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Abstract. In this paper, we approach foundational results in Ramsey Theory

in unorthodox ways: in particular, we use set theoretic and model theoretic

constructions (ultrafilters and ultraproducts, respectively) to prove both the
finite and infinite cases of Ramsey’s Theorem. We then examine the infinite

case of this theorem more carefully, proving a pair of results about specific

infinite ordinals.
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1. Ramsey Theory

In general terms, Ramsey theory is the study of the emergence of pattern in
large structures. Questions in Ramsey theory often take the form “How large does
an arbitrarily generated structure need to be in order to ensure that it contains a
certain substructure?” One classic example is as follows:

How many people must be at a party to ensure there exists either a
group of n mutual acquaintances or of n mutual strangers?

If we formulate this question in terms of graph theory, representing people as
vertices and relations between them (acquaintances/strangers) as coloured edges
(red/blue), it becomes:

What is the smallest integer m such that every bichromatic colouring of
the complete graph on m vertices contains a monochromatic subgraph
on n vertices?

1



2 MARC DE FONTNOUVELLE

It is not even readily apparent that this question always has an answer, i.e., that
for a sufficiently large n, one could not two-colour arbitrarily large complete graphs
in such a way as to avoid monochromatic subgraphs on n vertices. However, the
fact that this question indeed always has an answer is the essence of the following
theorem:

Theorem 1.1 (Finite Ramsey’s Theorem). For every n < ω, there exists Rk(n) < ω
such that every k-colouring of the complete graph on Rk(n) vertices contains a
monochromatic subgraph on n vertices.

This theorem, in turn, is a finite version of the following theorem first published in
1930 by Frank Ramsey [1]. Note that we use [X]n to denote the set of all n-element
subsets of X:

Theorem 1.2 (Ramsey’s Theorem). For any infinite set I together with a k-
colouring of the elements of [I]n, there exists an infinite set M ⊆ I such that
[M ]n is monochromatic.

Setting n = k = 2, we see that this theorem implies that any two-colouring of a
complete infinite graph contains a monochromatic infinite subgraph. Setting k > 2
shows us that the same is true for any finite colouring, while setting n > 2 yields
similar results about hypergraphs.

Our proof of Ramsey’s Theorem (Theorem 1.2) will make use of a set theoretic
structure called the ultrafilter. We will continue to make use of this structure as we
enter into the topic of model theory; in the second section of this paper, we will use
an intimately related construction called the ultraproduct to prove Finite Ramsey’s
Theorem (Theorem 1.1).

1.1. The Ultrafilter.

Definition 1.3 (Filter). Let I be a non-empty set. A filter is a collection D of
subsets of I such that:

(i) D 6= ∅
(ii) ∅ /∈ D
(iii) X ∈ D and X ⊂ Y ⇒ Y ∈ D
(iv) X ∈ D and Y ∈ D ⇒ X ∩ Y ∈ D

Definition 1.4 (Ultrafilter). A filter D on I is called an ultrafilter if for every
X ⊆ I, X ∈ D if and only if I \X /∈ D.

It may be helpful to think of an ultrafilter as a designation of which subsets of I are
“large.” The above criteria then state that some subsets must be large, the empty
set is not large, a set containing a large set is itself large, the intersection of large
sets is likewise large, and finally that the complement of a large set is small (and
vice versa).

Observe that if we simply pick any i ∈ I and define D = {E ⊆ I | i ∈ E}, D
will satisfy all the above criteria, and is thus an ultrafilter. We call ultrafilters of
this form principal ultrafilters, and all other ultrafilters non-principal ultrafilters.
It turns out that any ultrafilter containing a finite set is a principal ultrafilter:
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Proposition 1.5. Suppose D is an ultrafilter over an infinite set I, and D contains
some finite set F ⊂ I. Then D is a principal ultrafilter.

Proof. We will show that if D contains a finite set of size n > 1, then D must also
contain a finite set of size n − 1. This will imply that D contains a singleton set,
from which it follows that D is a principal ultrafilter.

Given a finite set F ⊂ D of size |F | = n, assign an arbitrary ordering to the el-
ements of F , and let Fi denote the set F with its ith element removed. Because
n > 1, all sets Fi are non-empty.

We now claim that at least one of the sets F1 . . . Fn belongs to the ultrafilter D.
Suppose for a contradiction that none of them do: it then follows that I\F1 . . . I\Fn
all belong to D, and so does their intersection, I \ F1 ∩ . . . ∩ I \ Fn. But this
latter set is simply I \ F , which by assumption does not belong to D. From this
contradiction, it follows that at least one of the sets F1 . . . Fn must belong to D,
i.e., D contains a set of size n− 1.

It then follows that D contains a singleton set, i.e. that for some i ∈ I, {i} ∈ D.
By the properties of an ultrafilter (Definitions 1.3 and 1.4), we then have i ∈ F ⇔
F ∈ D, i.e. D is a principal ultrafilter.

�

This fact in turn implies the following property of non-principal ultrafilters, which
will be useful in our proof of Ramsey’s Theorem:

Proposition 1.6. Let D be a non-principal ultrafilter over an infinite set I, and
let A ⊂ I and B ⊂ I be complementary with respect to a cofinite subset X ⊂ I.
Then exactly one of the sets A and B is in D, i.e., A ∈ D ⇔ B /∈ D.

Proof. Let F denote the finite set I \ X. Consider the sets A + F and B. These
are complementary with respect to I, and therefore exactly one of them is in D.

Consider first the case in which A + F /∈ D and B ∈ D. Suppose we also had
A ∈ D. This would violate the property that ultrafilters are closed under supersets
(property (iii) of Definition 1.3). It therefore follows that A /∈ D, while B ∈ D.

Now consider the case that A+F ∈ D and B /∈ D. Suppose for a contradiction we
had A /∈ D, which would imply I \A ∈ D. We would then have I \A ∩ A+F ∈ D.
But this intersection is simply F , whence F ∈ D. By Proposition 1.5, this implies
that D is a principal ultrafilter, contrary to our assumption. It therefore follows
that A ∈ D while B /∈ D.

�

It is evidently simple to find a principal ultrafilter over any set. Our next task,
however, is to show that a non-principal ultrafilter can be found on any infinite
set. This result will follow from the following two propositions:

Proposition 1.7. For any infinite set I, the collection of all its cofinite subsets

F = {X ⊆ I : | I \X | <∞}
is a filter on I.
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This type of filter is called a Fréchet filter. One can easily verify that it is indeed
a filter by checking that it satisfies the criteria of Definition 1.3.

Proposition 1.8. Any filter F on a set I can be extended to an ultrafilter D on I
such that F ⊆ D.

This result is a consequence of Zorn’s Lemma, which we will not prove in this paper;
a proof of it can be found in [2].

Observe that if we extend the Fréchet filter on any infinite set to an ultrafilter, the
resulting ultrafilter is necessarily non-principal. It thus follows that every infinite
set admits a non-principal ultrafilter. Using this fact, we can now prove Ramsey’s
Theorem (Theorem 1.2) in the case where n = k = 2:

1.2. Infinite Ramsey’s Theorem.

Theorem 1.9 (Ramsey’s Theorem, n = k = 2.). Every bichromatic colouring of
the complete graph on an infinite set I contains an infinite monochromatic subgraph.

Proof. (based on [2])
Let D be a non-principal ultrafilter on I, and let {i0, i1, i2, . . .} be an ordering of
the vertices of I. Let R and B (“red” and “blue”) be the two colours with which
the edges of I are coloured, so that for every ij 6= ik, the edge (ij , ik) ∈ R or
(ij , ik) ∈ B (and not both).

For every ik ∈ I, let Rk and Bk be the sets of vertices indexed greater than ik
which are connected to ik with red or blue edges, respectively:

Rk = {ij ∈ I | j > k, (ij , ik) ∈ R}
Bk = {ij ∈ I | j > k, (ij , ik) ∈ B}

For every ik ∈ I, colour the vertex ik red if Rk is in D, and blue if Bk is in D.
Note that for any ik ∈ I, Rk and Bk complement one another with respect to the
set of points in I greater than ik, which is a cofinite subset of I. Therefore, by
Proposition 1.6, exactly one of the sets Rk and Bk will always be in D.

Now let R′ and B′ denote the sets of red and blue coloured vertices, respectively.
Because R′ and B′ complement one another with respect to I, it follows that exactly
one belongs to the ultrafilter D. Suppose without loss of generality that R′ ∈ D.
We then construct an infinite subsequence ink of {i0, i1, i2, . . .} inductively, in the
following way:

Let in0 be the smallest indexed element ofR′. Having already chosen {in0 , in1 , . . . , ink},
let the next element ink+1

be the smallest indexed element of the set

R′ ∩Rn0 ∩ . . . ∩Rnk .

Because each of the intersected sets is in D, the intersection itself must be in D,
and is therefore non-empty, so this selection can indeed repeat ad infinitum. The
elements of the subsequence ink thus form an infinite subset of the vertices of I, all
of which are connected by edges of the same colour.

�
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Note that this result can easily be extended to prove Ramsey’s theorem for any k,
i.e., in cases where the infinite graph is coloured by more than two colours. Given a
k-coloured infinite graph, let one of the colours be called “red”; we can then use the
above process to show the existence of either an infinite subgraph entirely in red,
or an infinite subgraph in which only the (k − 1) colours other than red appear.
We then repeat this process recursively until we find an infinite monochromatic
subgraph.

Our next task is to extend this result to prove Finite Ramsey’s Theorem (Theorem
1.1). We will take a model theoretic approach to this proof: in particular, we will
use a construction called the ultraproduct to demonstrate that Finite Ramsey’s The-
orem follows from Ramsey’s Theorem. Let us therefore introduce the foundations
of model theory:

2. Model Theory

Model theory is, broadly speaking, the study of mathematical structure through the
lens of mathematical logic. The fundamental concepts in model theory are those of
a formal language and its various potential models, i.e., ways of interpreting that
language:

Definition 2.1 (Language). A formal language is a set of symbols, which we further
classify as relation symbols, function symbols, and constant symbols.

Definition 2.2 (Model). A model of a given language is an interpretation of its
symbols, given by the interpretation function I, together with a set A (called the
“universe”) on which this interpretation is defined.

In particular, I maps n-placed relation symbols in the language to n-placed rela-
tions on A, n-placed function symbols to n-placed functions on A, and constant
symbols to elements of A. We will use the notation 〈A, I〉 to refer to the model
with universe A and interpretation function I.

In this paper, we will work primarily with the language of bichromatic graphs,
which consists only of two two-placed relation symbols, say R and B (“red” and
“blue”). Any bichromatic graph is a model of this language: its universe A is the
set of vertices of the graph, R(x, y) holds if the edge between vertices x and y is
red, as does B(x, y) if this edge is blue.

We also wish to be able to speak of models that satisfy sentences in a given language.
We will not go through the labour of formally defining satisfaction (or sentences);
it will suffice to say that a model M satisfies a sentence φ in a language L, denoted

M � φ,

if, when that sentence is interpreted according to the model, it is a true statement.
More formal definitions can be found in [2].

We now introduce the ultraproduct, a model which functions as a sort of averaging
together of a sequence of models:
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2.1. The Ultraproduct.

Suppose L is a language, I is a nonempty set, and D is an ultrafilter over I. For
each i ∈ I, let Mi be a model of L with universe Ai. Now let C be the Cartesian
product of these universes:

C =
∏
i∈I

Ai

We can think of C as the set of all functions with domain I such that for each i ∈ I,
f(i) ∈ Ai. Let us now define the relation =D on functions f, g ∈ C by

f =D g ⇔ {i ∈ I | f(i) = g(i)} ∈ D.

The relation =D is reflexive (because I ∈ D), symmetric (for the same reason), and
transitive (because D is closed under intersection), and is therefore an equivalence
relation. We can therefore speak of the equivalence class fD of any f ∈ C.

We can now define the ultraproduct of the models Mi over the ultrafilter D, which
we denote as:

U =
∏
D

Ai.

The ultraproduct is itself a model of the language L, and its universe is the set of
all equivalence classes of =D, denoted in the following way:∏

D

Ai = {fD | f ∈
∏
i∈I

Ai}.

The interpretation function of the ultraproduct is then defined as follows:

(i) Let R be an n-placed relation symbol in L. The interpretation of R is the
relation S such that:

S(f0D . . . f
n−1
D )⇔ {i ∈ I | R(f0(i) . . . fn(i)} ∈ D.

(ii) Let F be an n-placed function in L, and let Fi be its interpretation in the
model Mi. The interpretation of F is the function H such that:

H(f0D . . . f
n−1
D ) = 〈Fi(f0(i) . . . fn−1(i)) | i ∈ I〉D.

(iii) Let c be a constant symbol in L. Then the interpretation of c is the constant
b such that:

b = 〈ai | i ∈ I〉D.

The ultraproduct functions as a sort of limit of the models Mi: in particular, a
first-order property is satisfied in the ultraproduct if and only if the set of models
Mi in which it is satisfied is “large,” i.e., it belongs to the ultrafilter D. This is
indeed the essence of  Loś’s Theorem:
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Theorem 2.3 ( Loś’s Theorem). Let φ be a statement in a language L. Let D be
an ultrafilter over a set I, and let Ai be a collection of models of L. Then:∏

D

Ai � φ(f0, . . . , fn−1)⇔ {i ∈ I | Ai � φ(f0(i), . . . , fn−1(i))} ∈ D.

A proof of this theorem, which is also called the “fundamental theorem of ultra-
products,” can be found in [2].

We are now ready to prove Finite Ramsey’s Theorem using the ultraproduct con-
struction. Let us first restate the theorem at hand:

2.2. Finite Ramsey’s Theorem.

Theorem 1.1 (Finite Ramsey’s Theorem) For every n < ω, there exists Rk(n) < ω
such that every k-colouring of the complete graph on Rk(n) vertices contains a
monochromatic subgraph on n vertices.

Proof. We will proceed by contrapositive, i.e., we will show that if finite Ramsey’s
Theorem is not true, this implies that (infinite) Ramsey’s Theorem is also not true.
Recall that we have proven the latter in Section 1.1.

Supposing finite Ramsey’s Theorem is not true, there exists some n < ω such that
for every i < ω, we can two-colour the complete graph on i vertices in such a way as
to avoid any monochromatic subgraphs on n vertices. In model theoretic terms, we
can state that for every i < ω, there exists a model Mi = 〈Ai, Ii〉 of the language
of bichromatic graphs L = 〈R,B〉 such that:

(i) (∀x ∈ Ai)(∀y ∈ Ai)((Ri(x, y) ∨Bi(x, y)) ∧ ¬(Ri(x, y) ∧Bi(x, y))),
i.e., Mi is a complete graph

(ii) ¬((∃x0 ∈ Ai) . . . (∃xn−1 ∈ Ai)((
∧

0≤i<j≤n−1

Ri(xi, xj))∨(
∧

0≤i<j≤n−1

Bi(xi, xj))),

i.e., Mi does not contain a monochromatic subgraph of size n.

(iii) (∃x0 ∈ Ai) . . . (∃xi−1 ∈ Ai)(
∧

0≤i<j≤i−1

xi 6= xj),

i.e., Mi contains at least i vertices

where Ri and Bi denote the interpretations of R and B in the model Mi, i.e.,
Ri = Ii(R) and Bi = Ii(B).

Now let D be any non-principal ultrafilter, and consider the ultraproduct
∏
DMi.

Because properties (i) and (ii) above hold for every Mi, they also hold in the ul-
traproduct, i.e.,

∏
DMi is a complete bichromatic graph with no monochromatic

subgraph of size n.
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To complete the proof, we need to show that
∏
DMi is an infinite graph. To this

end, observe that for any i < ω, the property “Mk has fewer than i vertices” holds
for finitely many models Mk. i.e.,

{Mk | |Ak| < i} is finite.

Because D is a non-principal ultrafilter, by Proposition 1.5, it does not contain any
finite sets. Therefore,

{Mk | |Ak| < i} /∈ D
from which it follows that

{Mk | |Ak| ≥ i} ∈ D.

That is, for every i < ω, the set of models which have i or more vertices belongs to
the ultrafilter D. It then follows that for every i < ω, the ultraproduct

∏
DMi has

at least i elements, which implies that
∏
DMi is indeed infinite.

The ultraproduct
∏
DMi is therefore a complete infinite bichromatic graph with no

monochromatic subgraph of size n, which contradicts Ramsey’s Theorem (Theorem
1.2).

�

3. Extension to Higher Ordinals

In Section 1.1, we proved that every bichromatic colouring of a complete infinite
graph contains an infinite monochromatic subgraph. But as we know from the work
of Cantor, “infinity” comes in many different sizes (infintely many, in fact). What
if we refine our notion of infinity, then, and ask questions such as “Does every 2-
colouring of a complete uncountable graph contain an uncountable monochromatic
subgraph?”

To investigate such questions, let us introduce the following notation:

Definition 3.1 (Arrow Notation). When κ, λ and m are cardinals and n is a
natural number, we write

κ→ (λ)nm

to mean that every partition of [κ]n into m pieces contains a subset of size λ of
pieces all of which are in the same paritition (called a homogeneous subset). In the
case where n = 2, then, κ → (λ)2m means that every m-colouring of the complete
graph on κ vertices contains a monochromatic subgraph of size λ.

Observe that if κ → (λ)nm holds true, it will continue to hold true if κ is made
larger, or if λ, m, or n are made smaller.

Using this notation, we can interpret Ramsey’s Theorem (Theorem 1.2) as stating
that for any finite n and m,

ℵ0 → (ℵ0)nm.
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The question “does every bichromatic colouring of a complete uncountable graph
contain an uncountable monochromatic subgraph?” can thus be notated “does
ℵ1 → (ℵ1)22 ?”

Our next task will be to show that the answer to this question is, perhaps surpris-
ingly, no. The proof of this result will hinge upon the following proposition:

Proposition 3.2. The lexicographically ordered set {0, 1}κ does not have a mono-
tonic sequence of order type κ+.

We will prove this proposition in the case where κ = ℵ0, as this is the case which
is relevant to the above question. The proof for general κ, which works largely in
the same way, can be found in [4].

Proof. Suppose there indeed exists a monotonic sequence {fα : α < κ+} ⊂ {0, 1}κ
of order type ℵ1, and assume without loss of generality that this sequence is mono-
tonically increasing. For each α < ℵ1, let ξα be the point up to which fα is identical
to its successor fα+1. To state this more formally, let us write fa � n to denote the
sequence fa truncated after n − 1 elements, and fa(n) to denote the nth element
of fa. We then let ξα be the greatest ordinal such that fα � ξα = fα+1 � ξα, but
fα(ξα) = 0 while fα+1(ξα) = 1.

Because each sequence fα is countable, for every α, ξα is finite. Then by the pi-
geonhole principle, there must exist some finite ξ such that ξα = ξ for ℵ1-many
values of α. Let A be the set of sequences fα such that ξα = ξ, so that |A| = ℵ1.
The following claim, however, will lead to a contradiction of the latter equation:

Claim. Suppose fα and fβ are elements of {fα : α < κ+} such that ξα = ξβ , and
furthermore fα � ξα = fβ � ξα. Then fα = fβ .

Proof of Claim. By assumption, fα < fβ+1, from which it follows that fα ≤ fβ .
Likewise, fβ < fα+1, and so fβ ≤ fα. Therefore, fα = fβ .

Given any ξ < ℵ0 then, there exist only finitely many distinct sequences fα such
that ξα = ξ. In other words, the set A as previously defined must be finite. This
contradicts the previous result that |A| = ℵ1, thus concluding the proof.

�

We will now prove that ℵ1 6→ (ℵ1)22 by showing that if the opposite were true, the
above proposition would be violated. We will even be able to prove the following
more general theorem:

Theorem 3.3. For every κ,

2κ 6→ (κ+)22.

Proof. (based on [4])
Let λ = 2κ, and let {fα : α ∈ λ} be an enumeration of {0, 1}κ of order type λ.
Define an ordering ≺ on λ in the following way: given α, β ∈ λ, set α ≺ β when
fα < fβ , where < represents the lexicographic ordering on {0, 1}κ, and vice versa.
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We then two-colour the complete graph on λ as follows: given α, β ∈ λ, colour the
edge (α, β) green if the ordering ≺ of {α, β} agrees with the natural ordering of
λ; otherwise, colour this edge red. We claim that this colouring can not contain a
monochromatic subgraph of cardinality κ+.

Suppose such a subgraph does exist, and call the set of its vertices H, so that
|H| = κ+. Because H is a subset of the ordinal λ, H is itself an ordinal, thus
having order type κ+.

Now consider the sequence {fα : α ∈ H} ⊂ {0, 1}κ. If the graph on H is coloured
entirely in green, this is a monotonically increasing sequence (according to the
lexicographic order), while if the graph on H is coloured entirely in red, it is mono-
tonically decreasing. In either case, we have constructed a monotonic sequence of
order type κ+ on the set {0, 1}κ, which contradicts Proposition 3.2.

�

However, it turns out that if we set κ > 2ℵ0 , then the statement κ→ (ℵ1)22 will in
fact hold true. This is a consequence of a more general theorem due to Erdős and
Rado, for which we introduce another new piece of notation:

Definition 3.4 (Aα). For any ordinal α, define the ordinal Aα inductively as
follows:

A0= ℵ0
Aα+1= 2Aα .

For a limit ordinal κ,

Aκ= sup{Aα | α < κ}.

3.1. The Erdős–Rado Theorem.

Theorem 3.5 (Erdős–Rado). For any natural number n,

A+
n→ (ℵ1)n+1

ℵ0 .

Proof. (based on [4])
We will prove this theorem for n = 1, i.e., we will show that every ℵ0-colouring of
the complete graph on κ = (2ℵ0)+ vertices contains a monochromatic subgraph of
size ℵ1. This is the case of most immediate interest to us in this paper; the full
proof of the theorem follows by an inductive argument, which can be found in [4].

Let us use the notation a =X b (read: a agrees with b on X) to mean that for every
element x ∈ X, the edge between a and x is of the same colour as the edge between
b and x. Observe that =X is an equivalence relation. Our first step will be to prove
the following claim, which may seem contrived, but from which an elegant proof
will follow:
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Claim 1. For any set Aα ⊂ κ of cardinality |Aα| = 2ℵ0 , there exists a superset
Aα+1 ⊃ Aα also of cardinality |Aα+1| = 2ℵ0 , such that for every countable set
C ⊂ Aα and for every u ∈ κ \ C, there exists v ∈ Aα+1 \ C such that u =C v.

Proof of Claim 1. Given Aα, there exist at most ℵ0 · 2ℵ0 = 2ℵ0 distinct countable
sets C ∈ Aα. Given such a C, there exist at most ℵ0 · ℵ0 = ℵ0 ways in which
u ∈ κ \C can be coloured with respect to the points of C, i.e., the relation =C has
at most ℵ0 equivalence classes.

We then construct Aα+1 as follows: for every countable C ∈ Aα, add one element
of each nonempty equivalence class of =C to the set Aα. Aα+1 evidently satisfies
the desired property. Furthermore, in the construction of Aα+1, we have added at
most ℵ0 · 2ℵ0 = 2ℵ0 points to Aα. The set Aα+1 therefore itself has cardinality 2ℵ0 .

Having proven the claim, let us use it to construct a nested ω1-sequence of subsets
of κ, A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . ., as follows: Let A0 be an arbitrary subset of κ with
cardinality 2ℵ0 . For each limit ordinal α, let Aα = ∪β<αAβ . Otherwise, given Aα,
choose Aα+1 following the above construction. Now let A = ∪α<ω1

Aα, and observe
that A itself has cardinality 2ℵ0 . We claim that A satisfies the following property:

Claim 2. For every countable set C ⊂ A and for every u ∈ κ \ C, there exists
v ∈ A \ C such that u =C v.

Proof of Claim 2. Let A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . . denote the ω1-sequence of sets of
which A is the union, as above. Given a countable C ⊂ A, there exists some α < ω1

such that C ⊂ Aα. By the previous claim, all subsequent sets in the ω1-sequence
contain the desired v, and therefore so does A itself.

We now use this property to construct a sequence 〈xα : α < ω1〉 of elements of κ
as follows. Choose an arbitrary a ∈ κ \A and x0 ∈ A, and given {xβ : β < α} = C,
choose xα such that xα =C a. Note that because we are constructing an ω1-
sequence, the set C is always at most countable, and so the sequence 〈xα : α < ω1〉
is indeed well defined.

Now let X be the set of all elements in this sequence, i.e., X = {xα : α < ω1}. For
each element xα ∈ X, let F (xα) denote the color with which xα is connected to a.

Because X is of cardinality ℵ1 while the range of F is of cardinality ℵ0, by the
pigeonhole principle, there must exist some H ⊂ X of cardinality |H| = ℵ1 such
that F is homogenous on H, i.e., all the elements of H are connected to a with
the same color, which we call FH . But by the construction of X, if α < β, then
xα is connected to xβ with the color F (xα). Therefore, all the elements of H are
connected with the same color F (H). H then forms a monochromatic subgraph of
size ℵ1.

�
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