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Abstract. The Schramm-Loewner evolution is a random continuous curve

that satisfies the scale invariance and domain Markov properties with a sin-
gle parameter κ determining quickly the curve winds. First, we will intro-

duce background topics necessary for understanding Schramm-Loewner evo-

lution, including Brownian motion, stochastic calculus, conformal maps, and
the Loewner differential equation. We will the explore the construction of the

Schramm-Loewner evolution and discuss the proof that the scaling limit of the

Loop Erased Random Walk is SLE with parameter κ = 2.
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1. Introduction

Many models in physics take the form of random walks on two-dimensional
discrete lattices. Taking the limit of the random walks as the distance between
lattice points goes to zero, known as the scaling limit, gives a probability measure
on continuous curves in the plane. For several stochastic processes on discrete
planar lattices, including self-avoiding walks, percolation, the critical Ising and FK-
Ising model, uniform spanning and loop-erased random walks, the scaling limit of
the process is known or conjectured to be the Schramm-Loewner Evolution (SLE).
SLE is a family of probability measures on continuous curves generated by the
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Loewner differential equation with a Brownian motion driving function and with a
single parameter κ controlling the rate at which the curve turns. For these models,
we will look at the SLE measure of continuous curves between two points in a
domain.

Figure 1. SLE3 trace.
Retreived from [1].

All SLEk probability measures share two key properties, the scale invariance and
domain Markov properties. In fact, on the space over which SLE is a probability
measure, L, SLE uniquely satisfies the two properties. These properties and L
are defined in Section 6. These properties are shared in the scaling limit by the
physical models that approach SLEκ, providing a conceptual connection between
the various models. We will provide a short explanation of self-avoiding walks and
percolations, then explore loop-erased random walks more closely in the rest of the
paper.

1.1. Self-Avoiding Walks. A self-avoiding random walk on A ⊂ Z2 is a random
walk starting at a point z ∈ A and ending when it enters Z2 \A, where nodes which
have already been visited are avoided. We must be carefule to define this correctly.
The simple way to do this would be to choose uniformly from unvisited adjacent
points at each step of the process. However, this can lead to the process becoming
trapped, as shown in Figure 2.

Instead, we must treat Z2 as a directed graph with edges in both directions
between adjacent vertices. At each step, remove all edges pointing to the current
vertex, then

• Remove all vertices with no out edges.
• Remove all vertices which are not path-connected to the boundary.
• If a vertex has only one out edge, which is also an in edge, remove both

edges.

Repeat this process until no nodes or edges are removed on any step.
This process is conjectured to approach SLE8/3 in it’s scaling limit.

1.2. Percolation. Percolation models water being poured through a porous mate-
rial. In the case relevant to SLE, we will model the porous material with a hexagoal
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Figure 2. A self-avoiding walk can get trapped if not defined
carefully.

Generated by the author.

lattice T. For p ∈ (0, 1), each vertex in T will be open with probability p and oth-
erwise closed. Two points x, y ∈ T are connected if there exists a path consisting
only of open vertices connecting them. For pc = 1

2 , if p > pc, there almost surely
exists an infinite set of connected vertices; if p < pc, there almost surely exists no
infinite set of connected vertices.

After embedding the hexagonal lattice in the plane and taking the limit of the
length of the edges to zero, the critical percolation between two points in a con-
nected domain approaches an SLE6 curve between the two points.

Figure 3. A percolation trace on a hexagonal lattice.
Retreived from [2].

1.3. Main Results. This paper will begin in Section 2 by defining martingales
and markov processes, which are important tools used to understand SLE, as well
as Brownian motion, which is used in the definition of SLE. In Section 3, we will
discuss Itô Calculus, focusing on the Itô Lemma, Girsanov’s Theorem, and Bessel
Processes, all of which are necessary for our results about SLE. Section 4 will define
conformal mappings and give the Riemann mapping theorem, which are necessary
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for defining the Loewner differential equation, as well as defining Green’s function,
which we will use in our result on the scaling limit of loop erased random walks.
In Section 5, we will define the Loewner differential equation (LDE) and discuss
the relationship between driving functions, Loewner chains, and curves. In Section
6, we give several more properties about SLE including scaling invariance and the
domain Markov property, as well as proving SLE uniquely has these properties. We
also give the Rhode-Schramm Theorem, which guarantees the existence of an SLE
curve:

Theorem 1. Let Kt the the random family of compact H hulls generated by the
LDE with a Brownian motion driving function. Then almost surely there exists a
curve γ : [0,∞) → H such that for each t, Ht := H \Kt is unbounded component
of H \ γt.

Finally, we will define the loop-erased random walk, and give an overview of the
proof of the second main result:

Theorem 2. For a domain A and points a, b ∈ ∂A, the LERW random variable on
a domain A′ and points a′, b′ ∈ ∂A′ converging respectively to A, a, and b converges
in the scaling limit to the SLE2 random variable.

2. Construction and Properties of Brownian Motion

SLE derives its randomness from a Brownian motion in the Loewner differential
equation. Brownian motion describes a straightforward physical process: tracking
the motion of a single partical bouncing off of a large number of other particles.
It is named after Robert Brown, who described the motion of particles of pollen
suspended on the surface of water. The existence of Brownian was proven much
later by Wiener in 1923. For a more in-depth treatment of these topics, including
ommitted proofs in the section, see [6] and [7].

2.1. Filtrations, Markov Processes, and Martingales. Markov processes and
Martingales are types of stochastic processes which place restrictions on future be-
havior of the process based on the current state of the process. To do so rigorously,
especially for continuous time processes, we must introduce the filtrations. Con-
ceptually, filtrations represents the ”information” available to a stochastic process.
For this section, we will assume all stochastic processes are continuous-time and
real-valued.

Definitions 2.1. A filtration on a probability space (Ω,F ,P) is a family Ft, t ≥ 0
of σ-algebras with the property that Fs ⊂ Ft ⊂ F for all s < t.

A stochastic process Xt is adapted to a filtration Ft if for all t ≥ 0, Xt is Ft
measurable.

For a set of random variables F = {Xt}, the σ-algebra σ(F ) is the smallest
σ-algebra such that each element of F is measurable. A common filtration we will
use is Ft = σ({Fs}s<t). Conceptually, this filtration represents the information
from all the previous steps of the stochastic processes.

The first type of stochastic process we will look at are Markov processes. Markov
processes have the property that the probability of a future state depends only on
the current state, not on any of the previous steps.
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Definition 2.2. A stochastic process Xt is a Markov process if for all A ⊂ R
and t > s ≥ 0,

P (Xt ∈ A|σ({Xu}u≤s)) = P (Xt ∈ A|Xu).

If we let Sn be a simple random walk on Z2 and define Xn = Sn+1−Sn, then Xn

is a Markov process, since at any point in the integer lattice, Xn has 1
4 chance of

moving in any direction. However, if we define Sn to be the self-avoiding walk and
Xn as before, then Xn is no longer a Markov process. Since it must avoid paths it
previously created, its previous states do influence its future probabilities.

The next type of stochastic process is the martingale, which is a mathematical
model of a fair game. The martingale has the property that at any time, the
expectation of the martingale in the future is its current value.

Definition 2.3. A stochastic process Xt adapted to a filtration Ft is a martingale
if

(1) E(|Xt|) <∞ for all t ≥ 0
(2) E(Xt|Fs) = Xs if t > s.

The simple random walk is again an example of a martingale, at all times the
expectation for the future state is the current state. A stochastic process can be
both a martingale and a Markov process, exclusively one or the other, or neither.

Stopping times are random variables which describe a condition when a stochas-
tic process stops. For example, the amount of time it takes a random walk to leave
a domain is a stopping time.

Definition 2.4. A random variable τ taking values in [0,∞] with a filtration Ft
is called a stopping time if for all t ∈ [0,∞), the event {τ ≤ t} is Ft measurable.

Stopping times are particularly useful for studying martingales because of the
optional stopping theorem. If we consider the martingale as a game of chance that
stops when some condition is satisfied, at which point we win the value of the
martingale (or lose it if the value is negative), the optional stopping theorem tells
the expected value of the martingale at the stopping time equals the expected value
at the start.

Theorem 2.5. (Optional Stopping Theorem) Suppose Xn is a martingale adapted
to Fn and τ is a stopping time such that P(τ <∞) = 1, E[|Xτ |] <∞, and

lim
n→∞

E[Xn1{τ > n}] = 0.

Then E(Xτ ) = E(X0).

Proof. First, note that for all finite n,

E[Xτ∧n] = P[τ > n]E[Xn] + P[τ ≤ n]E[Xτ ]

= P[τ > n]E[Xn] +

n∑
k=0

P[τ = k]E[Xk]

= P[τ > n]E[X0] +

n∑
k=0

P[τ = k]E[X0]

= E[X0](P[τ > n] +

n∑
k=0

P[τ = k])

= E[X0]
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Then for all n ∈ N, E[X0] = E[Xτ∧n] = E[Xτ ] + E[Xτ∧n −Xτ ]. Then it suffices to
show that limn→∞ E[Xτ∧n−Xτ ] = 0. If n ≤ τ , then Xτ∧n = Xτ so Xτ∧n−Xτ = 0,
otherwise Xτ∧n − Xτ = Xn − Xτ , so we have Xτ∧n − Xτ = 1{τ > n}Xn − Xτ .
Taking the limit gives

lim
n→∞

E[Xτ∧n −Xτ ] = lim
n→∞

E[1{τ > n}Xn −Xτ ]

= lim
n→∞

E[1{τ > n}Xn]− lim
n→∞

E[1{τ > n}Xτ ]

= 0−Xτ lim
n→∞

P[τ > n]

= 0−XτP[τ =∞]

= 0

Hence, E[X0] = limn→∞ E[Xτ ] + E[Xτ∧n −Xτ ] = E[Xτ ] as required. �

2.2. Brownian Motion. An important example of a stochastic process that is
both Markovian and a martingale is Brownian motion. Brownian motion models
the path of a single particle bouncing off many other particles. It was first observed
by small pollen spores suspended on the surface water, colliding with each other.
Brownian motion is a continuous random curve that has independent, normal in-
crements at any scale.

Definition 2.6. A stochastic process Bt is a (linear) Brownian motion starting
at x ∈ R if

(1) B0 = x
(2) Bt has independent increments: for any times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn,

the random variables (Btn − Btn−1
), (Btn−1

− Btn−2
), . . . , (Bt2 − Bt1) are

independently distributed.
(3) For all t ≥ 0 and h > 0, Bt+h−Bt is normally distributed with expectation

0 and variance h.
(4) Almost surely, the function t 7→ Bt is continuous.

When Brownian motion was first discussed, it was not clear that a random
curve with its properties was possible. Lévy introduced a construction of Brownian
motion that satisfies the desired conditions.

Construction 2.7. Let Dn =
{
k
2n : k ∈ N

}
and D =

⋃∞
n=0Dn. Define a collection

of independent standard normal variables {Zt : t ∈ D}. We will define a stochastic

process B
(k)
t for k ∈ N, t ∈ [0, 1]. Let

B
(0)
t =

{
0 t ≤ 1

2

Z1 t > 1
2

For k > 0, we will first define B
(k)
t on Dk as follows. For d ∈ Dk−1, let B

(k)
d =

B
(k−1)
d . For d ∈ Dk \ Dk−1, let

B
(k)
d =

B
(k)

d−2−k
+B

(k)

d+2−k

2
+

Zd
2(k+1)/2

.

We linearly interpolate between the adjacent terms already defined, then add an
independent random term, scaled appropriately. For d ∈ [0, 1] \ Dn, let d′ be the

nearest term of Dn and define B
(k)
d = B

(k)
d′ .
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The Brownian motion Bt is defined as Bt = limk→∞B
(k)
t .

To prove that this limit converges, we can almost surely find a uniform bound
on the sequence, guaranteeing the limit converges. The next two results we give
without proof. They follow from the construction of Brownian motion using inde-
pendent standard normal variables.

Theorem 2.8. The stochastic process Bt given by the Lévy construction is almost
surely a Brownian motion and not differentiable.

Proposition 2.9. If Bt is a Brownian motion and r > 0, then 1
rBr2t is also a

Brownian motion.

We refer to the second proposition as Brownian scaling. A final theorem that
will be useful in the discussion of SLE is about the uniqueness of Brownian motion.

Theorem 2.10. Any continuous random curve which has independent increments
and Brownian scaling is a Brownian motion.

This theorem follows from the Lévy-Khintchine formula, which is beyond the
scope of this paper.

3. Itô Calculus

This section develops Itô’s calculus, which defines integration with respect to
a Brownian motion. Itô calculus provides a powerful tool for providing estimates
about SLE. These estimates depend on Bessel processes, which can be viewed as
a Brownian motion, tilted by the value of a function. Girsanov’s theorem is useful
in defining and using Bessel processes, since it gives a new probability measures
obtained by tilting the measure of the Brownian motion using a martingale. Both
these applications rely on stochastic calculus, in particular the Itô integral and
lemma.

3.1. Itô’s Integral and Lemma. Itô’s integral Zt =
∫ t

0
AsdBs can be understood

as a betting strategy where As are bets on the behavior of the Brownian motion Bs.
We define the integral similarly to the Riemann integral: first, we define integration
for simple processes, that is, processes which consists of a finite number of random
variables, then we show that all continuous stochastic processes can be defined as
the limit of a sequence of simple processes. Finally, we define the Itô’s integral
of a continuous process as the limit of the Itô’s integrals of the converging simple
processes.

Definition 3.1. At is a simple stochastic process if there exists a partition
0 = t0 < t1 < · · · < tn < ∞ and random variables Y0, Y1, . . . , Yn such that if
τ ∈ [tk, tk+1), Aτ = Yτ . Then we define Itô’s integral of At as∫ τ

0

AsdBs =

k∑
i=0

Yi[Bti+1 −Bti ] + Yk[Bτ −Btk ]

Sometimes the integral of a simple process is referred to as a discrete stochastic
integral. They can be used effectively to model discrete processes, like games or
random walks on the integer lattice. The optional stopping theorem is a special
case of the discrete stochastic integral where we stop betting when a certain con-
dition, the stopping time, is reached. In general, the discrete stochastic integral is
a martingale, as is the stochastic integral itself.
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The next step in defining the continuous time Itô’s integral is finding, for any

random variable As, a sequence of simple random variables A
(k)
s that converge to

As.

Lemma 3.2. Suppose At is a stochastic process with continuous paths, adapted to
the filtration Ft. Suppose there also exists C <∞ such that almost surely |At| < C

for all t. Then there exists a sequence of simple stochastic processes A
(n)
t such that

for all t,

lim
n→∞

∫ t

0

E[|As −A(n)
s |2] ds = 0.

A random variable At has continuous paths if the mapping t 7→ At is almost
surely continuous. Similarly to with Riemann integration, we can define Itô’s in-
tegral for random variables At where the set of discontinuities of t 7→ At is almost
surely a null set. However, we will only be concerned with the continuous case in
this paper.

Finally, we define Itô’s integral for a process At as the limit of the integral for

the simple processes A
(k)
t .

Definition 3.3. Suppose At is as in Lemma 3.2. Then there exists simple processes

A
(n)
t which converge to At as in Lemma 3.2. Then define Itô’s integral as∫ t

0

As dBs = lim
n→∞

∫ t

0

A(n)
s dBs.

We can still state Itô’s integral in differential form:

dZt = AtdBt.

The key result relating to Itô’s integral is Itô’s lemma, which gives a way to com-
pute the value of Itô’s integral, similar to the Fundamental Theorem of Calculus.

There are several different forms of Itô’s lemma. A simple version states that if
f : R→ R is C2 and Bt is a Brownian motion, then

f(Bt) = B0 +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds
′.

A more complicated version is given below:

Theorem 3.4. Suppose f(t, x) is a real-valued function that is C1 in t and C2 in
x and Xt = Rtdt+AtdBt. Then

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂xxf(t,Xt)d〈X〉t.

Where

〈X〉t = lim
n→∞

∑
j≤tn

[
X

(
j

n

)
−X

(
j − 1

n

)]2

.

〈X〉t is known as the quadratic variation of Xt. If Xt =
∫ t

0
AsdBs then 〈X〉t =∫ t

0
A2
sds. If we can find a simple form for 〈X〉t, then Theorem 3.4 can be very

helpful for evaluating f(Xt), which we will use later to find the solution to the
exponential stochastic differential equation (SDE).

The final important part of Itô’s Calculus we will consider is when an Itô integral
is a martingale. The condition we will require is that As be square integrable:
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Proposition 3.5. If As is a continuous or piecewise continuous stochastic process

and Zt =
∫ t

0
As dBs, then if 〈Z〉t <∞ for all t, Zt is a martingale.

Itô’s lemma has powerful applications used in the developement of SLE. The
applications we will look at in depth are the Girsanov theorem and Bessel processes.

3.2. Applications of Itô’s Lemma. Girsanov’s theorem gives a sense of ”weight-
ing” a Brownian motion with a martingales. The martingale Mt must satisfy the
exponential SDE

dMt = AtMtdBt, M0 = 1.

We can find Mt such that At satisfies the SDE using Itô’s formula. We do so by

applying Theorem 3.4 to Xt =
∫ t

0
As dBs − 1

2

∫ t
0
A2
s ds and f(t, x) = ex. Note that

(1) dXt = AtdBt − 1
2A

2
tdt,

(2) d〈X〉t = A2
tdt,

(3) ∂tf(t, x) = 0, and
(4) f(t, x) = ∂xf(t, x) = ∂xxf(t, x) = ex.

Then by Theorem 3.4, we have

deXt = ∂tf(t,Xt) + ∂xf(t,Xt)dXt +
1

2
∂xxf(t,Xt)d〈X〉t

= eXt(AtdBt −
1

2
A2
tdt) +

1

2
eXtA2

tdt

= eXtAtdBt.

Thus, by setting Mt = eXt we get the desired result. For Girsanov’s theorem,
we will take as an assumption that Mt is a non-negative martingale.

Theorem 3.6. (Girsanov’s Theorem) Suppose Mt is a non-negative martingale
on a probability space (Ω,F ,P) which satisfies the exponential SDE given above.
Define P∗(V ) = E[1VMt]. If

Wt = Bt −
∫ t

0

Asds

then with respect to P∗, Wt is a standard Brownian motion.

With respect to P, Wt is a Brownian motion with a drift of At in P.

Definition 3.7. The Bessel Process with parameter a is the solution to the SDE

dXt =
a

Xt
dt+ dBt.

We will consider the Bessel process up to a time T = inf{t : Xt = 0}, since at
that time dXt isn’t well-defined, so the solution Xt is itself undefined. However,
with conditions on a, the solution Xt almost surely exists everywhere.

Proposition 3.8. If a > 1
2 , then P{T =∞} = 1. If a < 1

2 , P{T <∞} = 1.

In Section 6 we will discuss the connection between Bessel processes and SLE,
which makes Itô’s calculus an important tool for making estimates about SLE.

We will move away from stochastic processes to discuss the theory of conformal
maps. Conformal mapping theory gives background to the Loewner Differential
Equation. We will return to stochastic processes and the properties developed here
in Section 6, when we discuss SLE.
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4. Conformal Mapping Theory

A conformal map f : D → f(D) is a map which is holomorphic and injective.
The Riemann mapping theorem guarantees conformal mapping exist between most
domains. The relationship between compact H-hulls and conformal mappings from
their complement’s are the basis of Loewner differential equation. For a more
thorough treatment of this and the following two sections, including ommitted
proofs, see [5].

We will begin by defining some key terms or symbols used throughout this section
and giving the general statement of the Riemann mapping theorem.

Notations 4.1. (1) The half-plane H = {a+ ib ∈ C : b > 0}.
(2) The unit disk D = {z ∈ C : |z| < 1}.
(3) A domain D is an open, connected set.
(4) D is simply connected if C \D is also connected.
(5) A point z ∈ ∂D is a regular point if a Brownian motion starting at z almost

surely immediately leaves D.
(6) A set K is a compact H-hull is K is bounded and H\K is a simply connected

domain.
(7) Ĉ is the Riemann sphere: C ∪ {∞}

Theorem 4.2. Suppose D is a simply connected domain of C containing the origin.
Then there exists a conformal transformation f : D → D with f(0) = 0, f ′(0) > 0.

As we will be largely working with domains that do not contain the origin for
the Loewner differential equation, we need something beyond Theorem 4.2. The
following corollary gives conditions for uniqueness of the conformal transformation.

Corollary 4.3. Let D be a proper, simply connected domain and let w ∈ D. Then
there exists a unique conformal transformation φ : D → D such that φ(w) = 0 and
arg φ′(w) = 0.

Proof. By the Riemann mapping theorem, there exists a conformal transformation
φ0 : D → D. Set v = φ0(w) and θ = − arg φ′0(w). Let f(z) = eiθ z−v1−vz and define

φ = f ◦ φ0. The φ(w) = f(v) = 0 and

arg φ′(w) = arg f(v) + arg φ0(w) = θ − θ = 0.

Suppose there exists a function ϕ which also satisfies ϕ(w) = − argϕ′(w) = 0.
Then f = ϕ ◦ φ−1 and its inverse f−1 are conformal maps from D to D with

f(0) = f−1(0) = 0 and arg f ′(0) = arg f−1′(0) = 0. By the Schwarz lemma, we
have

|z| = |f−1(f(z))| ≤ |f(z)| ≤ |z|.
It follows that |f(z)| = |z|, so applying the Schwarz lemma again, we have f(z) = αz
with |α| = 1. Then f ′(z) = α, so argα = 0 and thus α = 1. Hence, f is the identity
map, so ϕ = φ. Thus, the map φ exists and is unique. �

With certain conditions we can guarantee the form and uniquneness of the con-
formal transformation between specific types of domains. The following proposition
defines a conformal transformation gK : H \ K → H for any compact H-hull K,
which will be crucial for the Loewner differential equation.

Theorem 4.4. Let K be a compact H-hull. There exists a unique conformal trans-
formation gK : H \K → H such that for z ∈ H \K, gK(z)− z → 0 as |z| → ∞ and
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gK(z)− z is uniformly bounded. Furthermore, there exists aK ∈ R such that gK is
the form

gK(z) = z +
aK
z

+O(|z|−2).

We will use the notation gK for a conformal transformation of the form given in
Theorem 4.4 through the rest of the paper. Since gK is unique, this is a well-defined
injection from compact H-hulls to conformal transformations. The condition that
gK(z)− z → 0 is called hydrodynamic renormalization.

We need the following lemmas to prove Theorem 4.4. The first we will give
without proof. We will provide a definition before the lemma.

Definition 4.5. A Möbius transformation is a function f from C ∪ ∞ of the
form f(z) = az+b

cz+d where ad− bc 6= 0.

Lemma 4.6. Möbius transformations are conformal.

Before we give the next lemma, we define

D0 ⊂ R = {x ∈ R : there is a H-neighborhood of x in D }.

Lemma 4.7. Let D ⊂ H be a simply connected domain, I ⊂ D0 be open, and
x ∈ I. Then there exists a unique conformal transformation φ : D → H which
extends to a homeomorphism D ∪ I → H ∪ (−1, 1) taking x to 0.

Proof. Define D∗ = D ∪ I ∪D and H∗ = H ∪ (−1, 1) ∪ H. These are both simply
connected, so by Corollary 4.3, there exists a conformal map φ∗ : D∗ → H∗ with
φ∗(x) = 0 and arg(φ∗′)(x) = 0. Define the reflection ϕ(z) = φ∗(z). Then ϕ(z)
is a conformal transformation from D∗ → H∗ with ϕ(0) = ϕ′(0) = 0, so by the
uniqueness of φ∗, ϕ = φ∗, so φ∗ is reflection invariant. If y ∈ R, then y = y, so
φ∗(y) = φ∗(y) = φ∗(y) and thus φ∗(y) ∈ R. It follows that φ∗(I) ⊂ (−1, 1). By
similar reasoning φ∗−1(−1, 1) ⊂ I, so φ∗(I) = (−1, 1). Then φ∗(D) is connected and
disjoint from (−1, 1). Since arg(φ∗′)(x) = 0, φ∗′(x) = α ∈ R+, since φ∗ is analytic,
in a neighborhood of x, φ∗(x+ yi) = αyi+O((yi)2). If y > 0 is sufficiently small,
then x+ yi ∈ D since x ∈ I, so φ∗(x+ yi) ≈ αyi > 0 and thus φ∗(x+ yi) ∈ H. It
follows that φ∗(D) ⊂ H. By similar argument with φ∗−1, we get φ∗(D) = H. Then
let φ be the restriction of φ∗ to D ∪ I. Since φ∗ was unique, φ is unique and has
the desired properties.

�

Now, to prove Theorem 4.4. We will use some of the same notation as in Lemma
4.3, including D0 and D∗.

Proof. Let D = {z : −z−1 ∈ H\K}. As K is bounded, H\K is unbounded and, by
definition, open and simply connected, which means D is open, connected, and has
0 in its boundary. Choose an open I ⊂ D0, where D0 is defined as in Lemma 4.5,
such that 0 ∈ I. By Lemma 4.3, there exists a conformal transformation φ : D → H
which extends to a conformal transformation φ∗ on D∗I with the properties given
in Lemma 4.3. Since φ∗ maps I into R, the coefficients of the Taylor series must
be real around 0. So as z → 0,

φ∗(z) = az + bz2 + cz3 +O(|z|4).
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where a > 0, since φ∗′(0) > 0. Define gK on H \K as

gK(z) = −aφ(−z−1)−1 − b

a
.

It remains to check that gK is a conformal transformation which maps H \K to
H, it is of the desired form at ∞, and it is unique.

To see that gK is conformal and maps H \K to H, note that it is can be written

as f ◦φ ◦ h, where f(z) = − bz+a
2

az = −az −
b
a and h(z) = −1

z . Since a 6= 0, −a3 6= 0,
so f is a Möbius transformation onto its image and by Lemma 4.6 is conformal.
Similarly, h(z) is a Möbius transformation, so it is conformal onto its image. φ
is conformal by construction, and thus gK is conformal. By construction, φ maps
from D = {z : −z−1 ∈ H\K} to H. Clearly h maps H\K to D. We will first show
f(H) ⊂ H. For x+ yi ∈ H,

f(x+ yi) =
−a

x+ yi
− b

a

=
−a(x− yi)
x2 + y2

− b

a

= − ax

x2 + y2
− b

a
+

ay

x2 + y2
i

As a, y, (x2 + y2) > 0, ay
x2+y2 > 0 which means − ax

x2+y2 −
b
a + ay

x2+y2 i ∈ H and

thus f(x+ yi) ∈ H. It remains to prove H ⊂ f(H). Let c+ di ∈ H. Let

x = − a2(ac+ b)

a2(c2 + d2) + 2abc+ b2
, y =

a3d

a2(c2 + d2) + 2abcb2
.

Then f(x + yi) = c + di, so H ⊂ f(H) and thus H = f(H). Therefore, gK is
conformal and takes H \K to H.

We will prove

lim
z→∞

gK(z) = z +

(
b

a

)2
1

z
− c

a

1

z
+O(|z|−2),

giving the desired expansion at ∞ by setting aK = b2−ac
a2 . as z → ∞, −z−1 → 0,

so we can use the expansion of φ given earlier: φ(z) = az + bz2 + cz3 + O(|z|4).
Then we have

gK(z) =
−a

−az−1 + bz−2 − cz3 +O(|z|4)
− b

a
=

az3

az2 − bz + c
− b

a
.

The key observation here is that

az3

az2 − bz + c
= z +

b

a
+

(b2 − ac)z − bc
a2z2 − abz + c

.

Substituting that into the previous expression for gK gives

gK(z) = z +
(b2 − ac)z − bc
a2z2 − abz + c

.

At ∞,
(b2 − ac)z − bc
a2z2 − abz + c

→ b2 − ac
a2z

− bc

a2z2
=
aK
z

+O(|z|−2).

Finally, we have gK(z)→ z + aK
z +O(|z|−2) as desired.
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It remains to prove uniqueness. We will use the following lemma.

Lemma 4.8. Let φ : H → H be a conformal transformation. If φ(∞) = ∞, then
for some µ, σ ∈ R with σ > 0, φ(z) = σz + µ.

Suppose g : H \K → H is another conformal transformation with the properties
of gK , then f = g ◦ g−1

K is a conformal transformation from H to H satisfying
f(∞) = ∞. Then by Lemma 4.6, we have f(z) = σz + µ for some σ > 0, µ. It
follows that f(z) = z, so g = gK and thus gK is unique. �

The value aK gives a notion of the size of the K. It is defined for compact
H-hulls and is called the half-plane capacity of K: hcap(K). Another way to define
hcap is to use Brownian motions:

Theorem 4.9.

hcap(K) = lim
y→∞

yEiy(Im(BT (K)))

Where T (K) is the first time the Brownian motion Bt enters K and Eiy indicates
the expectation for a Brownian motion Bt originating at iy.

We will not use this definition going forward, but it is an interesting connection
between Brownian motion and conformal maps.

Another, more straightforward, notion of the size of a compact H-hull K is its
radius, that is, the radius of the smallest ball centered on the real axis that contains
K.

Definition 4.10. The radius of a compact H-hull K is the defined as

rad(K) = inf{r > 0 : K ⊂ rD + x, x ∈ R}.

Some properties of hcap and rad we will find useful going forward are as follows:

Proposition 4.11. Let K = Ks ⊂ Kt be compact H-hulls. Then:

(1) hcap(Ks) ≤ hcap(Kt),
(2) hcap(Kt) = hcap(Ks) + hcap(gKs(Kt \Ks)),
(3) hcap(Kt) ≤ rad(Kt)

2,
(4) hcap(K) = 0 if and only if K = ∅,
(5) For all z ∈ H \K, |gK(z)− z| ≤ 3 rad(K).
(6) Let K ′ = Ks ∪ g−1

Ks
(Kt). Then g′K = gKt ◦ gKs .

(7) There exists a constant C <∞ such that for all r ∈ (0,∞) and all U ∈ R,
for any compact H-hull K ⊂ rD + U ,∣∣∣∣gK(z)− z − aK

z − U

∣∣∣∣ ≤ CraK
|z − U |2

, |z − U | ≥ 2r.

(8) For r ∈ (0,∞), grK(z) = rgK(z/r).
(9) For x ∈ R, gK+x(z) = gK(z − x) + x.

In some parts of Loewner theory, it is useful to change how ”fast” a family of
compact H hulls Kt runs. We do this by defining a new family K ′t = Kα(t), where
α : [0,∞)→ [0,∞) is strictly increasing and surjective.

Definition 4.12. A family of compact H-hullsKt has the standard parametriza-
tion if hcap(Kt) = 2t for all t ≥ 0.
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5. The Loewner Differential Equation

We will discuss the Loewner differential equation (LDE) next. The LDE estab-
lishes a connection in the form of a differential equation between conformal maps,
the continuous curves they map to, and the compact H-hulls they map from.

The LDE stems from a correspondence between families of compact H-hulls Kt

satisfying the local growth property discussed below, families of conformal trans-
formations gt = gKt : H \K → H, and continuous curves Ut generated by taking
the image of instantaneous increments of Kt, mapped by gt. This correspondence
has two key properties: gt satisfies the LDE

∂tgt(z) =
2

gt(z)− Ut
and gt exists up to the time T (z) = inf{t ≥ 0 : z ∈ Kt} and if T (z) <∞,

lim
t→T (z)

gt(z)− Ut = 0.

We will begin with the local growth property:

Definition 5.1. A family of compact H-hulls Kt satisfies the local growth prop-
erty if

(1) Ks ( Kt when s ≤ t.
(2) Set Ks,t = gKs(Kt \Ks). Then limh→0 rad(Kt,t+h) = 0.

Note that the subset in the first property is strict. As t increases, points are
added to Kt. The two conditions are often given separately. A family of hulls with
the first condition is referred to as an increasing family of hulls and the local growth
property consists solely of the second condition. For the purposes of this paper, we
never consider the two conditions separately, se we will refer to them together as
the local growth property.

There is a connection between families of compact H-hulls satisfying the local
growth property and continuous curves, given in the following proposition.

Proposition 5.2. Let Kt be a family of compact H-hulls satisfying the local growth
property. Then

(1) limh→0Kt+h = Kt,
(2) The map t 7→ hcap(Kt) is continuous and strictly increasing,
(3) for all t ≥ 0, there exists a unique Ut ∈ R such that Ut ∈

⋂
h>0Kt,t+h, and

(4) The map t 7→ Ut is continuous.

We will use the properties given in Proposition 4.9 throughout this proof.

Proof. We will prove each part of the proposition separately.

(1) Let Kt+ = limh→0 gKt(Kt+h \Kt). For all t ≥ 0 and h > 0 we have

hcap(Kt+h) = hcap(Kt) + hcap(Kt+h,t)

and hcap(Kt+) ≤ hcap(Kt,t+h) ≤ rad(Kt,t+h)2. Since rad(Kt,t+h) → 0 as
h→ 0, we have hcap(Kt+) = 0. It follows thatKt+ = ∅, so limh→0Kt,t+h =
∅ and thus limh→0Kt+h = Kt.

(2) Since Kt ( Kt+h, hcap(Kt,t+h) > 0 and thus t 7→ hcap(Kt,t+h) is continu-
ous and strictly increasing.

(3) For fixed t ≥ 0, Kt,t+h are compact and descending, so their intersection
contains a single point Ut.
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(4) For h > 0, choose z ∈ Kt+2h \Kt+h and set w = gKt(z) and w′ = gKt+h(z).
Then w ∈ Kt,t+2h and w′ ∈ Kt+h,t+2h. Since Ut ∈ gKt(Kt+2h \ Kt) and
w ∈ gKt(Kt+2h \Kt), |Ut − w| ≤ 2 rad(Kt,t+2h). Similarly, |Ut+h − w′| ≤
2 rad(Kt+h,t+2h). Furthermore, gKt+h = gKt,t+h ◦ gKt , so w′ = gKt,t+h(w).
Then we have |w − w′| ≤ 3 rad(Kt,t+h). Combining these we see

|Ut+h − Ut| ≤ |Ut − w|+ |w − w′|+ |w′ − Ut+h|
≤ 2 rad(Kt,t+2h) + 2 rad(Kt+h,t+2h) + 3 rad(Kt,t+h)

Since

lim
h→0

2 rad(Kt,t+2h) + 2 rad(Kt+h,t+2h) + 3 rad(Kt,t+h) = 0,

lim
h→0

Ut+h − Ut = 0,

and thus Ut is continuous.

�

We call the continuous curve Ut the driving function for Kt. The following
proposition gives that we can reparametrize Kt to get the standard parametrization,
while preserving the local growth property and driving function.

Proposition 5.3. Suppose Kt is a family of compact H-hulls with the local growth

property, with driving function Ut. Let f(t) = hcap(Kt)
2 and let τ(t) = f−1(t). Then

Kτ(t) has the local growth property, the standard parametrization, and has driving
function Uτ(t).

This gives a bijective association between families of compact curves Kt with the
local growth properties and their driving functions Ut. We will add a third part of
the relationship, families of conformal maps gt = gKt : H \Kt → H. These families
are the solutions to the LDE.

Theorem 5.4. Let Kt be a family of compact H-hulls, with the local growth property
and standard parametrization. Let Ut be the associated driving function. Set gt =
gKt and T (z) = inf{t ∈ [0,∞] : z ∈ Kt}. Then for all z ∈ H and for all t < T (z),
gt is differentiable and satisfies the LDE:

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.

Furthermore, if T (z) <∞, then as t→ T (z), gt(z)→ Ut.

Proof. Fix z ∈ H and let 0 ≤ s < t < T (z). Set zt = gt(z). Using the standard
parametrization and Proposition 4.9.2, we have

hcap(Ks,t) = hcap(Kt)− hcap(K2) = 2(t− s).
Additionally, from Proposition 4.9.6, we have gKt(z) = gKs,t ◦gKs(z), so gKs,t(zs) =

zt. Since Us ∈ Ks,t by definition, we have Ks,t ⊂ Us + 2 rad(Ks,t)D. Then by
Proposition 4.9.5

|zt − zs| ≤ 3 rad(Ks,t)

so by taking |t − s| → 0, by the local growth property 3 rad(Ks,t) → 0 and thus
zt → zs, so zt is continuous.

Furthermore, since zs 6= Us by taking t sufficiently close to s we can guarantee
|zs − Us| ≥ 4 rad(Ks,t). Then by Proposition 4.9.7 with K = Ks,t, we get
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∣∣∣∣zt − zs − 2(t− s)
zs − Us

∣∣∣∣ ≤ 4C rad(Ks,t)(t− s)
|z − U |2

Since t 6= s, we can divide by |t− s|, then taking the limit as t→ s, we see that

lim
t→s

∣∣∣∣gt(z)− gs(z)t− s
− 2

zs − Us

∣∣∣∣ ≤ lim
t→s

4C rad(Ks,t)

|z − U |2
= 0

Where the last equality follows from the local growth property. Then ∂tgt(z) =
2

zt−Ut .

Finally, if T (z) <∞, then for s < T (z), set t = T (z)− s. Then z ∈ Kt \Ks, so
zs ∈ Ks,t and thus, since Ks,t ⊂ Us + 2 rad(Ks,t)D, |zs − Us| ≤ 2 rad(Ks,t). Then
using the local growth property, we have |zs − Us| → 0 as s→ U(z). �

We have completed the correspondence between families of compact H-hulls
with the local growth property, driving functions, and Loewner chains. However,
so far we have done so starting with the compact H-hulls. The next question we
will investigate is whether we can find the same correspondence starting from the
driving function or from Loewner chains. The Loewner chains case is, in fact,
trivial, since the family of compact H-hulls is the complement of the domains of
the conformal maps in the Loewner chain and once we have the family of compact
H-hulls, we can use 5.2 to generate the driving function. Starting with driving
functions is a little more complicated. For any z ∈ C \ {U0}, we can solve the LDE
with driving function Ut by setting

gt(z) = z +

∫ t

0

2

gs(z)− Us
ds.

We define the Loewner chain up to a time

T (z) = {t ≥ 0 : |gs(z)− Us| > 0 for all 0 ≤ s < t}.
W

For fixed t ≥ 0, set Kt = {z ∈ C : T (z) ≤ t}. We will generally refer to gt and
Kt restricted to H, but for some proofs it will be more useful to consider a different
subset of C, often (0,∞), which we will refer to as the Loewner flow on R.

Our final step is to prove Kt is the expected family of compact H-hulls.

Theorem 5.5. For all t,Kt is a compact H-hull which satisfies the local growth
property with standard parametrization. Additionally, the driving function gener-
ated by Kt is Ut and gKt = gt.

A final result useful in the discussion of SLE is as follows:

Proposition 5.6. Let gt(x) be the Loewner chain on R. For all x ∈ R, x ∈ Kt if
and only if T (x) ≤ t.

This can be proven using the reflection invariant conformal isomorphism given
in Lemma 4.5, but will be ommited for brevity.

The following example demonstrates solves an LDE with constant driving func-
tion and describes the family of compact H hulls it generates.

Example 5.7. The solution to the Loewner equation with Ut = c is

gt(z) =
√
c2 − 2cz + 4t+ z2 + c.

This can be confirmed by taking the derivative:



SCHRAMM-LOEWNER EVOLUTION AS A UNIVERSAL SCALING LIMIT 17

∂tgt(z) =
2√

c2 − 2cz + 4t+ z2
=

2

gt(z)− c
.

We can compute thatKt = {c+i
√

4s : s ≤ t}, by finding the roots to
√
c2 − 2cz + 4t+ z2.

Now we will add randomness to the LDE by setting the driving funtion to be
a Brownian motion. By Theorem 5.5, we can guarantee a solution to this LDE,
which is the Schramm-Loewner Evolution (SLE), a probability distribution on the
three-part association of compact H-hulls, driving functions, and conformal maps
discussed earlier. We will discuss two key facts about SLE: that it is almost surely
generated by a continuous curve and that it uniquely satisfies the scale invariance
and domain markov properties.

6. The Schramm-Loewner Evolution

The Schramm-Loewner Evolution is defined as the solution to the LDE with
with a Brownian motion with variance κ as the driving function.

Definition 6.1. Suppose κ > 0 and Ut = −Bt is a standard one-dimensional
Brownian motion. Let gt denote the solution to

∂tgt(z) =
2/κ

gt(z)− Ut
, g0(z) = z.

Then gt is called the Schramm-Loewner evolution with parameter κ from 0 to
∞ in H.

By Theorem 5.5, we have a family of compact H-hulls with the local growth
property which generate SLEκ. However, we can further restrict these compact H-
hulls to specifically be continuous curves. We will now prove that a curve generates
SLEκ. We mean this in the following sense:

Definition 6.2. A continuous curve γt generates a family of compact H-hulls Kt

if for all times t, Ht = H \Kt is the unbounded component of H \ γ[0,t].

The following theorem, often known as the Rhode-Schramm theorem, proves
that a curve generates SLEκ.

Theorem 6.3. Let Kt be an SLEκ family of compact H-hulls for some κ ∈ [0,∞).
Let gt, Ut the associated Loewner chain and driving function. The map g−1

t : H→
Ht almost surely extends continuously to H for all t ≥ 0. Furthermore, if we set
γt = g−1

t (Ut), then almost surely γt is continuous and generates Kt.

We would like to set γ(t) = limδ↓0 g
−1
t (Bt + iδ), a heuristic which we will use in

our discussion of the loop erased random walk, but it is complicated to prove this
limit exists or the resulting function γt is continuous. This was originally proven in
the κ 6= 8 case by Rhode and Schramm. The κ = 8 case is more difficult, but was
later proven by Lawler, Schramm, and Werner.

The effect of κ on the SLEκ curve is to increase how quickly the curve ”winds”,
in a sense. Higher values of κ cause the curve to ”wind” faster. We discuss this
further in Propisition 6.6.

SLEκ gives random variables for Loewner chains, hulls, and curves and each
κ ≥ 0. We will specify which SLEκ variable we refer to unless it is clear from the
context.
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Figure 4. Various SLEκ curves for different values of κ.
Retreived from [3].

We will first look at the the Scale Invariance and Domain Markov Properties,
which SLEκ uniquely posseses. First, we will define the properties and prove SLEκ
posses them.

Proposition 6.4. Let Kt be the SLEκ family of compact H hulls satisfying the
local growth property and gt be the SLEκ family of conformal maps.

(1) Scale Invariance: For α > 0, let

g∗t (z) = α−1/2gαt(
√
αt).

Then g∗t = gt.
(2) Domain Markov Property: For t0 > 0, let

g∗t (z) = gt+t0 ◦ g−1
t0 (z + Ut0)− Ut0 .

Then for all t ≥ 0, g∗t = gt.

This proof involves two straightforward computations.

Proof. (1) We will prove that for all z ∈ H, g∗t (z) satisfies the same LDE as
gt(z) with the same initial value:

∂tg
∗
t (z) =

√
α∂tgt′(

√
αz)

=
√
α

2

gαt(
√
αz)− Uαt

=
√
α

2√
αg∗t (z)−

√
αUt

=
2

g∗t (z)− Ut
Where the final equality follows from the scaling property of Brownian

motion. Hence, g∗t (z) satisfies the LDE with the same driving function as
gt(z). Additionally,

g∗0(z) = α−1/2
√
α = z = g0(z),

so the two have the same initial value. It follows that they are equal.



SCHRAMM-LOEWNER EVOLUTION AS A UNIVERSAL SCALING LIMIT 19

(2) Will prove the second property similarly. Set t0 ≥ 0. Let z ∈ H and
z∗ = g−1

t0 (z + Ut0) Then:

∂tg
∗
t (z) = ∂tgt+t0(z∗)

=
2

gt+t0(z∗)− Ut+t0

=
2

g∗t (z)− Ut+t0 + Ut0

=
2

g∗t (z)− Ut

Where the final equality follows the Markov property of Brownian motion.
Hence, g∗t (z) satisfies the LDE with the same driving function as gt(z).
Additionally, g∗0(z) = gt0(g−1

t0 (z + Ut0)) − Ut0 = z + Ut0 − Ut0 = z, so the
two have the same initial value. It follows that they are equal.

�

We will refer to the set of compact H-hulls with the local growth property as L
and consider both of the above properties as properties of random variables on L.
Note that the scaling property for a random Kt ∈ L is that for λ > 0, Kλ

t = λKλ−2t

follows the same distribution as Kt. The domain Markov property gives that for

s ≥ 0 K
(s)
t = gKs(Ks+t \Ks)− Us, K(s)

t follows the same distribution as Kt. Our
next step will be to prove that any random variable on L which satisfies the two
given properties is SLEκ.

Theorem 6.5. Let Kt be a random variable on L. Kt is SLEκ if and only if it
satisfies scale invariance and the domain Markov Property.

Proof. We have already proven that SLE hulls satisfy scale invariance and the
domain Markov property. It remains to prove that if Kt satisfies the scale invariance
and domain Markov property then it is SLE, that is, its Loewner chain satisfies
the LDE with a Brownian motion driving function. Suppose Kt satisfies the two
properties. Let λ ∈ (0,∞), for any time t′ = λ−2t, we can find the driving function
Uλt′ for Kλ

t with the following computation

Uλt =
⋂
h>0

gλKλ
t

(λ(Kλ
t+h \Kλ

t ))

=
⋂
h′>0

λgKt′ (Kt′+h′ \Kt′)

= λ
⋂
h′>0

gKt′ (Kt′+h′ \Kst))

= λUt′

= λUλ−2t

Where h′ = λ−2h. The second equality follows from Proposition 4.9.8. Since
Kλ
t = Kt, we have Uλt = Ut and thus λUλ−2t = Ut. Next, for s ∈ [0,∞) we can

compute the driving function U
(s)
t of K

(s)
t . Note that for z ∈ Kt
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g
K

(s)
t

(zt) = gKs,t+s−Us(zt)

= gKs,t+s(zt + Us)− Us

Therefore,

U
(s)
t =

⋂
h>0

gKs,t+s(Ks,t+s+h \Ks,t+s)− Us

=
⋂
h>0

gKt+s(Kt+s+h \Kt+s)− Us

= Ut+s − Us

Since K
(s)
t = Kt, we have Ut = Ut+s − Us. It follows that Ut has Brownian

scaling and independent increments, so it is a Brownian motion. Then since Kt has
a Brownian motion driving function, it is an SLE. �

This unique property of SLEκ gives us an idea of when we should expect random
walks on a discrete lattice to converge in their scaling limit to SLEκ.

Before we move on to random walks, we will first connect SLE to Bessel processes.
Let Zt(z) = gt(z)− Ut. Then, fixing z ∈ H,

dZt =
2/κ

Zt
dt+ dBt.

It follows that Zt is a Bessel process with parameter a = 2
κ . This is an important

tool for making estimates about SLE.
The following section moves on to investigating SLE as a scaling limit of a loop-

erased random walk. The random walk is in this case defined on a domain D, with
start and end points respectively z, w ∈ ∂D. SLE, as currently defined, exists in
the upper H plane. We will transform it to a probability distribution, called the
chordal SLE, on domains in the following way:

Definition 6.6. Let D be a domain with z, w ∈ ∂D. Then the chordal SLEκ
on D is a random curve γt from z to w defined as g(γ′t), where g is a conformal
mapping from H to D with g(0) = z and g(∞) = w and γ′ is an SLEκ curve in H.

From here, we will discuss the proof that the Loop Erased Random Walk in a
domain D from z to w scales to the chordal SLE2 from z to w.

7. SLE2 is the Scaling Limit of Loop Erased Random Walk

SLE connects a number of random processes, discussed in the introduction.
Schramm first introduced SLE in 2000 as a scaling limit of the loop erased ran-
dom walk and the uniform spanning tree, with different variances in the Brownian
motion driving function. We will give a brief overview of a proof of the scaling
limit of the loop erased random walk given by Lawler and Viklund in 2018. In this
paper, we will not prove the relationship and bounds given in the proof for the sake
brevity. The proofs in full can be found in [8].

We begin by rigourously defining the loop erased random walk.
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Definitions 7.1. A loop erased random walk is a random walk in a domain
D ⊂ Z2 starting at z ∈ ∂D with loops removed in chronological order. Specifically,
if η = [η0, η1, ..., ηn] is a random walk, we create the loop erased random walk
η′ = [ηi(0), ηi(1), . . . , ηi(k)] as a subsequence of η as follows:

(1) Let c be the current index. Set c = 0 and i(c) = 0.
(2) Let l = max{n ≥ j ≥ i(c), ηj = ηi(c)}.
(3) If l < n, set i(c+ 1) = l + 1 then set c to c+ 1 and return to step 2.
(4) If l = n, set k = c and stop.

Figure 5. A loop erased random walk on the hexagonal lattice.
The light red path is the random walk before loops are erased,

the blue path is the loop erased random walk.
Retreived from [4].

Before we state the main result, we will define a number of quantities. First off,
let D ⊂ C be the domain over which we will examine SLE and LERW curves. We
let f ′, b′ ∈ ∂D be the points the curves respectively begin and end at. We consider
the integer lattice Z2, scaled by N−1 for N ∈ N embedded in the complex plane.
Let A = (N−1Z2)∩D be the simply connected set of lattice points in D and define
DA be the subset of C bounded by ∂A. Let a, b ∈ A be the points nearest a′, b′.
Let η ⊂ A be the LERW curve in A from a to b. We parametrize η by taking a
conformal map F : DA → H taking a to 0 and b to ∞ and reparametrizing such
that hcap(F (η(t))) = 2t. Define R = 4|(F−1)′(2i)|. We are now ready to state the
theorem.

Theorem 7.2. There exists p0 > 0 and for each p ∈ (p0, 1] a q > 0 such that for
the choice of domains and boundary points D, a, b, there exists N0 ∈ N such the
followinng hold. Take η as defined above. Choose F such that R ≥ Np for some
N ≥ N0. Then for each N ≥ N0 there exists a coupling of η with a chordal SLE2

path γ ⊂ DA from a to b, parametrized in the same way as η. As N → ∞ with
probability approaching one the greatest distance between γ and η approaches zero.

This implies that the LERW converges to SLE2 because as we take p < 1, as
N → ∞, we can take R → ∞, which means there is a very large probabilty the
distance between η and γ, measured by ρ, is very small. As N → ∞, it can be
proven that γ converges to the SLE2 curve γ′ on D, parametrized appropriately.
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Thus, as N →∞, η approaches an SLE2 curve almost surely, the scaling limit of η
is SLE2.

The key element of the proof is the coupling between the SLE2. We do so by
defining a discrete analog to the SLE2 process using sections of the LERW path.
We start with a subset of the lattice A with points a, b ∈ ∂DA as described above
and a conformal map F : DA → H with F (a) = 0, F (b) = ∞. We also define an
LERW curve η as above and let ηj = η[0, j] for all j > 0 and define Aj = A \ ηj
and Dj = DAj . Additionally, we have a constant h = R−2u/3, where R is as given
above and u is a postive but unspecified constant. Since u > 0, as R→∞, h→ 0.

We will define a sequence m0,m1, . . . with associated conformal transformations
Fmn and tmn , rmn ≥ 0. We will additionally define a sequence of compact H hulls
Kn with associated conformal transformations gn and gn and numbers ∆n for
n ≥ 1. We do so inductively. We let m0 = 0, tm0 = rm0 = 0 and F0 = F . Then for
j = 0, 1, . . . and n = 1, 2 . . . , we define

Kn
j = Fmn−1

(Dmn−1
\Dmn−1+j

).

We then let

∆n = min{j ≥ 0 : hcap(Kn
j ) ≥ h or diam(Kn

j ) ≥ h}.
We use ∆n to define mn = mn−1 + ∆n and Kn = Kn

∆n. Then we define

tmn = tmn−1 + hcap(Kn), rmn = rmn−1 + diam(Kn).

Let gn : H \Kn → H be the conformal transformation with gn(z) − z = o(1) and
set Fmn = gn ◦Fmn1

and gn = gn ◦ gn−1 ◦ ...g1. We will only consider this function
over the subset of its domain where it is well-defined. Thus finishes our inductive
step. We stop induction until n0, when

rmn ≥ 3/2 or tmn ≥ 3/2.

We define amn as the midpoint of the last edge in ηtmn and define a discrete
“Loewner process” Un = Fmn(amn) ∈ H. This process is instrumental to the cou-
pling because it is “close” to a Brownian motion. More specifically, for a standard
Brownian motion Wt in the half plane, we can find a sequence of stopping times
{τn} and a constant c <∞ which, with probability approaching 1 as R →∞, the
following holds:

For n = 0, 1, ..., n0,

(1) |Wτn − Un| < ch1/10

(2) |τn − nh| < ch1/5

(3) maxτn−1≤t≤τn |Wt −Wτn−1 | ≤ ch2/5

(4) maxt≤τn maxt−h1/5≤s≤t |Wt −Ws| ≤ ch1/2

Intuitively, the “Loewner process” is very close at times n to being a Brownian
motion at times τn and τn is very close to being nh. For times between τn−1 and
τn, Wt is close to Wτn−1 and for short sections of times, Wt has limited variation.

Note that as R → ∞, h → 0, so these bounds approach 0. We can now relate
this to the SLE2 curve. Let γ be the SLE2 curve in H and gSLE

t (z) be the associated
Loewner chain. Define

F SLE
n (z) = (gSLE

τn ◦ F )(z)−Wτn

and

FLERW
n (z) = (gn ◦ F )(z)− Un.
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We can prove there exists c < ∞ such that the following holds. For R suffi-
ciently large, with probability approaching 1 as R goes to ∞, for all z ∈ A with
ImF SLE

n (z) ≥ h1/80, we have

|FLERW
n (z)− F SLE

n (z)| ≤ ch1/15

Additionally, if z ∈ H, then

|fLERW
n (z)− fSLE

τn (z)| ≤ ch1/15.

Where fLERW
n = g−1

n and fSLE
τn = (gSLE

τn )−1.

We will also δ = h1/80 and define un ∈ H as the midpoint of the smallest intervale
containing gn(∂Kn) and zn = fLERW

n (un + iδ). We define scaled variables

N−1an = ǎn, N
−1zn = žn, F (Nz) = F̌ (z), and γ̌ = F̌−1(γ).

The paper proves the following bounds: with probability approaching one as
N → ∞, |ǎn − žn| and |žn − F̌−1 ◦ fSLE

τn (Wτn + iδ)| approaches zero as N → ∞.

Additionally, as discussed in the previous section, we expect g−1
τn (Wτn +iδ)→ γ(τn)

as N →∞, since δ → 0 as N →∞. It follows that |γ̌(τn)−F̌−1◦fSLE
τn (Wτn+iδ)| →

0. Combining these gives that with probability approaching one as N →∞,

|ǎn−γ̌(τn)| ≤ |ǎn−žn|+|žn−F̌−1◦fSLE
τn (Wτn+iδ)|+|γ̌(τn)−F̌−1◦fSLE

τn (Wτn+iδ)| → 0.

Intuitively ǎn and γ̌(τn) are the endpoints of ”steps” along respectively the LERW
and chordal SLE2 paths. As N →∞, the length of these steps approaches zero, so
ǎn and γ̌(τn) approach the curves η and γ themselves. A rigorous proof is given
in the paper, but using this heuristic we see that as N → ∞, we expect with
probability approaching one the greatest distances between η and γ to approach
zero. Thus, the scaling limit of LERW paths is chordal SLE2.
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