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Abstract. In this paper, we introduce the basic notions of Hopf algebras and
Hopf rings, after which we construct the Steenrod algebra and Dyer-Lashof

algebra as concrete examples. We then apply our algebraic framework to

define certain exotic characteristic classes for spherical fibrations and to prove
their nontriviality.
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1. Introduction

A spherical fibration is a fibration for which each fiber is homotopy equiv-
alent to a sphere. There exists a structure group SG and a classifying space
BSG for oriented spherical fibrations. It can be shown that BSG has the ho-
motopy type of limn→∞(ΩnSn)1 where (ΩnSn)1 denotes the space of degree one
basepoint-preserving maps Sn → Sn. The above colimit is naturally a subspace
of QS0 = limn→∞ ΩnSn, a space whose homology has the algebraic structure of a
Hopf ring and is acted on by the Steenrod algebra A and the Dyer-Lashof algebra
R, two examples of Hopf algebras.

Our goal in this paper is to define certain exotic classes ek ∈ Hpkr−1(BSG;Zp)
modulo indeterminacy introduced by ordinary characteristic classes. We will, with
some effort, prove that each of these classes is nonzero.

Before defining exotic classes however, we must introduce the algebraic structures
mentioned above. In section 2, we define Hopf algebras. Briefly stated, a Hopf
algebra A is a module together with a product operation φ : A ⊗ A → A and a
coproduct operation ψ : A→ A⊗A satisfying certain compatibility conditions. In
section 3, we construct the Steenrod algebra and show that it is a Hopf algebra
which acts on the cohomology of any topological pair. In section 4, we construct
the Dyer-Lashof algebra. It is analogous to the Steenrod algebra, except that it
acts on the homology of infinite loop spaces. One may view a Hopf algebra as an
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abelian group over the category of coalgebras. With this interpretation in mind,
in section 5 we define Hopf rings to be a commutative ring over the category of
coalgebras. Having developed the above algebraic machinery, we introduce exotic
characteristic classes of spherical fibrations in section 6 and prove that these classes
are nontrivial in section 7.

We assume only a basic knowledge of homology and cohomology theory through-
out this paper.

2. Hopf Algebras

We now introduce the notion of a Hopf algebra and provide several examples.
Throughout, let R be a fixed commutative ring with unit.

A Hopf algebra is, roughly speaking, a set A that is both an algebra and a
coalgebra. Furthermore, it is equipped with a map ξ : A → A called its antipode;
this may be thought of as a sort of conjugation. Hence, in order to formally define a
Hopf algebra, we must start with the simpler concepts of an algebra and a coalgebra.
A coalgebra is, in some sense, the dual of an algebra. Our definitions contain mirror
commutative diagrams to illustrate this duality.

Definition 2.1. An R-algebra A = (A, φ, η) is a graded R-module A together with
R-module homomorphisms φ : A⊗ A → A and η : R → A such that the following
diagrams commute.

A⊗A⊗A

φ⊗id
��

id⊗φ // A⊗A

φ

��
A⊗A

φ
// A

A⊗R
id⊗η // A⊗A

φ

��

R⊗A
η⊗idoo

A

The map φ is called the product map. The first diagram shows that multiplica-
tion is associative. The map η is called the unit; it is determined uniquely by the
image η(1) ∈ A. By the second diagram, this element is the multiplicative unit in
A.

If A and B are graded R-modules, then A⊗B is given the grading

(A⊗B)n =
⊕
i+j=n

(Ai ⊗Bj)

where (−)n denotes the direct summand of a graded module consisting of its ho-
mogeneous elements of degree n. If A and B are, additionally, R-algebras, then
A⊗B is an R-algebra with unit ηA ⊗ ηB : R ∼= R⊗R→ A⊗B and product

(A⊗B)⊗ (A⊗B)
id⊗γ⊗id // A⊗A⊗B ⊗B

φA⊗φB // A⊗B
where γ(b⊗ a) = (−1)deg(a) deg(b)a⊗ b. More explicitly,

(a⊗ b) · (a′ ⊗ b′) = (−1)deg(a′) deg(b)aa′ ⊗ bb′

We say that the R-algebra A is (graded) commutative if φ is an R-algebra homo-
morphism. This condition holds if and only if x · y = (−1)deg(x) deg(y)y · x for all
x, y ∈ A.

Definition 2.2. A map f : A→ B between R-algebras (A, φA, ηA) and (B,φB , ηB)
is an R-module homomorphism f : A → B such that f ◦ ηA = ηB and f ◦ φA =
φB ◦ (f ⊗ f).
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Example 2.3. The cohomology H∗(X;R) of any topological space X is an R-
algebra whose product is given by the cup product.

Definition 2.4. An R-coalgebra A = (A,ψ, ε) is a graded R-module A together
with R-module homomorphisms ψ : A → A ⊗ A and ε : A → R such that the
following diagrams commute.

A

ψ

��

ψ // A⊗A

id⊗ψ
��

A⊗A
ψ⊗id

// A⊗A⊗A

A

ψ

��
A⊗R A⊗A

id⊗ε
oo

ε⊗id
// R⊗A

Note that these diagrams are dual to the corresponding diagrams in the definition
of an algebra. The map ψ is called the coproduct and ε is the counit. The first
diagram shows that the coproduct is coassociative and the second displays the
behavior of the counit.

If A,B are R-coalgebras, so is A⊗B with counit εA⊗ εB : A⊗B → R⊗R ∼= R
and coproduct

A⊗B
ψA⊗ψB // A⊗A⊗B ⊗B

id⊗γ⊗id // A⊗B ⊗A⊗B
We say that A is (graded) cocommutative if ψ is an R-coalgebra homomorphism.
This condition holds if and only if ψ ◦ γ = ψ.

Definition 2.5. A map f : A→ B betweenR-coalgebras (A,ψA, εA) and (B,ψB , εB)
is an R-module homomorphism f : A → B such that εB ◦ f = εA and ψB ⊗ f =
(f ⊗ f) ◦ ψA.

Example 2.6. The homology H∗(X;F ) of any topological space X is an F -
coalgebra if F is a field. Indeed, the diagonal map X → X × X induces the
coproduct H∗(X;F )→ H∗(X ×X;F ) ∼= H∗(X;F )⊗H∗(X;F ) where the isomor-
phism comes from the Kunneth Theorem.

We now state the conditions under which algebra and coalgebra structures are
compatible.

Definition 2.7. An R-bialgebra (A, φ, ψ, η, ε) is an algebra (A, φ, η) and a coalge-
bra (A,ψ, ε) such that φ and η are R-coalgebra homomorphisms or, equivalently,
such that ψ and ε are R-algebra homomorphisms. This condition is expressed by
the commutativity of the following diagrams.

R

η
��

R

A

ε

?? A⊗A
φ //

ε⊗ε ##

A

R⊗R ∼= R

ε

>>

R⊗R ∼= R
η

  

η⊗η

{{
A⊗A A

ψ
oo

A⊗A
φ //

ψ⊗ψ
��

A
ψ // A⊗A

A⊗A⊗A⊗A
id⊗γ⊗id

// A⊗A⊗A⊗A

φ⊗φ

OO
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The assertion that a coalgbera is, essentially, the dual of an algebra is expressed
rigorously as follows.

Proposition 2.8. Let A be a projective R-module of finite type. Then

(1) (A, φ, η) is an algebra if and only if (A∗, φ∗, η∗) is a coalgbra where A∗

denotes the dual R-module to A and φ∗, η∗ denote the dual maps.
(2) (A, φ, ψ, η, ε) is a bialgebra if and only if (A∗, ψ∗, φ∗, ε∗, η∗) is a bialgebra.

We may now finally define Hopf algebras.

Definition 2.9. A Hopf Algebra (A, φ, ψ, η, ε, ξ) is a bialgebra (A, φ, ψ, η, ε) to-
gether with an antipode ξ, an R-module homomorphism ξ : A → A such that the
following diagrams commute.

A⊗A
id⊗ξ // A⊗A

φ

��
A

ε
//

ψ

OO

R
η
// A

A⊗A
ξ⊗id // A⊗A

φ

��
A

ε
//

ψ

OO

R
η
// A

We think of the antipode as being a sort of conjugation on A. Though the term
antipode suggests that ξ2 = id, this need not hold. Indeed, if we let n be the
minimum number for which ξn = id, then n can be any even number or it can even
be infinite. However, n = 2 for each example in this paper. Given a bialgebra, the
existence and uniqueness of an antipode does not hold in general, but can be shown
in a special case.

Proposition 2.10. Let A be a connected R-bialgebra, one for which Ai = 0 for
i < 0 and A0 = R. Then A admits a unique antipode ξ. Furthermore, ξ2 = idA if
A is either commutative or cocommutative.

Proof. See [6], Proposition 21.3.3. �

We now consider a few examples.

Example 2.11. Let G be a group and let R be a ring. Then the group ring

R[G] =

{ N∑
i=0

rigi : ri ∈ R, gi ∈ G
}

is a Hopf Algebra over R. Indeed, define the unit by the relation η(1) = 1, the
product by φ(g, g′) = gg′, the coproduct by ψ(g) = g ⊗ g, the counit by ε(g) = 1,
and the antipode by ξ(g) = g−1 for all g ∈ G. Each of these maps is extended
linearly over R[G]. More explicitly, η(r) = r · 1,

φ

( N∑
i=0

rigi,

M∑
j=0

r′ig
′
i

)
=

N∑
i=0

M∑
j=0

rir
′
jgig

′
j

and ψ(
∑
rigi) =

∑
ri(gi ⊗ gi), ε(

∑
rigi) =

∑
ri, ξ(

∑
rigi) =

∑
rig
−1
i . One can

show that, with these definitions, (R[G], φ, ψ, η, ε, ξ) is a Hopf algebra.

Example 2.12. Let V be a vector space over a field k. The tensor algebra T (V )
is well-known as a k-algebra. It can, additionally, be given the structure of a Hopf
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algebra. Define the coproduct by ψ(1) = 1 ⊗ 1 and ψ(x) = x ⊗ 1 + 1 ⊗ x for
x ∈ T 1(V ) and extend it as a k-algebra homomorphism over all of T (V ). Thus

ψ(x1 · · ·xn) = ψ(x1) · · ·ψ(xn)

for x1 . . . xn ∈ T 1(V ). For instance,

ψ(xy) =ψ(x)ψ(y) = (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)

=(xy ⊗ 1) + (x⊗ y) + (y ⊗ x) + (1⊗ xy)

The counit is the identity on the summand k ⊂ T (V ) and is zero elsewhere. Finally,
the antipode ξ is given by ξ(x1 · . . . xn) = (−1)nxn · · ·x1, so that, in particular,
ξ(1) = 1 and ξ(x) = −x.

Example 2.13. A lie algebra is a vector space g over a field k together with an
operation [−,−] : g→ g⊗g that is bilinear, antisymmetric, and satisfies the Jacobi
identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

The universal enveloping algebra U(g) is defined as T (g)/I where I ⊂ T (g) is
the two-sided ideal generated by elements of the form xy − yx− [x, y] for x, y ∈ g.
The Hopf algebra structure on T (g) descends to give U(g) the structure of a Hopf
algebra. To see that the coproduct and counit are well-defined, note that

ψ(xy − yx− [x, y]) = (xy − yx− [x, y])⊗ 1 + 1⊗ (xy − yx− [x, y]) ∈ I

ε(xy − yx− [x, y]) = −xy + yx+ [x, y] ∈ I.
Hence U(g) is a Hopf algebra.

Example 2.14. In particular, let g be a k-vector space with basis x1 . . . xn and
set [v, w] = 0 for all v, w ∈ g. Then U(g) ∼= k[x1 . . . xn], the polynomial algebra
generated over k by algebraically independent elements x1 . . . xn.

Example 2.15. The homology of an H-space can be shown to be a Hopf algebra
as long as the product is associative up to homotopy.

3. Steenrod Algebra

The Steenrod algebra A is an important Hopf algebra. Throughout, let p be
a fixed odd prime and let H∗(X) denote H∗(X;Zp) unless otherwise specified.
Everything that follows can be adjusted to the case p = 2 with minor changes.
Here we require p to be an odd prime for convenience. Since the following quantity
will appear often in what follows, set r = 2p− 2.

The Steenrod operation P i is a homomorphism P i : Hj(X,V ) → Hj+ri(X,V )
defined for all pairs of spaces (X,V ) and all integers i, j ≥ 0. It is uniquely char-
acterized by the following properties.

(1) P i(x) = x if i = 0, P i(x) = xp if i = deg(x)/2, and P i(x) = 0 if i >
deg(x)/2

(2) (Naturality) f∗P i = P if∗ for any map f : (X,V )→ (Y,W )
(3) (Cartan Formula) Pn(x ∪ y) =

∑
i+j=n P

i(x) ∪ P j(y)

Additionally, we will need the coboundary operation δ : Hj(X,V )→ Hj+1(X,V )
associated with the coefficient sequence 0→ Zp → Zp2 → Zp → 0. It satisfies nat-

urality as well as the properties δδ = 0 and δ(x∪ y) = (δx)∪ y+ (−1)deg xx∪ (δy).
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Let F be the free graded associative (but not commutative) algebra over Zp
generated by δ and P i for i ≥ 0 where dim(δ) = 1 and dim(P i) = ir. Then F
clearly acts on H∗(X,V ) for pairs (X,V ) by composition of functions. Let I be
the two-sided ideal of F consisting of all elements f ∈ F for which fx = 0 for all
pairs (X,V ) and all elements x ∈ H∗(X,V ). Then A is defined to be the quotient
Zp-algebra F/I. It acts on cohomology rings H∗(X,V ) as before.

Proposition 3.1. (Ádem relations)

P aP b =
∑
i

(−1)a+i

(
(p− 1)(b− i)− 1

a− pi

)
P a+b−iP i

for a < pb and

P aδP b =
∑
i

(−1)a+i

(
(p− 1)(b− i)

a− pi

)
βP a+b−iP i

+
∑
i

(−1)a+i+1

(
(p− 1)(b− i)− 1

a− pi− 1

)
P a+b−iβP i

for a ≤ pb.

It can further be shown that the elements

δε0P s1δε1 . . . P skδεk

where each εi is either zero or one and

s1 ≥ ps2 + ε1, s2 ≥ ps3 + ε2, . . . , sk−1 ≥ psk + εk−1, sk ≥ 1

form an additive basis for A ([3], page 154).
As has already been stated, A is a Zp-algebra. In order to show that it is,

additionally, a Hopf algebra, we must define the coproduct. The coproduct ψ is
defined as in the following lemma.

Lemma 3.2. Given an element a ∈ A, there exists a unique element

ψ(a) =
∑

a′i ⊗ a′′i ∈ A⊗A

such that

a(x ∪ y) =
∑

(−1)deg(a′′i ) deg(x)a′ix ∪ a′′i y
for all pairs (X,V ) and elements x, y ∈ H∗(X,V ).

Proof. We prove the existence of such elements; uniqueness is shown in [3], lemma
3.1.

For convenience, let A⊗A act on H∗(X,V )⊗H∗(X,V ) by the rule

(a⊗ b)(x⊗ y) = (−1)deg(x) deg(b)ax⊗ by
Let c : H∗(X,V ) ⊗ H∗(X,V ) → H∗(X,V ) be the cup product. The required
identity for ψ(a) ∈ A⊗A can now be written as ac(x⊗ y) = cψ(a)(x⊗ y).

The relations

δ(x ∪ y) = (δx) ∪ y + (−1)deg xx ∪ (δy)

Pn(x ∪ y) =
∑
i+j=n

P i(x) ∪ P j(y)

show that ψ(δ) = δ ⊗ 1 + 1⊗ δ and ψ(Pn) =
∑
i+j=n P

i ⊗ P j exist.
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Let J denote the set of all a ∈ A for which such an element ψ(a) ∈ A⊗A exists.
For a, b ∈ J , we see

abc(x⊗ y) = acψ(b)(x⊗ y) = cψ(a)ψ(b)(x⊗ y)

so ab ∈ J with ψ(ab) = ψ(a)ψ(b). Similarly, J is closed under addition; hence J
is an ideal. Since we have already shown that the generators δ, Pn ∈ J , it follows
that J = A.

�

Theorem 3.3. The Steenrod algebra A has the structure of a Hopf algebra.

Proof. Let the counit be the map that is identically zero on elements of positive
degree and the identity on elements of degree zero.

In the course of the proof of the above lemma, we showed that ψ is an algebra
homomorphism. Thus every condition for A to be a bialgebra follows easily except
for coassociativity. For coassociativity, we need only consider the elements Pn, δ ∈
A since ψ is an algebra homomorphism. We compute

(ψ ⊗ id)ψ(Pn) =
∑

i+j+k=n

P i ⊗ P j ⊗ P k = (id⊗ ψ)ψ(Pn)

(ψ ⊗ id)ψ(δ) = δ ⊗ 1⊗ 1 + 1⊗ δ ⊗ 1 + 1⊗ 1⊗ δ = (id⊗ ψ)ψ(δ)

as desired. Finally, A is connected, hence it admits a unique antipode ξ making it
a Hopf algebra.

�

4. Dyer-Lashof Algebra

Analogous to the Steenrod algbera, there exists an algebra of homology opera-
tions on infinite loop spaces. In this section, we define the Dyer-Lashof algebra R
and state its basic properties.

Definition 4.1. An infinite loop space is a space X together with a collection of
spaces Xi for i ≥ 0 such that X0 = X and Xi ' ΩXi+1 for all i. A map f : X → Y
of infinite loop spaces is a sequence of maps fi : Xi → Yi for which fi = Ωfi+1.

Let δ : Hi(X)→ Hi−1(X) be the homology Bockstein homomorphism associated
with the sequence Zp → Zp2 → Zp It is the dual of the cohomology Bockstein
homomorphism introduced earlier. Similarly, let P a : Hi(X) → Hi−ra(X) be the
dual of the Steenrod operation P a. By abuse of notation, we use the same variables
as before. Each of δ and P a acts on the homology of an arbitrary space.

Theorem 4.2. There exist natural homomorphisms Qs : Hi(X) → Hi+rs(X) de-
fined for all infinite loop spaces X and all integers i ≥ 0 that satisfy the following
properties.

(1) Qs(x) = xp if 2s = deg(x) and Qs(x) = 0 if 2s < deg(x)
(2) Qs(φ) = 0 if s > 0 and φ ∈ H0(X) is the identity element
(3) Cartan Formula:

Qs(xy) =

s∑
i=0

Qi(x)Qs−i(y)
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(4) Adem Relations:

QsQt =
∑
i

(−1)s+i
(

(pi− s
s− (p− 1)t− i− 1

)
Qs+t−iQi

if r > ps and

QsδQt =
∑
i

(−1)s+i
(

pi− s
s− (p− 1)t− i

)
δQs+t−iQi

−
∑
i

(−1)s+i
(

pi− s− 1

s− (p− 1)t− i

)
Qs+t−iδQi

if r ≥ ps
(5) Nishida Relations:

P aQs =
∑
i

(−1)a+i

(
a− pi

s(p− 1)− ap+ pi

)
Qs−a+iP i

P aβQs =
∑
i

(−1)a+i

(
a− pi

s(p− 1)− ap+ pi− 1

)
δQs−a+iP i

+
∑
i

(−1)a+i

(
a− pi− 1

s(p− 1)− ap+ pi

)
Qs−a+iP iδ

Proof. See [5], Theorem 1.1. �

The Dyer-Lashof algebra is defined in a similar way to the Steenrod algebra. Let
F be the free associative (but not commutative) algebra over Zp generated by Qs

for s ≥ 0 and βQs for s > 0 where dim(Qs) = rs and dim(βQs) = rs − 1. Then
F acts on H∗(X) for infinite loop spaces X by composition of maps. Let I be the
two-sided ideal of F consisting of all elements f ∈ F for which fx = 0 for all spaces
X and all elements x ∈ H∗(X). Then the Dyer-Lashof algebra R as defined to be
the quotient algebra F/I. It acts on homology groups H∗(X) as before and is itself
acted on by A.

Theorem 4.3. R is a Hopf algebra with coproduct defined on generators by

ψ(Qs) =
∑
i+j=n

Qi ⊗Qs and ψ(βQs+1) =
∑
i+j=n

βQi+1 ⊗Qj +Qi ⊗ βQj+1.

Furthermore, R admits a Zp-basis consisting of elements

βε1Qs1 · · ·βεkQsk

where k ≥ 1, εj is zero or one, sj ≥ εj, sj − εj ≥ sj−1 for each j, and

2s1 − ε1 −
k∑
j=2

(2sj(p− 1)− εj ≥ 0.

Proof. See [5], Theorem 2.3. �
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5. Hopf Rings

In this section, we introduce the notion of a Hopf ring. A Hopf ring is a Hopf
algebra that has two separate multiplication operations, ∗ and ◦. The ∗ operation
will be called the additive product and ◦ the multiplicative product. These oper-
ations must satisfy a variant of the distributive law. Formally, a Hopf ring is a
graded commutative ring object over the category of coalgebras. We proceed first
to define this category.

Let R be a commutative ring. Let D = CoAlgR be the category of graded
cocommutative coalgebras. An object in D is a graded cocommutatative coalgebra
and a map in D is a map of coalgebras.

It can be shown that the tensor product A ⊗ B of two coalgebras A,B is the
categorical product in D . Indeed, the projections are the maps idA⊗εB : A⊗B → A
and εA ⊗ idB : A ⊗ B → B and maps f : C → A and g : C → B induce a map
(f ⊗ g) ◦ φC : C → A⊗B.

In addition, the element R ∈ D is a terminal object. The unique map from an
object A ∈ D is given by εA : A→ R.

We now define what we mean by an abelian object over a given category C . With
this definition, if C is the category of sets, an abelian object over C is the same as an
ordinary abelian group. If C = CoAlgR, an abelian group object over C is the same
as a commutative and cocommutative Hopf algebra. Thus, with this terminology
we should really rename Hopf algebras to Hopf groups. This terminology, however,
is nonstandard so, at the risk of confusion, we proceed with the name Hopf algebra.

Throughout, let C be an arbitrary category with finite products and a terminal
object R.

Definition 5.1. An abelian group object of C is an object X ∈ C together with
maps η : R → X (zero), ∗ : X × X → X (addition) and ξ : X → X (additive
inverse) such that the following diagrams commute:

R×X
p2 //

η×id
��

X

X ×X
∗

;; X ×X ∗ //

p2×p1
��

X

X ×X
∗

;;

X ×X ×X id×∗ //

∗×id
��

X ×X

∗
��

X ×X ∗
// X

X
id×ξ //

��

X ×X

∗
��

R
η
// X

Note that these diagrams give the standard properties of an abelian group. The
first diagram is the additive identity, the second is commutativity, the third asso-
ciativity, and the fourth additive inverses.

The category GC of graded objects of C has as its objects sequences X∗ =
{Xn}n∈Z of objects Xn ∈ C and has maps f∗ : X∗ → Y∗ sequences of maps
fn : Xn → Yn where each fn is a morphism in C .

Definition 5.2. A graded commutative ring object with unit over C is an abelian
group object X∗ ∈ GC (meaning each Xn is an abelian group object) with zero
η = (ηn), addition ∗ = (∗n), and additive inverse ξ = (ξn). It is required to also
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have maps e : R→ X0 (unit) and ◦ij : Xi ×Xj → Xi+j (multiplication) such that
the following diagrams commute:

Xi ×Xj ×Xk
id×◦ //

◦×id
��

Xi ×Xj+k

◦
��

Xi+j ×X ◦
// X

Xi ×Xj
◦ //

p2×p1
��

Xi+j

(ξ)ij

��
Xj ×Xi ◦

// Xi+j

R×Xi
p2 //

e×id
��

Xi

X0 ×Xi

◦

:: R×Xi
p1 //

η×id
��

R

η

��
Xi ×Xj ◦

// Xi+j

Xi ×Xj ×Xj
//

id×∗
��

Xi ×Xi ×Xj ×Xj
// Xi ×Xj ×Xi ×Xj

◦×◦
��

Xi ×Xj ◦
// Xi+j Xi+j ×Xi+j∗

oo

Again, these diagrams give the standard properties of a graded commutative
ring. The first is associativity, the second graded commutativity, the third the
multiplicative unit, the fourth multiplication by zero, and the fifth the distributive
property.

In the case where C is the category of sets, a graded commutative ring object
with unit over C is just a graded commutative ring.

Definition 5.3. A Hopf ring is a graded commutative ring object with unit over
the category of D = CoAlgR of coalgebras.

This definition is rather abstract, so we now summarize its contents. Though
we leave out some detail, the following should convey the main idea behind a Hopf
ring more clearly. A Hopf ring consists of:

• A sequence of Hopf algebras Xn. The product within each Xn is denoted
∗; it is called the additive product.
• A multiplicative product ◦ : Xi ×Xj → Xi+j

• A distributive law

x ◦ (y ∗ z) =
∑

(−1)deg(y) deg(x′′)(x′ ◦ y) ∗ (x′′ ◦ z)

when x ∈ Xi, y, z ∈ Xj and ψ(x) =
∑
x′ ⊗ x′′

Example 5.4. We have already shown that a group ring R[G] is a Hopf algebra,
a group object over the category D . We show that if we replace G by a graded
commutative ring S, the group ring, or “ring ring”, R[S] is a Hopf ring. Since
Sn is, in particular, an abelian group we may define a Hopf algebra structure on
R[Si] is usual and denote the additive product ∗. Then the multiplication structure
Si ×Sj → Si+j on S gives us a multiplicative product ◦ : R[Si]×R[Sj ]→ R[Si+j ].
Since ψ(s) = s⊗ s by definition for all s ∈ S, the distributive law

x ◦ (y ∗ z) =
∑

(−1)deg(y) deg(x′′)(x′ ◦ y) ∗ (x′′ ◦ z)
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is equivalent to the distributive law

x(y + z) = xy + xz

when x, y, z ∈ S are homogeneous. The general distributive law holds for the same
reason when we expand by R-linearity. It can be checked that R[S] satisfies all
additional axioms for a Hopf ring.

Example 5.5. The homology of an E∞ ring space (in particular, QS0 = limn→∞ ΩnSn)
is a Hopf ring. Moreover, the homology of such an E∞ ring space is acted on by
the two Hopf algebras A and R.

6. Exotic Characteristic Classes of Spherical Fibrations

Our goal in this section is to define characteristic classes of spherical fibrations.
We will use much of the algebraic machinery developed up to this point. In the
next section, it will be shown, with some effort, that these exotic classes are all
nonzero. All unproven results may be found in [1].

As before, a spherical fibration is a fibration in which each fiber is homotopy
equivalent to a sphere. Denote by G the structure group and BG the classify-
ing space for spherical fibrations and by SG the structure group and BSG the
classifying space for oriented spherical fibrations. Then SG has the homotopy
type of limn→∞(ΩnSn)1 where (ΩnSn)1 is the space of degree one basepoint-
preserving maps from Sn to itself. Our exotic classes will be defined as elements

ek ∈ Hpkr−1(BSG) modulo some indeterminacy.

6.1. The Algebra A(Y). Recall that the Steenrod algebra A acts on the coho-
mology H∗(X,V ) of any pair (X,V ). To construct the classes ek, we will require
a similar algebra to act on the category of pairs over a fixed space Y . An ob-
ject (X,V, f) in this category is a topological pair (X,V ) together with a map
f : X → Y . A morphism between objects (X,V, f) and (X ′, V ′, f ′) is a map
g : X → X ′ with g(V ) ⊂ V ′ that fits into a commutative diagram as shown.

X
g //

f   

X ′

f ′~~
Y

To define the algebra acting on pairs over Y , we introduce a general construction.
Let R be an algebra over a Hopf algebra A; this means that R is an A-module
such that a(xy) =

∑
(−1)deg(a

′′
i )deg(x)(a′ix)(a′′i y) for all x, y ∈ R where we write

ψ(a) =
∑
a′i⊗ a′′i . Then the semitensor product A(R) is R⊗A given the following

multipication:

(x⊗ a)(y ⊗ b) =
∑

(−1)deg(a
′
i)deg(y)x(a′iy)⊗ a′′i b

This product gives A(R) the structure of a ring.
In particular, if Y is a space, then H∗(Y ) is an algebra over the Steenrod alge-

bra A (indeed, this is how we defined the coproduct on A). We shall denote the
semitensor product A(H∗(Y )) by the simpler notation A(Y ).

It follows that A(Y ) acts on pairs over Y , for if f : X → Y is a continuous map
and V ⊂ X, then H∗(X,Y ) has an A(Y )-module structure defined by (y ⊗ a)x =
f∗(y) ∪ ax for y ∈ H∗(Y ), a ∈ A, and x ∈ H∗(X,V ). Moreover, if g : (X,V, f) →
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(X ′, V ′, f ′) is a morphism of pairs over Y , the map g∗ : H∗(X ′, V ′)→ H∗(X,V ) is
an A(Y )-module homomorphism.

6.2. Twisted Secondary Cohomology Operations (TSCOs). We now define
twisted secondary cohomology operations (TSCOs). Much as secondary operations
are derived from relations in A, twisted secondary operations are derived from
relations in A(Y ). Let

C : C2
d2 // C1

d1 // C0

be a chain complex of free A(Y )-modules. Each Ci is required to be graded and
the maps di must respect the grading. Let

α : Homk
A(Y )(C1, H

∗(X,V )) // Homk
A(Y )(C2, H

∗(X,V ))

β : Homk
A(Y )(C0, H

∗(X,V )) // Homk
A(Y )(C1, H

∗(X,V ))

be the maps induced by d2 and d1 respectively. To clarify notation, note that
an element f ∈ Homk

A(Y )(C1, H
∗(X,V )), for instance, is an A(Y )-module ho-

momorphism f : C1 → H∗(X,V ) that raises degree by k, that is such that
f((C1)i) ⊂ Hi+k(X,V ) for all i.

Now if M and N are R-modules, an additive relation r : M ⇀ N is by definition
a submodule of M ⊕N . Denote submodules

Domain(r) = {m ∈M : (m,n) ∈ r for some n ∈ N} ⊂M
Ind(r) = {n ∈ N : (0, n) ∈ r} ⊂ N

We think of r as a partially-defined function M → N ; in this interpretation,
Domain(r) is its domain of definition and Ind(r) is its indeterminacy. Thus if
m ∈ Domain(r), its image r(m) = {n ∈ N : (m,n) ∈ r} is a subset of N in which
any two elements differ by an element of Ind(r).

Definition 6.1. A twisted secondary cohomology operation (TSCO) is an additive
relation

φ : Homk
A(Y )(C0, H

∗(X,V )) ⇀ Homk−1
A(Y )(C2, H

∗(X,V ))

defined for all k ∈ Z and for all pairs (X,V, f) over Y. It is required to satisfy
Domain(φ) = ker(β) and Ind(φ) = Im(α), as well as several other conditions.

These additional conditions are not relevant here, except that they can be used
to deduce existence and uniqueness in the following way.

Proposition 6.2. (Existence and Uniqueness of TSCOs)
For any chain complex C : C2 → C1 → C0 of free A(Y )-modules, there exists an

associated TSCO φ.
Moreover, if φ0, φ1 are two TSCO’s associated with C, then they differ by a

twisted primary operation. Explicitly, this means that there exists a map d : C2 →
C0 of degree −1 such that Hom(d, 1)(ε) ∈ φ0(ε)− φ1(ε) for each ε ∈ Domain(φ0) =
Domain(φ1).

In addition, the construction of TSCOs is natural.

Proposition 6.3. (Naturality of TSCOs)
Let f : X → Y be a continuous map, CY a chain complex of free A(Y )-modules

and β a corresponding TSCO. Then, letting CX = A(X) ⊗A(Y ) C
Y be the corre-

sponding chain complex of free A(X)-modules, there is a natural isomorphism

γ : HomA(Y )(C
Y
i , H

∗(X,V ))→ HomA(X)(C
X
i , H

∗(X,V ))
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such that α = γβγ−1 is a TSCO associated with CX . Moreover, Ind(α) ⊃ Ind(β)
and Domain(α) ⊂ Domain(β).

6.3. Peterson’s Operation. We develop an example of a TSCO. Let ESG be the
total space of the universal bundle over BSG and let MSG be the corresponding
Thom space. We may think of MSG as the pair (BSG,ESG) over BSG. Let
qi ∈ Hir(BSG) be the ith Wu class of the universal bundle; it is defined by the
equation qiu = P iu ∈ H∗(MSG) where P i ∈ A is a Steenrod operation and
u ∈ Hn(MSG) is the Thom class.

Let θ : A → A(BSG) be the ring homomorphism defined by the relations
θ(Pn) =

∑
i+j=n qi ⊗ P j and θ(δ) = 1 ⊗ δ. It can be shown that this map is

a well-defined injection of Hopf algebras. Therefore, A(BSG) can be made into an
A-module with the multiplication

A⊗A(BSG)
θ⊗id // A(BSG)⊗A(BSG)

φ // A(BSG)

Consider the chain complex

CA : CA2
d2 // CA1

d1 // CA0
of free A-modules where CA0 = A, CA1 has as A-basis the set of elements pi for
i > 0 where dim pi = ir, and CA2 has as a basis the elements ek for k > 0 where
dim ek = pkr. In each of these modules, multiplication by P i raises degree by ir
and multiplication by δ raises degree by 1 as usual. Define the map d1 by the
relation d1(pi) = P i and the map d2 by

d2(ek) =

pk−1∑
i=1

ak,iP
pk−ipi

where
∑pk−1

i=1 ak,iP
pk−iP i = 0 is the Adem relation for P (p−1)pk−1

P p
k−1

.
Taking the tensor product of this complex with A(BSG) over A, we obtain a

free A(BSG) complex CA(BSG). By our above results, this yields a TSCO of the
form

φBSG : Homn
A(BSG)(C

BSG
0 , H∗(X,V )) ⇀ Homn−1

A(BSG)(C
BSG
2 , H∗(X,V ))

defined on pairs (X,V ) over BSG. We will consider, in particular the pair MSG =
(BSG,ESG) of spaces over BSG. Note that

Homn
A(BSG)(C

BSG
0 , H∗(MSG)) ∼= Hn(MSG)

Homn−1
A(BSG)(C

BSG
2 , H∗(MSG)) ∼=

∏
k>0

Hpkr+n−1(MSG)

The first equality follows because CBSG0 = A(BSG)⊗AA ∼= A(BSG) and the second
because Hom(

⊕
−,−) ∼=

∏
Hom(−,−). Thus φBSG can be seen as providing an

additive relation

φBSG : Hn(MSG)→
∏
k>0

Hpkr+n−1(MSG)

We hope to apply φBSG to the Thom class u ∈ Hn(MSG) to obtain well-defined

elements of Hpkr+n−1(MSG) for k > 0.

Proposition 6.4. φBSG(u) is defined and has zero indeterminacy.
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Proof. Consider the diagram

CBSG2

d2 // CBSG1

d1 // A(BSG)
u // H∗(MSG)

Now φBSGu is defined exactly if u ∈ ker(β) or equivalently, if u ◦ d1 = 0. This
occurs if and only if (u ◦ d1)(pm) = 0 for all m > 0. We compute

(u ◦ d1)(pm) = u(Pm) = θ(Pm)u = (
∑

i+j=m

qi ⊗ P j)u

=
∑

i+j=m

q′i ∪ P ju =
∑

i+j=m

q′i ∪ qju = (
∑

i+j=m

q′i ∪ qj) ∪ u = 0

where q′i is the ith Wu class of the Whitney inverse of the universal bundle. This
holds because the map H∗(BSG) → H∗(MSG) = H∗(BSG,ESG) ⊂ H∗(BSG)
maps qi to q′i and the final expression is zero by the Whitney product theorem.
Hence φBSGu is defined.

It can be shown by a similar computation that the indeterminacy is zero.
�

At this point, we would like to use φBSG to define the exotic classes. We
would let e be the unique total class satisfying eu = φBSGu; its components

ek ∈ Hpkr−1(BSG) would be defined modulo a certain indeterminacy from the
choice of the TSCO φBSG. However, this is too imprecise. Two choices of φBSG

may differ by a twisted primary operation, by multiplication by any element of
H∗(BSG). We will require a modification to resolve this difficulty.

6.4. The Definition of Exotic Characteristic Classes. To make our choice of
TSCO more precise, we replace φBSG by a new complex φZ . Let Z = Πi>0K(Zp, ir)
and let q : BSG→ Z be a map corresponding to the total Wu class in H∗(BSG).

We make use of the following lemmas.

Lemma 6.5. There exists a chain complex CZ of free A(Z)-modules such that
CBSG = A(BSG)⊗A(Z) C

Z

Lemma 6.6. Im(q∗) = Zp[qi : i > 0] ⊗ E[δqi : i > 0] where E[−] denotes the
exterior algebra on the indicated generators

We may finally define the exotic classes.

Definition 6.7. Let φZ be a TSCO associated with CZ . Define the total exotic
class e ∈ H∗(BSG)/Im(q∗) by eu = φZu where u ∈ H∗(MSG) is the Thom class.
Let ek denote the (pkr − 1)-dimensional component of e.

This definition makes sense, for φZu = φBSGu for a suitable choice of φBSG by
the naturality of TSCOs, and hence is defined with zero indeterminacy. Any two
choices of φBSG differ by a twisted primary operation over Z. Such an operation
applied to u yields an element in (Im(q∗))u and hence e ∈ H∗(BSG) is well-defined
modulo elements of Im(q∗), the ordinary characteristic classes.

We will use the following result in the next section to show that these charac-
teristic classes are nonzero. It again follows from the naturality of TSCOs.

Proposition 6.8. φAu = φZu if u is any Thom class on which φA is defined.
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Here, φA is obtained from the chain complex CA of free A-modules as an ordinary
secondary operation. Equivalently, CA is a chain complex of free A(Y )-modules
where Y is a point so that φA is an associated TSCO.

7. Nontriviality of Exotic Classes

In this section, we prove that the exotic classes defined above are nontrivial.

Theorem 7.1. There exists a spherical fibration ξ over a space X such that the
operation φA is defined on the Thom class of ξ and such that ek(ξ) 6= 0 for all
k > 0.

Corollary 7.2. The exotic classes ek ∈ Hpkr−1BSG are nonzero modulo Imq∗ for
all k > 0.

In order to define ξ, consider the following diagram for large n.

ΩK2
i2 // E2

p2

��
E1

φAp∗1ιn //

p1

��

K2 = Πi>0K(Zp, n+ rpi − 1)

M

h

OO

t
// Sn

xn

//
x′n

88x′′n

AA

K(Z, n)
ΠP iιn

// K1 = Πi>0K(Zp, n+ ri)

Here xn ∈ Hn(Sn,Z) is a generator of the cohomology group and P iιn ∈
Hn+ir(K(Z, n)) is the Steenrod operation P i ∈ A applied to the fundamental class
ιn ∈ Hn(K(Z, n)). Then E1 = F (ΠP iιn) is the homotopy fiber of the indicated
map. The function (ΠP iιn) ◦xn is nulhomotopic because K1 is n-connected, hence
we obtain a map x′n : Sn → E1 from the fiber sequence such that p1 ◦ x′n ' xn.

To show that φA(p∗1ιn) is well-defined, we must show that p∗1ιn ∈ kerβ or,
equivalently, that the below composition is zero.

CA1
d1 // A

p∗1ιn // H∗(E1)

This is true if and only if P i(p∗1ιn) = p∗1(P iιn) = 0 for i > 0. But this result holds
by the fiber sequence.

Next, E2 = F (φAp∗1ιn) is the homotopy fiber. Again K2 is n-connected, so
φAp∗1ιn ◦ x′n is nulhomotopic, hence we get a map x′′n as shown. Then ΩK2 and i2
are a continuation of the fiber sequence

· · · // ΩK2
i2 // E2

p2 // E1

φAp∗1ιn// K2

and, finally, M is the pullback of i2 and x′′n.
Now ΩE1 is the fiber of t and we have two fiber squares

M

t

��

// PE1

��
Sn

x′n

// E1

ΩnM

Ωnt

��

// ΩnPE1

��
ΩnSn

Ωnx′n

// ΩnE1 '
// Z× Ωn+1K1

where PE1 is the path space of E1.



16 ANDREW BURKE

We note that M is n-connected so that ΩnM is connected and its image under
Ωnt lies in the degree zero component of ΩnSn, which in turn is canonically homo-
topy equivalent to SG. This yields a map ΩnM → SG ' ΩBSG and, by adjunction,
a map ΣΩnM → BSG. Therefore we obtain an orientable spherical fibration ξ on
the space X = ΣΩnM . This is the fibration for which we will prove the theorem.

First, we state two lemmas which will be used later on.

Lemma 7.3. The class [−p2]βQ(p−1)piβQp
i

([1]) ∈ H∗(ΩnSn) is in the image of
the map (Ωnt)∗ : H∗(Ω

nM)→ H∗(Ω
nSn)

The proof uses the Eilenberg-Moore spectral sequence of the fiber sequence
ΩnM → (ΩnSn)0 → Ωn+1K1 from the diagram above.

Lemma 7.4. The fundamental class bi ∈ Hpi+1r−2(ΩnE2) obtained from the Serre
spectral sequence is of the form

(Ωnx′′n)∗([−p2]βQ(p−1)piβQp
i

([1]))

The map Ωnt : ΩnM → ΩnSn has an adjoint t′ : ΣnΩnM → Sn and it is
straightforward to see that the Thom space Tξ is homotopy equivalent to ΣCt′

where Ct′ is the mapping cone of t′. Consider the following commutative diagram

ΩK2
i2 // E2

p2 //

x′′n
��

E1

φAp∗1ιn // K2

M
t //

h

OO

Sn
x′n // E1

v // ΣM

Σh

OO

ΣnΩnM
t′ //

α

OO

Sn
x̃′n // Ct′

v′ //

α′

OO

Σn+1ΩnM

Σα

OO

Each row is a fiber sequence in the stable range.
Our main theorem is equivalent to the component of φA(u) = φZ(u) being

nonzero in each dimension n+ pir− 1. We know that the map (φAp∗1ιn ◦α′)∗ sends
each fundamental cohomology class of K2 to the corresponding class in φA(u) where
u is the Thom class. To prove the theorem, it therefore suffices to show that every
fundamental homology class in K2 is in the image of (φAp∗1ιn ◦ α′)∗. For if a
fundamental class v ∈ H∗(K2) is of the form v = f∗(x) where f = φAp∗1ιn and
x ∈ H∗(Ct′), then

〈f∗(v∗), x〉 = 〈v∗, f∗(x)〉 = 〈v∗, v〉 6= 0

where v∗ ∈ H∗(K2) is the dual of v, hence f∗(v∗) 6= 0.
Using the commutative diagram, we compute

Im((φAp∗1ιn ◦ α′)∗) = Im((Σh ◦ Σα ◦ v′)∗) = Im((Σ(h ◦ α)∗)

where the last equality holds because v′∗ is an isomorphism for large n. Considering
the map Σ(h ◦ α) : ΣnΩnM → ΩK2, we see that Ωnh : ΩnM → Ωn+1K2 is an
adjunction. It hence suffices to prove that the fundamental homology classes of
Ωn+1K2 are in the image of (Ωnh)∗. Consider the commutative square

Ωn+1K2
Ωni2 // ΩnE2

ΩnM

Ωnh

OO

Ωnt
// ΩnSn

Ωnx′′n

OO
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We may now finally apply our two lemmas. The classes bi ∈ Hpi+1r−2(ΩnE2)
are in the image of

(Ωnx′′n ◦ Ωnt)∗ = (Ωni2 ◦ Ωnh)∗

and Ωni2 maps the fundamental classes of H∗(Ω
n+1K2) to the bi, hence these classes

must be in the image of (Ωnh)∗ as was asserted. This proves our theorem and

consequently shows that the exotic classes ek ∈ Hpkr−1BSG are nonzero modulo
Im(q∗) for all k > 0.
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