HOMOTOPY TYPES OF SPACES WITH 7 OR FEWER POINTS
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ABSTRACT. This paper classifies the homotopy types of spaces with 7 or fewer

points. Particularly, we find that up to homeomorphism, there exist 25 mini-
mal connected spaces with 7 points.
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1. INTRODUCTION AND BASIC DEFINITIONS

Let X and Y be finite topological spaces. We say that X and Y are homotopy
equivalent if there exist two continuous functions, f : X — Y and g: Y — X, such
that there is a continuous function h : X x [0,1] — Y, where h(z,0) = f(z) and
h(z.1) = g(a).

In this paper, we classify spaces with 7 points or fewer up to homotopy equiva-
lence. First, we establish basic definitions. Then, we discuss the notion of minimal
spaces, and finally, we use reductions to classify homotopy types of spaces with 7
points or fewer.

First, we give some basic definitions about finite spaces.

Definition 1.1. A space consists of a set X and a set, called a topology on X, of
subsets of X, called open, where:

e The empty set and X are open.
e The intersection of finitely many open sets is open.
e The union of open sets is open.

Definition 1.2. Let f be a function mapping the points (elements) of a space X to
a space Y. If, for every open set S € Y, the preimage f~1(S) = {z € X|f(z) € S}
is open in X, we say that f is continuous.

Definition 1.3. In the metric topology of [0,1], a set is open if it can be realized
as the union of open balls {z € [0,1] : @« < x < b} for real numbers a, b.

For the following definitions, Let X and Y be spaces.
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Definition 1.4. In the product topology of X XY, a set is open if it can be realized
as the union of cartesian products of open sets in X and Y.

Definition 1.5. Let f: X — Y and ¢ : X — Y be continuous functions. f and g
are homotopic if there exists a continuous function h : X x [0,1] — Y, such that
h(z,0) = f, and h(z,1) = g.

Definition 1.6. If there exist continuous functions f: X - Y andg:Y — X
such that f o ¢ is homotopic with the identity on X and g o f is homotopic with
the identity on Y, then X and Y are called homotopy equivalent.

It should be clear that homotopy equivalence is an equivalence relation.

2. PROPERTIES OF FINITE SPACES

In this section, we provide definitions and establish useful properties of finite
spaces.

Definition 2.1. Let X be a finite space. Let a and b be points in X. Then, say
a = b if for all open sets S, a € S implies b € S. Further, if a > b, but b 2 a, we
say a > b.

Definition 2.2. If X and Y are finite spaces, and f: X - Y and g: X — Y are
functions such that for all z € X, f(z) > g(x), then we say f > g.

Definition 2.3. Let X be a finite space, and let = be a point in X. We define the
minimum neighborhood of z, denoted U,, as the open set containing x with min-
imum cardinality. Note that U, is also the intersection of all open sets containing
x.

Lemma 2.4. ([1]) Let X and Y be finite spaces and let f: X and g : X be con-
tinuous functions. If f and g are homotopic, then there exists a chain of functions
f1, f2, f3, fa..., fn homotopic to both f and g such that f = f1, g = fn, and for all
1 < 7 < n, etther fz < fi+1 or fz Z fi+1.

In this paper, we will draw finite spaces as directed graphs. Let the set of points
in a space be the vertex set of its graph. Then, draw a directed edge from z to y
if x > y and there does not exist z # x such that x > z > y.

©. ‘ (=)

FIGURE 1. A graph representation of a minimal space.
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Definition 2.5. Let X be a finite space. Let x be a point in X.

o If there exists y > z, y # «, such that for all points z, if z > x, z > y, z is
upbeat with y.

o If there exists y < x, y # x such that for all points z, if z < x, 2 <y, x is
downbeat with y.

e If x is either upbeat or downbeat, it is beat.

Definition 2.6. If a space contains no beat points, we call it minimal.

Observation 2.7. A space X is minimal if and only if in the graph representation
of X, no vertex has an in-degree or out-degree of 1, and there are mo 2-cycles.
This is because any point with in-degree or out-degree 1 is necessarily beat with the
singular point adjacent with it. For example, while the space in figure 1 is minimal,
in figure 2, z1 is upbeat with y; .

Q. ‘ ()
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FIGURE 2. A space where 2 is upbeat with ¥

Theorem 2.8. ([1]) Every finite space is homotopy equivalent to a unique minimal
space.

Proof. Suppose a space X isn’t minimal. Then it contains a beat point. Say it
contains an upbeat point z. Then, there exists a point y > z, y # x, such that
z>x = z2>y. Define f: X — X\ {z} by f(e) =eif e # z, and f(z) = y.
Then, define g : X \ {z} — X by g(e) = e. We have that f o g is equal to, and
therefore homotopic to the identity. Then, define the function h : X x [0,1] = X
by h(z,i) =z if i < 1, and h(x,i) = g o f(z) if i=1. This is a homotopy, since the
preimage of every open set S other than U, under h is S x [0, 1], and the preimage
of U, is U, x [0,1] \ (,1). Thus, X is homotopy equivalent to X \ {z}. A similar
argument proves that if x is a downbeat point, X is homotopy equivalent to X \ x.

Now, we have that every space with beat points is homotopy equivalent to a
space with one fewer beat point. Thus, after a finite number of iterations, any
finite space is homotopy equivalent to a minimal space.

Now, we prove uniqueness. Let X be a minimal finite space. Suppose f : X — X
is homotopic to the identity. We want to show that f is equal to the identity as
well. Note that by Lemma 2.4, it is sufficient to show this for f > id and f < id.
First, suppose f > id. If x is maximal, clearly f(x) = x. Then, inductively suppose
that for some x, for all y > x, f(y) = y. Then, if f(x) # x, then for all y > =z,
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y = f(z). Thus z is beat with f(x), a contradiction. By a similar argument, if
f<id, f=1id.
O
Theorem 2.8 motivates us to count and analyze minimal finite spaces, since clas-
sifying homotopy classes is equivalent to classifying minimal spaces. The following
definitions will be useful for this.

Definition 2.9. Let X be a finite space. Let x be a point in X.

e If there exist no points y such that = > y, x is minimal.
e If there exist no points y such that = < y, x is maximal.

Definition 2.10. Let X be a connected finite space. Let Y be the set of maximal
points in X. Define a subspace, called the reduction of X, and notated r(X), of
vertices of X not in Y. A set S is open on 7(X) if SUY is open in X.

() ()
)

F1GURE 3. The reduction of the space in Figure 1.

3. MINIMAL SPACES WITH FEWER THAN 7 POINTS

Definition 3.1. A space X is connected if there exist no open sets S where the
complement of S is open.

In this section, we describe all minimal spaces with less than 7 points. Note that
any minimal finite space can be expressed as the disjoint union of finite minimal
connected spaces, so in this paper, only the connected spaces are discussed.

There is clearly only one minimal connected space with one point. Note that
the disjoint union of arbitrarily many copies of this space is also minimal. We call
such a space discrete. There are no connected minimal spaces with two or three
points, but there exists one connected minimal space with 4 points. We call this
space the 4-point loop or 4-point circle. (because it is weak homotopy equivalent
to a circle) There exist exactly two minimal connected spaces with 5 points. One
has 3 minimal points and two maximal points, and the other has 2 minimal points
and 3 maximal points.

Lemma 3.2. If a minimal space X has less than 7 points, its reduction is minimal.

Proof. Let X be a minimal space with less than 7 points.
(1) If X has less than 6 points, then r(X) is discrete, so it clearly contains no
beat points.
(2) If X has 6 points, then there is only one space such that r(X) is not discrete,
shown below. The reduction of this space is the 4-point circle.
O
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FIGURE 4. The 6-point space whose reduction is not discrete

Theorem 3.3. ([1]) There exist 7 minimal connected 6-point spaces.

Proof. We classify these spaces by the cardinalities of their reductions.

e If (X) has 2 points: There only exists one space X such that r(X) has
two points. By Lemma 3.2, r(X) is discrete. All 4 other points must be
maximal, and, since X has no beat points, all 4 other points are greater
than both points of r(X).

o If r(X) has 3 points: There exist 4 minimal spaces such that r(X) has 3
minimal points. 7(X) must be the discrete space, by Lemma 3.2. Each
point in 7(X) must be less than at least two of the maximal points, and 0,
1, 2, or 3 can be less than all of the maximal points.

e If r(X) has 4 points: There exist two minimal spaces such that r(X) has
two points: the space where r(X) is the discrete 4 point space, and the
space where r(X) is the 4-point circle.

(]

4. CONNECTED MINIMAL SPACES WITH 7 POINTS

Lemma 4.1. There exist only 2 minimal, connected 7-point spaces such that their
reductions are not minimal.

Proof. Suppose a space X is a minimal, connected 7-point space, such that r(X)
has a beat point.

Case 1: Suppose X has two maximal points. Then, clearly, every point must be
less than both maximal points, so, if a point is beat in r(X), it must be beat in the
original 7 point space. Thus, since X is minimal, r(X) is minimal, a contradiction.

Case 2: Suppose X has 5 maximal points. Then, since every maximal point
must be greater than both minimal points, r(X) is discrete and thus minimal, a
contradiction.

Case 3: Suppose X has 4 maximal points. Clearly, X cannot have 3 minimal
points, since this implies that the r(X) is discrete, and thus has no beat points.
Then, X has two minimal points. Let x be the non-minimal, non-maximal point
in X. Note that every maximal point must be greater than both minimal points.
Otherwise, there must exist a beat point in X. Consider 3 cases.
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(1) x is not greater than either of the minimal points. Then, z is minimal, a
contradiction.

(2) z is greater than one of the two minimal points. Then, z is downbeat with
that point, since the minimal point x is greater than is the only point less
than z.

(3) x is greater than both of the minimal points. Then, either x is maximal, or,
x is less than at least one of the maximal points, y. Then, y is downbeat
with x.

Case 4: Suppose X has 3 maximal points. Call these y1,y2, and y3. Call the 4
non-maximal points x1,xe,x3, and x4. Because r(X) must have a beat point, at
least one point is greater than another, so without loss of generality, say =1 > x5.
Then, because x7 is not downbeat with x5 in X, another point must be less than
x1. Without loss of generality, say x1 > x3. Because x3 is not upbeat with 7 in X,
there exists some maximal point, say y1, such that y; > z3, but y; # ;. Further,
since 1 is neither maximal nor upbeat in X, x1 < y2, and 7 < y3. Then, since ys
and y3 are not downbeat with x1, y2 > x4, and y3 > x4. Note now that if z4 > x4,
and x4 > x3, then r(X) is the 4-point loop, and thus minimal. Further, if x4 is
greater than just one of either x5 and x3, then it is also beat with that point in X.
This leaves only two possibilities, which are shown in the figures below. (]
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FIGURE 5. One of the two 7-point spaces whose reduction isn’t minimal

Theorem 4.2. There exist 25 minimal connected 7 point spaces.

Proof. Again, we classify these spaces using the cardinalities of their reductions.

Claim 1: There exist 4 minimal connected 7 point spaces with two maximal
points. Note that by 4.1, for every 7 point space with two maximal points, r(X) is
minimal. There exist four 5-point minimal spaces: The discrete space, the disjoint
union of 4-point circle and a discrete point, and the two connected 5-point minimal
spaces. Further, for every 5-point minimal space, there exists only one 7-point
connected minimal space with the 5-point space as its reduction. This is because
every maximal point of the 5-point reduction must be less than both maximal points
in the 7-point space.

Claim 2: There exist 12 minimal connected 7 point spaces with 3 maximal points.
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FIGURE 6. The other of the two 7-point spaces whose reduction
isn’t minimal

Claim 2a: There exist 4 minimal connected 7 point spaces X with 3 maximal
points for which r(X) is not discrete. These 4 spaces are the two spaces with non-
minimal reductions described in Lemma 4.1, and the 2 spaces whose reductions are
the 4-point loop. In the first of these spaces, all of 3 of the maximal points are
greater than both of the maximal points of the 4-point loop. In the second space,
one of the maximal points is greater than neither of the maximal points of the
4-point loop, but instead only greater than both of the minimal points.

Claim 2b: There exist 8 connected 7 point spaces X with 3 maximal points
such that 7(X) is the discrete 4 point space. Note that each maximal point must
be greater than at least two minimal points, and each minimal point must be less
than at least two maximal points. There are 8 possible different combinations of
numbers of points the maximal points can be greater than:

(4,4,4),(4,4,3),(4,4,2),(4,3,3),(4,3,2),(4,2,2),(3,3,3),(3,3,2)

In our graph drawing, these values are the out-degrees of the maximal points. For
each possibility, it isn’t very difficult to check that up to homeomorphism, there
only exists 1 corresponding minimal space. For instance, for (3,3,2), since each of
the 4 minimal vertices must be less than at least 2 maximal points, the following
space is the only corresponding minimal space.

FIGURE 7. The 7-point minimal connected space whose reduction
is discrete and whose maximal points are greater than 3, 3, and 2
points.

Claim 3: There exist 8 minimal finite spaces with 4 maximal points. By 4.1, the
reduction of any minimal 7-point space with 4 maximal points must be minimal,
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so it must be discrete. Then, it must have 4 maximal points and 3 minimal points.
By the same argument as Claim 2b, there are 8 such spaces.
Claim 4: There exists 1 minimal finite space with 5 maximal points. This space
has two minimal points, which must be less than every maximal point.
|
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