
THE ELLIPTIC CURVE FACTORIZATION METHOD

RIBHAV BOSE

Abstract. Due to the modern day importance of cybersecurity and encryp-

tion, the question of finding efficient and quick ways of factoring large numbers

is increasingly relevant. In this paper we will discuss two different factorization
methods, Pollard’s p− 1 algorithm and Lenstra’s elliptic curve algorithm. We

will start by going over basic algebra concepts, then introduce number theory

concepts related to working mod n and present Pollard’s p − 1 factorization
method. We will then establish a group structure on elliptic curves, which will

allow us to build on key ideas from Pollard’s method in order to understand

Lenstra’s elliptic curve method of factorization.

Contents

1. Introduction 1
2. Algebra Preliminaries 2
3. Mod n and Factorization 2
4. Introduction to Elliptic Curves 6
5. The Elliptic Curve Factorization Method 8
6. Conclusion and Further Readings 10
Acknowledgements 11
References 11

1. Introduction

The idea of this paper is for readers even with very little prior knowledge of any
algebraic or number theory concepts to be exposed to and understand the theory
behind a few important factorization methods, and also be introduced to a new
mathematical concept in elliptic curves, and showcase their applications.

When finding prime factors of numbers, we know given some number n, if we
check all prime numbers ≤ n, we will have enough information to either find a
factor, or determine that n is prime. However, when n becomes large, performing
such a test is extremely inefficient, leading to the development of faster and more
efficient factorization methods. These large n that are difficult to factor are core
to different encryption methods being used today, and as a result finding ways to
efficiently factor is important to keep our information safe, and develop stronger
encryption methods.

1

2 RIBHAV BOSE

2. Algebra Preliminaries

Before diving into factorization methods, it is important to establish some ground-
work. Here we present algebraic concepts that will be especially relevant throughout
this paper.

Definition 2.1. A group is defined as a set G with an operation, · : G×G→ G
that satisfies the following properties

1. (Closure) For all a, b in G, a · b is also in G
2. (Associativity) For all a, b, c in G, (a · b) · c = a · (b · c)
3. (Identity) There exists an element e in G such that for all a in G, a·e = e·a = a
4. (Inverse) For each a in G, there exists some b in G such that a · b = b · a = e

Definition 2.2. An abelian group is a group that fulfills an additional fifth
property.

5. (Commutativity) For all a, b in G, a · b = b · a

Definition 2.3. Given two groups F and G, with operations + and · respectively,
a group homomorphism is a map between two groups, f : G− > H such that:

1. f(eG) = eH
2. f(g1 + g2) = f(g1) · f(g2)
An isomorphism is a bijective homomorphism.

3. Mod n and Factorization

We will begin our discussion by first talking about the greatest common denom-
inator, or gcd, of two numbers: Given two positive integers a and b, we can find
gcd(a, b) through a procedure known as the Euclidean algorithm.

The procedure is as follows: Without loss of generality, assume a > b. Find
a solution (q1, r1) for the equation a = q1b + r1 where 0 ≤ r1 < b and q1 ≥ 0
from the restriction on r and from the fact that a < b. If r1 = 0, b divides a
and q1 is our greatest common denominator. If not, continue by trying to find
gcd(b, r1) and find solution to the equation b = q2r1 + r2, where 0 ≤ r2 < r1. If
r2 6= 0, we continue, next solving for q3 and r3 where r1 = q3r2 + r3. We continue
similarly until we yield a solution to rk−1 = qk+1rk + rk+1, where rk+1 = 0. A
solution must be reached since each rk is a non-negative integer, and we know
rk+1 < rk < rk−1... < r2 < r1 < b from our restrictions on each rk. This means
there will always a value k where rk+1 = 0. Once this point is reached, gcd(a, b)
= rk. The reason this algorithm works is because gcd(a, b) = gcd(a − b, b) =
gcd(a− q1b, b) = gcd(r1, b) = gcd(r2, r1) = ... = gcd(rk−1, rk).

Example 1. Let a = 318, b = 120. We use the Euclidean algorithm to find gcd(a, b).

312 = 2 · 120 + 78

120 = 1 · 78 + 42

78 = 1 · 42 + 36

42 = 1 · 36 + 6

36 = 6 · 6 + 0

gcd(318, 120) = 6

THE ELLIPTIC CURVE FACTORIZATION METHOD 3

If we find that gcd(a, b) = 1, we say that a and b are relatively prime to each
other. To further our discussion of relatively prime numbers, we will introduce
Bezout’s Identity [2].

Theorem 3.1. (Bezout’s Identity) Given two positive, relatively prime integers
a, b, then there exist integers x and y that yield solutions to the equation

ax + by = 1

Proof. We start by following the process of finding gcd(a, b) using the Euclidean
algorithm, and make a careful rearrangement at each step. We want to show
any remainder ri can be expressed in the form axi + byi. From the first step of
the algorithm, a = q1b + r1, and rearranging we see r1 = a − q1b. In this case,
we have x1 = 1 and y1 = −q1. Similarly from our second step, b = q2r1 + r2,
rearranging yields r2 = −q2r1 + b. Substituting gives us r2 = −q2(a − q1b) + b =
a(−q2)+b(1+q1q2). Here, x2 = −q2 and y2 = 1+q1q2. In general, to find solutions
to the equation ri = axi + byi,

ri = ari−2 + qiri−1

= axi−2 + byi−2 − qi(axi−1 + byi−1)

which we can rearrange to find

ri = a(xi−2 − qixi−1) + b(yi−2 + qiyi−1)

And since this holds true for all ri, in particular ri = 1 by virtue of gcd(a, b) = 1,
we have a solution for our equation. �

Understanding the gcd and this property leads well into the topic of modular
arithmetic. Modular arithmetic is a powerful tool that allows for increased efficiency
in factorization algorithms and makes great use of the properties above.

Definition 3.2. Given integers a, b, and n, with n 6= 0, we say that a ≡ b(mod n)
if a− b is an integer multiple of n.

We call the set [a]n = {z ∈ Z|z = a + kn, k ∈ Z} the congruence class of a
modulo n.

The notation Z/nZ will be used in the future to refer to the set of congruence
classes of integers mod n. We choose one representative per congruence class, and
it is the convention to write Z/nZ = {0, 1, 2...n− 1}.

It is important to note that we can use Z/nZ to form a group:

Theorem 3.3. Z/nZ forms an abelian group over addition modulo n, where addi-
tion modulo n is defined as [a]n + [b]n = [a + b]n

The proof for the above is left as an exercise for the reader. This group structure
will be relevant to our use of operations over mod n, as well as our later applications
over elliptic curves.

As a result, addition modulo n is well defined, and we can similarly perform
subtraction modulo n through the use of additive inverses that exist as part of our
group structure.

When looking at multiplication mod n, we must first establish what it means to
be a multiplicative inverse mod n.

Definition 3.4. Given two integers a and b, we say they are multiplicative in-
verses of each other mod n if ab ≡ 1(mod n).

4 RIBHAV BOSE

Theorem 3.5. Given integers a, s, n, t with gcd(a, n) = 1 and as + nt = 1, then
s is the multiplicative inverse of a.

Proof. Rearranging quickly yields as− 1 = −nt, thus as− 1 is a multiple of n.
as− 1 ≡ 0(mod n) =⇒ as ≡ 1(mod n). �

As a result of this property, if gcd(a, n) 6= 1, we do not have a multiplicative
inverse mod n, and thus we cannot form a group over multiplication. However, we
can still apply multiplication mod n in the form of repeated addition.

Using multiplication mod n, we also find that it is much easier to compute the
value of numbers raised to large powers mod n. To showcase this, if we want to
compute 25(mod 7), we notice 23(mod 7) ≡ 8(mod 7) ≡ 1(mod 7).

Thus 25(mod 7) ≡ (1 · 4)(mod 7) ≡ 4(mod 7).
This technique of quickly calculating powers mod n is known as modular expo-

nentiation.
Division is not well defined for all integers modulo n; however understanding

when we are able to divide mod n and how it is defined in these cases is especially
relevant to the factorization algorithms we will cover later in this paper. The
following theorem gives us some insight into when we can apply division mod n.

Theorem 3.6. Given integers a,b,c,n such that gcd(a,n) = 1 and ab ≡ ac(mod n),
then b ≡ c(mod n).

Proof. Since gcd(a, n) = 1, we can find x, y such that ax+ny = 1. We can multiply
both sides by (b− c) to yield (ab− ac)x + (b− c)ny = (b− c).

From our statement ab ≡ ac(mod n) =⇒ ab− ac ≡ 0(mod n), so (ab− ac) is a
multiple of n, (b − c)ny is also a multiple of n, thus the right side must also be a
multiple of n so b ≡ c(mod n) �

Theorem 3.5 also tells us that integers relatively prime to n will always have
multiplicative inverses mod n. This powerful fact allows us to deal with fractions
mod n.

Given p, q, and n, where q and n are relatively prime, we note that gcd(q, n) = 1
implies that q has a multiplicative inverse mod n. This means we can think of
p
q (mod n) as p · q−1(mod n).

Example 2. 2
3 (mod 11) ≡ 2 · 3−1(mod 11) ≡ 2 · 4(mod 11) ≡ 8(mod 11).

Modular arithmetic also yields two powerful theorems that will be used through-
out this paper.

Theorem 3.7. (Fermat’s Little Theorem)[2] Given a prime number p, and integer
a which is not divisible by p, then ap−1 ≡ 1(mod p)

Proof. Consider set S = 1, 2, 3...p− 1 and function f(x) = ax(mod p) defined for
x ∈ S. We claim that the image of f is exactly S. Suppose for contradiction
there exists some x ∈ S such that f(x) is not in S. Then f(x) ≡ 0(mod p) so
ax ≡ 0(mod p). As a and p are relatively prime, we can divide both sides by a by
Theorem 3.6. This gives us x ≡ 0(mod p) contradicting our statement that x ∈ S.
Therefore f(x) ∈ S for all x ∈ S.

Consider x, y in S. Notice f(x) = f(y) =⇒ ax ≡ ay(mod p), and similarly
divide by a to find x ≡ y(mod p). This gives us the fact that if x 6= y then
f(x) 6= f(y), and therefore f(1), f(2)...f(p− 1) are all distinct elements of S.

THE ELLIPTIC CURVE FACTORIZATION METHOD 5

From here, it follows

1 · 2 · 3... · (p− 1) ≡ f(1) · f(2)... · f(p− 1)(mod p)

≡ (a · 1) · (a · 2)... · (a · (p− 1))(mod p)

≡ ap−1 · (1 · 2... · (p− 1))(mod p)

Again, by virtue of p being prime, gcd(i, p) = 1 for all 1 ≤ i ≤ p− 1, so we can
divide both sides of the above equation by (1 · 2 · 3... · (p− 1)) to yield

1 ≡ ap−1(mod p)

�

Before we jump into the next important theorem, we introduce the definition of
a direct sum, which will be relevant for this theorem.

Definition 3.8. The direct sum,
⊕

, of two commutative groups, (G1,+1) and
(G2,+2) is defined to be the set of ordered pairs formed from elements of G1 and
G2

G1

⊕
G2 = {(g1, g2)|g1 ∈ G1, g2 ∈ G2}

These ordered pairs can be added component wise,

(g11 , g21) + (g12 , g22) = (g11 +1 g12 , g21 +2 g22)

meaning G1

⊕
G2 forms a group with the addition shown above and (eG1

, eG2
) as

the identity element.

Theorem 3.9. (Chinese Remainder Theorem) Let m and n be two relatively prime
integers. If x ≡ a(mod m) and x ≡ b(mod n) then there is one unique solution for
x ≡ c(mod mn).

Another way of expressing this result is that we have Z/(mn)Z ' Z/nZ
⊕

Z/mZ.

Proof. (Existence) With m and n relatively prime, there are integers s and t such
that ms + nt = 1 by Theorem 3.1. Rearranging, we find ms = 1 − nt which
implies ms ≡ 1(mod n). Similarly nt = 1(mod m) We claim if we have y such that
y = ant + bms(mod mn), then x ≡ y(mod mn).

We notice y ≡ ant(mod m) ≡ a(mod m). Additionally, y ≡ bms(mod n) ≡
b(mod n), showing that y fulfills both equations from our theorem statement.

(Uniqueness) If we have another solution x1, then x ≡ x1(mod m), x ≡ x1(mod n)
meaning x − x1 ≡ 0(mod m) and x − x1 ≡ 0(mod n). Since gcd(m,n) = 1,
x− x1 ≡ 0(mod mn) which implies x ≡ x1(mod mn).

(Isomorphism) We define map f : Z/mnZ → Z/mZ
⊕

Z/nZ. This map is a
group homomorphism as f(0) = (0, 0), giving us our identity property, and f(x +
y) = (x+y(mod n), x+y(mod m)) = (x(mod n), x(mod m))+(y(mod n), y(mod m)) =
f(x) + f(y). From the uniqueness proved above, we have injectivity. From having
mn combinations to map to with mn choices mod mn, again due to uniqueness we
have surjectivity. As a result we have an isomorphism. �

Using these tools, we can now introduce Pollard’s p−1 factorization method [2],
which is as follows.

Definition 3.10. We define the p − 1 method as follows: Given some large n to
factor, we can choose some integer a > 1 and some bound B. We desire to compute
aB! which we will call b. If gcd(b− 1, n) > 1, we have a nontrivial factor of n.

6 RIBHAV BOSE

To compute b, we set b1 ≡ a(mod n) and bj ≡ bjj−1(mod n), so that bB ≡
b(mod n).

Example 3. In order to attempt to factor 1403, we can pick a = 2, and start by
selecting B = 4.

24! ≡ 142(mod 1403)

gcd(24! − 1, 1403) = gcd(141, 1403) = 1

For B = 4, the test failed, but if we try B = 5

25! ≡ (24!)5 ≡ 794(mod 1403)

gcd(25! − 1, 1403) = gcd(793, 1403) = 61

Through the algorithm, we have found a nontrivial factor of 1403.

The reason this method works is that if we have some prime factor p of n, where
n = pq, and p − 1 is made up entirely of small primes, then as a result of only
containing small primes there is a good chance p− 1 divides B!.

Thus, b ≡ aB! ≡ a(p−1)∗k(mod p) through p− 1 dividing B!. We can then apply
Fermat’s theorem to see a(p−1)∗k ≡ ap−1 ≡ 1(mod p).

4. Introduction to Elliptic Curves

To understand the workings of the Lenstra’s elliptic curve factorization method,
we must first familiarize ourselves with elliptic curves.

For the sake of this paper, we will only be dealing with curves of characteristic
> 3.

Definition 4.1. An elliptic curve over a field K, E(K) is a curve typically of
the form

y2 = x3 + Ax + B

where E(K) = {(x, y) ∈ K × K|y2 = x3 + Ax + B} ∪ {O} and A,B ∈ K. O is
known as the point infinity, whose importance will be made clear shortly.

The above equation is referred to as the Weierstrass equation. From this
point onward, we will be dealing with elliptic curves of this form.

On an elliptic curve E(K), given two points P1 and P2 on the curve, we are able
to formally define an addition between these two points.

For some visual intuition as to what addition would look like, if we have our
elliptic curve E over the field of real numbers, R, P1 + P2 can be seen through the
image below ([1] pg. 12).

THE ELLIPTIC CURVE FACTORIZATION METHOD 7

Here, P1 + P2 can be thought of as the reflection over the x-axis of the point
of intersection between the line through P1 and P2, and our curve E(R). We now
present a rigorous definition for point addition on elliptic curves.

Definition 4.2. For an elliptic curve over field K, E(K), for points P,Q ∈ E(K),
P = (x1, y1), Q = (x2, y2), we define P + Q as the point (x3, y3) ∈ K ×K ∪ {O}
where x3 = m2−x1−x2 and y3 = −y1 +m(x1−x3) where m is defined as follows:

If P 6= Q, m = (y1 − y2)/(x1 − x2)
If P 6= Q, but x1 = x2, m =∞ and P + Q = O
If P = Q, m = (3x2

1 + A)/2y1
If Q = O, P + O = O + P = P

The source of these formulas can be thought of as follows: If P 6= Q, then we
can draw a line between P and Q with slope m = (y1 − y2)/(x1 − x2), yielding the
line equation y = m(x− x1) + y1. Squaring, we get y2 = (m(x− x1) + y1)2

Setting this equal to our Weierstrass equation for elliptic curves, we find (m(x−
x1) + y1)2 = x3 + Ax + B. Setting the left side to 0, we find

0 = x3 −m2x2 + 2m(y1 −mx1)x + m2x2
1 + y21 − 2mx1y1

Finding the roots of this cubic will yield the intersection points between our line
and our curve, and we already know two solutions, x1 and x2, meaning we are
searching for our third root, xR.

Expanding the expression (x− x1)(x− x2)(x− xR) yields

x3 − (x1 + x2 + xR)x2 + (x1x2 + x1xR + x2xR)x− x1x2xR

Since this cubic must be equal to our prior cubic, we know

m2x = −(x1 + x2 + xR)x

Rearranging gives us xR = m2 − x1 − x2, since the x coordinate value does not
change from flipping over the horizontal axis, thus x3 = xR = m2 − x1 − x2.

Since slope holds constant over a line, we can express m = (yR − y1)/(xR − x1),
rearranging yielding yR = m(xR − x1) + y1. Flipping over the horizontal axis, we
find y3 = −yR = m(x1 − x3)− y1.

In the case where P = Q, we want to find the slope of the tangent line at (x1, y1),
so we can perform implicit differentiation to find our slope.

2y dy
dx = 3x2 + A =⇒ dy

dx = 3x2+A
2y , giving us our m.

Note that when Q = O, the line through P and O is vertical and intersects
E(K) at some point R which is the reflection of P over the x-axis. Reflecting back
over the x-axis to find P + O yields P . This holds true for all P , thus we have an
identity element.

If y1 = 0, we say P + Q = O.
With addition over elliptic curves defined, we can use this notion of addition to

show that an elliptic curve E(K) equipped with addition forms a group.

Theorem 4.3. An elliptic curve over field K with point addition as defined above,
E(K) forms an abelian group.

Proof. To show the existence of an abelian group, we must confirm the 5 properties.
Commutativity: We notice for any 2 points P , Q on E(K), that the line through

P and Q is the same as the line through Q and P. If Q = O, we know P + Q =
Q + P = P .

8 RIBHAV BOSE

Identity: From the properties presented earlier with our O element, we see for
all points P in E(K), P + O = P .

Inverse: Given point P , we can always find the inverse of P , P−1 by reflecting
across the x-axis, so we have an inverse for all P in E(K). P + P−1 = O.

Closure: From our definition of point addition, for points P , Q on E(K), P +Q
must either be a point on the curve y2 = x3 + Ax + B or the point at infinity, O,
giving us closure.

Associativity: There are many methods of proving the associativity of elliptic
curve addition, including projective spaces, Bezout’s theorem, and computation of
the formula themselves. As the proof using the formula derived above becomes
messy and unwieldy, we will forego a formal proof of associativity for this paper. If
you seek such a proof, refer to [1] pg. 21 - 25.

�

From this group structure on elliptic curves, we can make powerful statements
about elliptic curves. Upon deeper exploration and application of these formulae
alongside the behavior of elliptic curve as rings, both of which go beyond the scope
of this paper, we can extend several useful theorems and ideas to elliptic curve over
fields of the form Z/nZ.

In particular, we can extend the Chinese Remainder Theorem to elliptic curves
in the following way:

Theorem 4.4. Given odd integers m and n with gcd(m,n) = 1, let y2 = x3+Ax+B
be the equation for an elliptic curve E. Then, considering E over fields Z/mnZ,
Z/mZ, and Z/nZ, we have a group isomorphism:

(4.5) E(Z/mnZ) ' E(Z/mZ)
⊕

E(Z/nZ).

The reason we have these restrictions on m and n is similar to the reason we
wanted the characteristic of curves not to be 2 or 3, as it causes issues to arise
during computation.

For a proof of the above statement, refer to [1] pg. 67-70.
This extension of the Chinese remainder theorem will later aid in our under-

standing of how and why the elliptic curve factorization method works.

5. The Elliptic Curve Factorization Method

The idea behind this method is drawing a connection between finding an element
that has no multiplicative inverse modn and repeated elliptic curve addition. Recall
from Section 2 our discussion about computing fractions modn that we are unable
to compute the value of a fraction modn if our denominator is non-invertible modn.
Additionally, recall that as part of our addition algorithm over elliptic curves, we
are required to calculate the value of our m term, taking the form of either x2−x1

y2−y1

or 3x2+A
2y , and these computations can only be completed modn if our y2− y1 term

or 2y term are relatively prime to n.
We will now follow the example provided in [1] to showcase how a single elliptic

curve and point pair can find a non-trivial factor, and then introduce the algorithm.

Example 4. We desire to factor 4453. Let elliptic curve E(Z/4453Z) be defined by
the equation y2 = x3 + 10x− 2(mod 4453), and let point P = (1, 3).

THE ELLIPTIC CURVE FACTORIZATION METHOD 9

We first compute 2P . The slope of our tangent line is equal to

3x2 + A

2y
≡ 13

6
≡ 3713(mod 4453)

as we can find 6−1 ≡ 3711(mod 4453). From here we compute 2P

x ≡ 37132 − 2 ≡ 4332, y ≡ (−3713)(x− 1)− 3 ≡ 3230

We now desire to compute 3P = 2P + P . We first start by finding our slope:

3230− 3

4332− 1
=

3227

4331

But from here we find that 4331 has no multiplicative inverse mod 4453, because
gcd(4331, 4453) = 61 6= 1. Thus we have found a factorization for 4453, where
4453 = 61× 73

Using this power of some elliptic curve mod n being able to discern a non-trivial
factor for n, we present Lenstra’s elliptic curve algorithm [3].

Definition 5.1. Lenstra’s elliptic curve factorization algorithm: To attempt
to factor some n, we begin by picking some search limit, C, and generate a set of
around 15 random elliptic curves Ei(Z/nZ) : y2 = x3 + Aix + Bi alongside some
point Pi = (xi, yi) ∈ Ei(Z/nZ).

A method for generating this set of curves is as follows: For each i, choose a
random integer Ai and random pair of integers Pi = (ui, vi) mod n. Then compute
Bi = v2i − u3

i −Aiui, giving us elliptic curve with equation y2 = x3 +Aix+Bi and
point (ui, vi).

From here we attempt to compute C! ∗ Pi for each pair of point and curve. If
the computation fails for some Pi, we have found a non-trivial factor of n. If this
step yields n as the non-trivial factor, generate a new curve and point. If the
computation is successful (i.e. we find the point C! ∗ Pi) we similarly generate a
new curve and point and start over.

We can think of the multiplication required, C! ∗ P , as repeated point addition.
This means that we never need to compute the value of C!, as 2!P = P + P ,
3!P = 2P + 2P + 2P , and we can similarly compute C!P in this way.

Since we are multiplying the point P with many small prime factors during the
process of generating C! ∗ P , this draws a close similarity to Pollard’s algorithm
from section 3. Recall that Pollard’s p − 1 algorithm was most effective when one
of our desired prime factors, p, had p − 1 be composed of small primes. In this
sense, running this factorization test on a single elliptic curve and point pair is
equivalent to Pollard’s method. However, when the p − 1 method fails, there is
no next step, while with Lenstra’s algorithm, we can carry out computations on
multiple curves simultaneously, and generate new curves. As a result of this, we
have a more efficient approach for factoring n along with a higher likelihood of
success.

In order to provide deeper insight as to why this algorithm is able to work effi-
ciently, we will introduce the notion of “smoothness” and Hasse’s theorem (Hasse,
1936).

Definition 5.2. We say some integer n is C-smooth if all the prime factors of n
are less than or equal to C.

10 RIBHAV BOSE

Theorem 5.3. Hasse’s Theorem: Given an elliptic curve E over a finite field Fq,
where q is a power of a prime number, then the order of E(Fq), #E(Fq), satisfies
the following relation:

|q + 1−#E(Fq)| ≤ 2
√
q

For a proof of Hasse’s theorem, refer to [1] pg. 98 - 100. In fact, each integer in
this interval occurs as the order of some elliptic curve over Fq.

If n = pq, from Theorem 4.4, we know

E(Z/nZ) ' E(Z/pZ)
⊕

E(Z/qZ)

This means that in attempting to factor our n, for each elliptic curve we generate
over Z/nZ, we are also implicitly generating curves over Z/pZ and Z/qZ at the same
time, even if we do not know the values of p and q.

This fact allows us to apply Hasse’s theorem, where we know that the order of
points of an elliptic curve over field Fp is in the range [p+1−2

√
p, p+1+2

√
p]. And

in fact, each integer in this interval occurs for some elliptic curve mod n, meaning
if we generate enough curves, their orders will be more uniformly distributed.

In particular, we are looking for integers that are C-smooth in our Hasse interval.
As we increase the size of our C, we also increase the density of C-smooth integers
in the Hasse interval (Note: in the p − 1 algorithm, we relied on the possibility of
p − 1 being C-smooth). As a result, in generating pairs of curves and points, we
increase the chance of the order of one of these curves, Ei, being C-smooth, and in
turn make it more likely for one of these curves to yield us a non-trivial factor of n.

However, as we increase the size of our bound C, we also decrease the efficiency
of our algorithm, as it increases the average amount of computations required per
curve. Each curve computation requires storage, and since we are doing point
addition, requiring data for our x and y, this is more costly than only storing data
for one variable. As a result of this, the algorithm is best suited for factoring
numbers up to 40 to 50 digits long. If we go past this point, the bound C necessary
to generate a high enough density of C-smooth numbers in the Hasse interval slows
down the algorithm to where there are better alternatives.

6. Conclusion and Further Readings

Modern methods of factorization have greatly improved upon earlier methods,
as seen in the difference in efficiency between the p − 1 method and the elliptic
curve method, and as a result there are powerful tools at our disposal to try and
find solutions to the difficult problems we face today related to prime numbers,
cryptography, and encryption. Due to Lenstra’s algorithm not being particularly
efficient for extremely large n, it is used more as an intermediate step in modern
day factorization attempts. For the reader interested in further learning about
factorization methods, both old and new, [2] chapters 6, 7, and 16 offer in-depth
looks into different factorization algorithms and why they work. In particular, these
chapters discuss the quadratic sieve method, which is a core idea in today’s fastest
factorization algorithms. For those interested in learning more about elliptic curves
and their many applications, [1] offers a thorough algebraic establishment of the
properties of elliptic curves, with chapters 5, 6, and 7 providing great information
about their applications to cryptography and primality testing.

THE ELLIPTIC CURVE FACTORIZATION METHOD 11

Acknowledgements

I would like to give a huge thanks to my mentor, Maeve Coates Welsh, for both
inspiring the topic of this paper, and helping me learn and put together all the
information presented here. Constantly providing me with amazing resources, and
taking the time to research and explain gaps in my knowledge, this paper would
not have been possible without her. I would also like to thank Peter May for
putting together the REU even during this pandemic and allowing me this amazing
opportunity.

References

[1] Lawrence C. Washington Elliptic Curve Number Theory and Cryptography Taylor & Francis

Group. 2008
[2] Wade Trappe & Lawrence C. Washington Introduction to Cryptography With Coding Theory

Pearson Education Inc. 2002.

[3] H.W. Lenstra Factoring Integers with Elliptic Curves Math Department, Princeton University,
1987

[4] Mirjam Soeten Hasse’s Theorem on Elliptic Curves University of Groningen. 2013.

