

e
−ix· α√

nφnX

(
α√
n

)
dα+ I4

=

∫
|α|≤n

1
4

exp

{
− ix · α√

n

}[
φn
(
α√
n

)
− exp

{
−α

2

2d

}]
dα

+

∫
|α|≤n

1
4

exp

{
− ix · α√

n

}
exp

{
−α

2

2d

}
dα+ I4

= I1 +

∫
|α|≤n

1
4

exp

{
− ix · α√

n

}
exp

{
−α

2

2d

}
dα+ I4

= I1 +

∫
Rd

exp

{
− ix · α√

n

}
exp{−α

2

2d
}dα−

∫
|α|≥n

1
4

exp

{
− ix · α√

n

}
exp

{
−α

2

2d

}
dα+ I4

= I1 + I2 + I3 + I4.
(3.29)

The four integrals I1, I2, I3 and I4 are approximated separately.

Approximating I1:
We begin by approximating the integral I1 = I1(n, x). From Equation (3.25),

we have

I1 =

∫
|α|≤n

1
4

exp{− ix · α√
n
}
[
φn(

α√
n

)− exp{−α
2

2d
}
]
dα

|I1| ≤
∫
|α|≤n

1
4

∣∣∣∣φn(
α√
n

)− exp{−α
2

2d
}
∣∣∣∣ dα.(3.30)

In the above equation, to estimate φ
(
α√
n

)
, we replace the value from Equation

(3.20).

φ

(
α√
n

)
= 1− |α|

2

2dn
+ |α|4O(n−2)

φn
(
α√
n

)
=

[
φ

(
α√
n

)]n
=

((
1− |α|

2

2dn

)
+ |α|4O(n−2)

)n
.(3.31)
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Using the binomial expansion to simplify the term on the right, we get:∑n
r=0

(
n
r

) (
1− |α|

2

2dn

)n−r
|α|4rO(n−2r). Which on simplifying becomes

∑n
r=0

(
1− |α|

2

2dn

)n−r
|α|4rO(n−r).

If we consider r � 1, the O(n−r) goes to 0 as n → ∞. Since
(

1− |α|
2

2dn

)n−r
|α|4r

can be bounded by a constant for |α| ≤ n
1
4 , the the term for r � 1 is negligible.

Hence, we only need to consider the values of r comparable to 1.

If n� r, the term inside the summation can be written as,
(

1− |α|
2

2dn

)n
|α|4rO(n−r).

Replacing this in Equation (3.31)

φn
(
α√
n

)
=

(
1− |α|

2

2dn

)n
+

(
1− |α|

2

2dn

)n
|α|4O(n−1)

=

(
1− |α|

2

2dn

)n (
1 + |α|4O(n−1)

)
= exp

{
−|α|

2

2d

}(
1 + |α|4O(n−1)

)
.(3.32)

In Equation (3.32), we assume n → ∞. Replacing the above equation in Equa-
tion (3.30), we get

|I1| ≤
∫
|α|≤n

1
4

exp

{
−|α|

2

2d

}
|α|4O(n−1)dα

= O(n−1)

∫
|α|≤n

1
4

exp

{
−|α|

2

2d

}
|α|4dα

= O(n−1)c

∫ n
1
4

0

exp

{
− r

2

2d

}
r4rd−1dr

= O(n−1)c

∫ n
1
2

0

exp

{
− t

2d

}
t(
d
2+2)dt

≤ O(n−1)c

∫ ∞
0

exp

{
− t

2d

}
t(
d
2+2)dt

≤ O(n−1)c′
∫ ∞
0

(
1

2d

)( d2+2) exp
{
− t

2d

}
t(
d
2+2)

Γ(d2 + 2)
dt = O(n−1).(3.33)

The term inside the integral in equation (3.33), is the density function of a
random variable following the Gamma

(
d
2 + 2, 1

2d

)
. Hence, the value of the integral

is 1.
From equation (3.33), we have I1(n, x) = O(n−1).

Approximating I2:
From Equation (3.26), we have:

I2 =

∫
Rd

exp

{
− ix · α√

n

}
exp

{
−|α|

2

2d

}
dα.

Multiplying and dividing the integral on the right with (2πd)
d
2 , we get

(3.34) I2 = (2πd)
d
2

∫
Rd
e
−iα x√

n

[
1

(2πd)
d
2

e−
|α|2
2d

]
dα
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In the above equation, we can observe that the term inside the box brack-
ets is the probability density function of a multivariate normal distribution Z ∼
Normal(0, dId×d). Hence the integral denotes the characteristic function of Z at
− x√

n
. Equation (3.34) can be rewritten to get

I2 = (2πd)
d
2 φZ

(
− x√

n

)
= (2πd)

d
2 exp

{(
− α√

n

)
·
(
i0− 1

2
dI

(
− x√

n

))}
= (2πd)

d
2 exp

{
−d|α|

2

2n

}
.(3.35)

Therefore, we have I2 = (2πd)
d
2 e−

|x|2d
2n .

Approximating I3:
From Equation (3.27), we have:

I3 = −
∫
|α|≥n

1
4

exp

{
− ix · α√

n

}
exp

{
−|α|

2

2d

}
dα.

Taking the absolute value, we get:

|I3| ≤
∫
|α|≥n

1
4

exp

{
−|α|

2

2d

}
dα

≤ c
∫ ∞
n

1
4

exp

{
− r

2

2d

}
rd−1dr

≤ c′
∫ ∞
n

1
4

exp

{
− r

2

4d

}(
exp

{
− r

2

4d

}
rd−2dr

)
rdr.(3.36)

Consider the term inside the parenthesis. Let g(r) = exp
{
− r2

4d

}
rd−2. It can

be observed that g(0) = 0 and limr→∞ g(r) = 0. The latter follows because

exp
{
x2

4d

}
≤ 1

d!

(
r2

4d

)d
. And replacing this in the limit one gets limr→∞ g(r) ≥

limr→∞ c r
d−2

r2d = 0. Further, we see that the function g is continuous, hence it must
have an upper bound. Replacing this in the equation (3.36)

|I3| ≤ c′
∫ ∞
n

1
4

exp{− r
2

4d
}rdr

= c′′
∫ ∞
n

1
2

exp{− t

4d
}dt

= c′′′
[
−e− x

4d

]∞
n

1
2

= ce−
n

1
2

4d

= O(n−1)(3.37)

This follows because limy→∞
e−y

1
2

( 1
y )

= 0.

Therefore, I3 = O(n−1).
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Approximating I4:
From Equation (3.28), we have

I4 =

∫
n

1
4≤|α|≤rn

1
2

e
−iX α√

nφnX

(
α√
n

)
dα

|I4| ≤
∫
n

1
4≤|α|≤rn

1
2

∣∣∣∣φn( α√
n

)∣∣∣∣ dα.(3.38)

Recall that for |θ| ≤ r, φ(θ) ≤ 1− |θ|
2

4d . For |α| ≤ r
√
n, | α√

n
| ≤ r. So,

|φ(
α√
n

)| ≤ 1− |α|
2

4dn
≤ e−

|α|2
4dn .

Hence,

|I4| ≤
∫
n

1
4≤|α|≤rn

1
2

∣∣∣∣φ( α√
n

)∣∣∣∣n dα
≤
∫
n

1
4≤|α|≤rn

1
2

e−
|α|2
4d dα

≤
∫
|α|≥n

1
4

e−
|α|2
4d dα

= c

∫ ∞
n

1
4

e−
r2

4d rd−1dr = O(n−1).(3.39)

Equation (3.39) follows from the same argument as that for I3. Hence, I4 =
O(n−1).

Now we estimate I(n, x) from the above estimates of I1, I2, I3 and I4. From
equation (3.29), we have:

(2π
√
n)d

2
I(n, x) = (2πd)

d
2 e−

|x|2d
2n +O(n−1)

I(n, x) = 2

(
d

2πn

) d
2

e−
|x|2d
2n +O(n−

d
2−1).(3.40)

Since J(n, x) = O(ρn), where ρ < 1, we get

(3.41) pn(x) = P{Sn = x} = 2

(
d

2πn

) d
2

e−
|x|2d
2n +O(n−

d
2−1).

Since pn(x) = 2
(

d
2πn

) d
2 e−

|x|2d
2n , we have

(3.42) E(n, x) = |pn(x)− pn(x)| = O(n−
d
2−1)

concluding the proof of the Local Central Limit Theorem.
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4. Expected Number of Collisions and Intersections

Theorem 4.1. Let S1 and S2 be two simple random walks on Zd starting at the
origin. Let Rn be the number of intersections between the first n steps of S1 and
the first n steps of S2. As n→∞

(4.2) E[Rn] =


c1n

3
2 +O(n

1
2 ), d = 1,

c2n+O(ln(n)), d = 2,

c3n
1
2 +O(1), d = 3,

c4 ln(n) +O(1), d = 4,

cd +O(n
4−d
2 ), d ≥ 5.

Proof. Recall from Definition 1.3,

Rn =

n∑
i=0

n∑
j=0

1{S1
i = S2

j }.

Due to the linearity of expectation,

E[Rn] =

n∑
i=0

n∑
j=0

E[1{S1
i = S2

j }]

=

n∑
i=0

n∑
j=0

P{S1
i = S2

j }.(4.3)

Both S1 and S2 are simple random walks in Zd. The term on the right is the
probability that S1, after i steps, and S2, after j steps, are the the same point, say
x ∈ Zd.

Fix i and j. Let A be the collection of pairs of paths starting from the origin
and reaching the same terminal points in i and j steps respectively. Let B be the
collection of paths of length i+ j such that the terminal points in these paths is at
the origin.

A =
{

([0, ω1, . . . , ωi = y], [0, η1, . . . , ηj = y]) : ω1, . . . , ωi, η1, . . . , ηj ∈ Zd,
|ωk−1 − ωk| = 1 for 1 ≤ k ≤ i and |ηk−1 − ηk| = 1for1 ≤ k ≤ j}

B =
{

[0, ω1, . . . , ωi+j−1, 0] : ω1, . . . , ωi+j−1 ∈ Zd, |ωk−1 − ωk| = 1 for 1 ≤ k ≤ i+ j
}

Claim: There exists a bijection from A to B.

Proof. Consider the map Ψ : A→ B such that

Ψ([0, ω1, . . . , ωi = y], [0, η1, . . . , ηj = y]) = [0, ω1, . . . , ωi = y = ηj , . . . , η1, 0]

This is the required bijection. �

Recall from definition 1.2, that the simple symmetric random walk on Zd is time
reversible. Since S2 is a simple symmetric random walk, it is also time reversible.
The probability that the random walk S2 occurs is the same as that of it’s reverse
occuring. Hence, the probability of the two walks S1, after i steps, and S2, after
j steps, being at the same point is the same as the probability of a single random
walk traversing the path of S1 for the first i steps and the reverse of S2 for the
following j steps and returning to 0 in i+ j steps.
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Therefore, Equation (4.3) becomes,

(4.4) E[Rn] =

n∑
i=0

n∑
j=0

P{Si+j = 0}.

On replacing i+ j with k in equation (4.4), it can be noticed that each value of
k corresponds to k + 1 pairs of (i, j). Equation (4.4) becomes

E[Rn] =

2n∑
k=0

(k + 1)P{Sk = 0} =

2n∑
k=0

(k + 1)pk(0).

Furthermore, since S0 = 0 we get p0(0) = 1 and

(4.5) E[Rn] = 1 +

2n∑
k=1

(k + 1)pk(0).

For large k, we use the local central limit theorem to estimate the value for pk(0).
Recall from the local central limit theorem (Theorem 3.17) that pk(0) can be

approximated with pk(0) where

pk(0) := 2

(
d

2πk

)d/2
e−

d|0|2
2n = 2

(
d

2πk

)d/2
.

The error term E(k, 0) = |pk(0)− pk(0)| = O
(

1

k
d
2
+1

)
.

Equation (4.5) can be approximated with

E[Rn] = 1 +

2n∑
k=1

(k + 1)(p̄k(0) + E(k, 0))

= 1 +

2n∑
k=1

(k + 1)2

(
d

2πk

) d
2

+

2n∑
k=1

(k + 1)O

(
1

k
d
2+1

)

= 1 + 2

(
d

2π

) d
2

[
2n∑
1

1

k
d
2−1

+

2n∑
1

1

k
d
2

]
+

2n∑
k=1

(k + 1)O

(
1

k
d
2+1

)
.(4.6)

Let

Tn =

2n∑
k=1

(k + 1)O

(
1

k
d
2+1

)

≤
2n∑
k=1

(k + 1)
c

k
d
2+1

for some c

≤ c

[
2n∑
k=1

1

k
d
2

+

2n∑
k=1

1

k
d
2+1

]
.(4.7)

Since, for all k > 1,
c

k
d
2

≥ c

k
d
2+1

,
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(a) A picture proof for Equa-

tion 4.10: The curve in blue
is that of the equation of

√
x

and the one in green is of√
x + 1. The bars represent

the value of Σ1 for d = 1.
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(b) A picture proof for Equa-

tion 4.11: The curve in blue
is that of the equation of 1√

x

and the one in green is of
1√
x+1

. The bars represent

the value of Σ1 for d = 3.

Figure 5. It can be seen that the area under the green curve is
less than that under the bars which is less than that under the blue
curve.

we can say that as n→∞,

(4.8) Tn = O

(
2n∑
k=1

1

k
d
2

)
.

It remains to estimate the values of the two summations Σ1 =
∑2n
k=1

1

k
d
2
−1

and

Σ2 =
∑2n
k=1

1

k
d
2

.

We have

(4.9) E[Rn] = 1 + 2

(
d

2π

) d
2 [

Σ1 + Σ2
]

+O(Σ2) = 1 + 2

(
d

2π

) d
2

[Σ1] +O(Σ2).

First we consider Σ1 =
∑2n
k=1

1

k
d
2
−1

taking different cases for different values of

d.

For d=1: Σ1 =
∑2n
k=1

√
k.

A picture proof for the following statement can be seen in Figure 5a.∫ 2n

0

√
xdx ≤

2n∑
k=1

√
n ≤

∫ 2n

0

√
x+ 1dx

[
2x

3
2

3

]2n
0

≤
2n∑
k=1

√
n ≤

[
2(x+ 1)

3
2

3

]2n
0

2(2n)
3
2

3
≤

2n∑
k=1

√
n ≤ 2(2n)

3
2

3
+

3

2
× 2

3
(2n)

1
2 +

3

2
× 1

2
× 2

3
(2n)−

1
2 + · · · = 2(2n)

3
2

3
+O(n

1
2 ).

(4.10)

Therefore, for d = 1, Σ1 = 2(2n)
3
2

3 +O(n
1
2 ).
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For d=2: Σ1 =
∑2n
k=1 1 = 2n.

For d=3: Σ1 =
∑2n
k=1

1

k
1
2

.

A picture proof for the following statement can be seen in Figure 5b.∫ 2n

0

1√
x+ 1

dx ≤
2n∑
k=1

1

k
1
2

≤ 1 +

∫ 2n

1

1√
x
dx

[
2
√
x+ 1

]2n
0
≤

2n∑
k=1

1

k
1
2

≤ 1 +
[
2
√
x
]2n
1

2
√

2n+ 1− 2 ≤
2n∑
k=1

1

k
1
2

≤ 1 + 2
√

2n− 2

2
√

2n− 2 ≤
2n∑
k=1

1

k
1
2

≤ 1 + 2
√

2n− 2.(4.11)

Therefore, for d = 3, Σ1 = 2
√

2n+O(1).

For d=4: Σ1 =
∑2n
k=1

1
k .

The picture proof for the following statement looks very much like Figure 5b.∫ 2n

0

1

x+ 1
dx ≤

2n∑
k=1

1

k
≤ 1 +

∫ 2n

1

1

x
dx

∫ 2n−1

0

1

x+ 1
dx ≤

2n∑
k=1

1

k
≤ 1 + [log(x)]

2n
1

log(2n) ≤
2n∑
k=1

1

k
≤ 1 + log(2n).(4.12)

Therefore, for d = 4, Σ1 = log(2n) +O(1).

For d≥ 5: Σ1 =
∑2n
k=1

1

k
d
2
−1

.

First, we show that
∑∞
k=1

1

k
d
2
−1

= cd <∞.

m∑
k=1

1

k
d
2−1
≤ 1 +

∫ m

0

1

x
d
2−1

dx

≤ 1 +

[
2

4− d
x(2−

d
2 )

]m
1

≤ 1 +
2

d− 4
− 2m(2− d2 )

4− d
≤ 1 +

2

d− 4
.(4.13)

Since the series
∑∞
k=1

1

k
d
2
−1

is bounded (as seen above) and increasing, it con-

verges to some cd <∞.
We observe that
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2n∑
k=1

1

k
d
2−1

=

∞∑
k=1

1

k
d
2−1
−

∞∑
k=2n+1

1

k
d
2−1

≥ cd −
∫ ∞
2n

1

x
d
2−1

dx

≥ cd −

[
2

(4− d)x
d
2−2

]∞
2n

= cd +
2

(d− 4)(2n)
d
2−2

.

Furthermore, we have

∞∑
k=1

1

k
d
2−1
≥

2n∑
k=1

1

k
d
2−1
≥ cd +

2

(d− 4)(2n)
d
2−2

cd ≥
2n∑
k=1

1

k
d
2−1
≥ cd +

2

(d− 4)(2n)
d
2−2

.

Therefore, for d = 5, Σ1 = cd +O( 1

n
d
2
−2

).

The estimate for Σ2 for the different dimensions can be done similarly. Hence,
we have

(4.14) Σ1 =

2n∑
k=1

1

k
d
2−1

=



2(2n)
3
2

3 +O(
√
n), d = 1,

2n, d = 2,

2
√

2n+O(1), d = 3,
log(2n) +O(1), d = 4,
cd +O( 1

n
d
2
−2

), d ≥ 5.

(4.15) Σ2 =

2n∑
k=1

1

k
d
2

=


2
√

2n+O(1), d = 1,
log(2n) +O(1), d = 2,
cd +O( 1

n
d
2
−1

), d ≥ 3.

Replacing the values from Equations (4.14) and (4.15) in Equation (4.9), the
following result is obtained, proving Theorem 4.1.

(4.16) E[Rn] =



8
3
√
π
n

3
2 +O(

√
n), d = 1,

4
πn+O(log(n)), d = 2,
6
π

√
3
pi

√
n+O(1), d = 3,

8
π2 log(n) +O(1), d = 4,
cd +O( 1

n
d
2
−2

), d ≥ 5.

�

Theorem 4.17. Let S1 and S2 be two simple random walks on Zd starting at the
origin. Let Cn be the number of collisions occuring in the first n steps of S1 and
S2. As n→∞

(4.18) E[Cn] =


c1
√
n+O(1), d = 1,

c2 log(n) +O(1), d = 2,
c3 +O( 1

n
d
2

), d ≥ 3.
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Proof. The proof for the expected number of collisions is much like the one of their
intersections. From the linearity of expectation we have

E[Cn] =

n∑
i=1

E[1{S1
i = S2

i }]

=

n∑
i=1

P{S1
i = S2

i }.(4.19)

Since the simple symmetric random walk on Z is time reversible, using the
same argument as in the case of intersections can be done. It is observed that the

probability of two random walks colliding on the ith step is the same as that of
a single random walk returning to the origin in 2i steps. Hence Equation (4.19)
becomes

(4.20) E[Cn] =

n∑
i=0

P{S2i = 0},

where S denotes a simple symmetric random walk on Zd starting at the origin.
To evaluate the right side of Equation (4.20), the local central limit theorem

(Theorem 3.17) is used. The analysis is the same as the the one in the previous
section in the case of intersections.

The final result obtained is

(4.21) E[Cn] =


4√
π

√
n+O(1), d = 1,

2
π log(n) +O(1), d = 2,
c3 +O( 1

n
d
2

), d ≥ 3.

�
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