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Abstract. In this paper, we give an overview on investigations into the
Sperner property of posets and particularly the posets induced by applying
natural orders to Coxeter groups. We first explore an elementary proof of
Sperner’s original theorem using Hall’s matching condition and discuss the lim-
itations of this technique. We will then discuss the development of the stronger
normalized matching condition and normalized flow property and their appli-
cations to the problem of Sperner, and finally review recent applications of
these techniques to the natural orders of Coxeter groups.
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1. Introduction: Sperner’s Theorem

Sperner’s theorem is an elementary theorem in extremal set theory proven by
Emanuel Sperner in 1928. Its statement is as follows:

Theorem 1.1. (Sperner’s Theorem [1]) Let S be a collection of subsets of t1, 2, ...nu
such that for all A,B P S, we have that A Ď B if and only if A “ B. Then,

(1.2) |S| ď

ˆ

n

tn{2u

˙

As it pertains to the study of the Sperner property of general ranked posets, it
will be instructive to consider a proof of Sperner’s theorem using a consideration
of the n-element Boolean algebra Bn as a poset.

Theorem 1.3. (Hall’s Matching Theorem [2]) Let G “ pA \ B,Eq be a bipartite
graph. For anyW Ă A, let NpW q Ă B be the set of vertices in B connected by edges
to vertices in W . That is, b P NpW q if and only if there exists a P W such that
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pa, bq P E. Then, there exists an injective function f : A Ñ B with pa, fpaqq P E
for all a P A if and only if for all W Ď A,

(1.4) |W | ď |NpW q|

The inequality (1.4) is known as Hall’s Matching Condition. To prove Sperner’s
theorem we will need also to define posets and the Boolean Algebra.

Definitions 1.5. A poset is a pair pS,ďq where S is a set and ď is a reflexive,
transitive, and antisymmetric binary relation on S. That is, for all a, b, c P S,
i. a ď b^ b ď a ðñ a “ b
ii. a ď b^ b ď c ùñ a ď c

Given a poset pS,ďq and x, y P S, we write x ă y to say x ď y and x ‰ y. We say
x is covered by y, or x Ì y, if x ă y and there is no z P S such that x ă z ă y. We
call W Ă S a chain if ď is total on W , which means that for every x, y PW , either
x ď y or y ď x. Alternatively, W is called an antichain if there exist no x, y P W
with x ă y.

A poset pS,ďSq is a ranked poset if there exists a rank function r : S Ñ N such
that
i. x ďS y ùñ rpxq ď rpyq
ii. x ÌS y ùñ rpyq “ rpxq ` 1

The pre-image of a singleton set under the rank function r is called a rank.

The Boolean Algebra Bn is the poset pPprnsq,Ďq where Pprnsq is the power set of
t1, 2, ..., nu “ rns. It is a ranked poset with the natural rank function rpW q “ |W |.
A rank r´1pkq is just the set of k-element subsets of rns, of which there are

`

n
k

˘

.
Denoting Rk “ r´1pkq, it follows that for all k,

(1.6) |Rk| “ |Rn´k|

and that

(1.7) |R0| ď |R1| ď ... ď |Rtn{2u| ě |Rtn{2u`1| ě ... ě |Rn´1| ě |Rn|

These properties of Bn are referred to as rank-symmetry (1.6) and rank-unimodality
(1.7). We will use this consideration of Bn as a ranked poset in our proof of
Sperner’s theorem, which can be equivalently stated as follows:

Theorem 1.8. (Sperner’s Theorem) Let S Ď Bn be an antichain. Then,

|S| ď

ˆ

n

tn{2u

˙

Proof. Let R0, R1, ..., Rn be the ranks of Bn. Take k P t1, ..., tn{2u ´ 1u. Let
Gk “ pRk \ Rk`1, Eq where E “ tpX,Y q P Rk ˆ Rk`1 | X Ď Y u. Take S P Rk.
Considered as a vertex in Gk, S must have degree n´ k: there is one edge from S
for every subset of rns size k`1 containing it, and the only way to get such a subset
is to add to S one of the n ´ k elements of rns that it does not already contain.
Similarly, every vertex in Rk`1 has degree k ` 1, where each edge from T P Rk`1

corresponds to taking out one of T ’s elements, of which there are k ` 1.
Take some W Ă Rk. Since every vertex in W has degree n ´ k, there are

|W |pn ´ kq edges between W and NpW q. Since every vertex in NpW q has degree
pk ` 1q, there are |NpW q|pk ` 1q edges between NpW q and Rk. This means that
there are |NpW q|pk`1q´|W |pn´kq edges between NpW q and RkzW . By the initial
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choice of k, k`1 ď pn´kq, so we have that the number of edges between NpW q and
RkzW is less than or equal to pn´ kqp|NpW q| ´ |W |q. Since this number certainly
cannot be negative, it follows that |NpW q| ě |W |, so Hall’s matching condition
applies and there exists matching fk : Rk Ñ Rk`1. It follows then by definition of
Gk that A Ď fkpAq for every A P Rk.

An analogous process can be used to construct matchings fk : Rk`1 Ñ Rk for
k P ttn{2u, ..., n ´ 1u such that fkpAq Ď A. It follows then that for every element
A P Bn, if A is not already of rank tn{2u itself, there exists a composition of
matchings that takes A to some element of rank tn{2u: if A is of rank k, it follows
that

Rtn{2u Q fpAq “

$

’

&

’

%

pftn{2u´1 ˝ ... ˝ fk`1 ˝ fkqpAq k ă tn{2u

pftn{2u ˝ ... ˝ fk´2 ˝ fk´1qpAq k ą tn{2u

A k “ tn{2u

By the construction of the matchings, for every A P Bn, A Ď fpAq or fpAq Ď A.
Furthermore, by injectivity of the matchings and since each matching follows the
edges between ranks of Bn induced by inclusion of sets, fpAq “ fpBq ùñ A Ď B
or B Ď A. Since f is surjective onto Rtn{2u (each element of that rank is its own
image), f determines a partition of Bn into |Rtn{2u| “

`

n
tn{2u

˘

parts, each of which
is a chain. The result then follows immediately from this partition: suppose there
is a set A Ă Bn with |A| ą

`

n
tn{2u

˘

. Then, by the pigeonhole principle, there must
be x, y P A both in the same part. Since this part is a chain, x Ď y or y Ď x, and
since x, y P A, A cannot be an antichain.

�

As becomes clear in the later part of the proof, the bound on |S| given in (1.2)
emerges as the greatest size of all ranks in Bn. Since any rank in a ranked poset
is itself an antichain, it follows that any upper bound on the size of antichains in
a ranked poset must be at least the size of the largest rank. Sperner’s theorem
shows that Bn has the special property that the largest rank is itself an antichain
of maximum size. This property is aptly called the Sperner property. For the same
reason as there is interest in Sperner’s theorem being proven for Bn, so too is there
combinatorial interest in proving other ranked posets are Sperner. Particularly
when a poset has a simple and meaningful rank function, it can be much easier to
count the members of the largest rank (e.g. the number of subsets size tn{2u) than
to otherwise derive the maximal size of any antichain. It is not generally the case
that a ranked poset is Sperner; see figure 1 for an example.

There are two useful generalizations of the Sperner property in the k-Sperner
and strong Sperner properties.

Definition 1.9. A finite ranked poset pS,ďq is k-Sperner for some k P N if for
every choice of k antichains A1, ..., Ak

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1

Rji

ˇ

ˇ

ˇ

ˇ

ˇ

where Rj1 , ..., Rjk are the k ranks of greatest cardinality in S.

Definition 1.10. A finite ranked poset pS,ďq is strong Sperner if it is k-Sperner
for every k.
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Figure 1. The Hasse Diagram of a non-Sperner ranked poset.
The ranks are t1, 2, 3u and t4, 5, 6u, but the largest antichain is
t2, 3, 4, 5, 6u.

A poset is Sperner iff it is 1-Sperner; it follows that a strong Sperner poset is
also Sperner. A result of Erdős shows that Bn is strong Sperner, which in turn
implies Sperner’s theorem.

Theorem 1.11. (Erdős [3]) Bn is strong Sperner.

Both Erdős’s proof and the proof given above of Sperner’s theorem are based
heavily on the fact that vertices in the same rank have the same degree and can
thus be considered analogous to one another. This is a symmetry particular to Bn

that typically does not apply to other ranked posets, nor even to other Sperner or
strong Sperner posets. Approaches such as these are therefore quite limited as to
the scope of posets they can show to be Sperner.

2. Normalized Flow and the Product Theorem

The proof we gave of Sperner’s theorem hinged on showing that the bipartite
graphs between ranks in the Hasse diagram of Bn had matchings and the fact
that Bn is rank-unimodal. In general it follows that any rank-unimodal poset with
matchings between ranks is Sperner. However, showing such a matching directly
can be difficult for more complex posets and there is no obvious way of inductively
combining matchings. In what follows, we will discuss the "normalized flow prop-
erty," a particular form of which is a strengthening of the Sperner property that
facilitates powerful techniques of showing a poset is Sperner through decomposition.

Definition 2.1. A bipartite graph pA\B,Eq with |A| ď |B| is said to satisfy the
normalized matching condition if for all X Ă A,

|X|

|A|
ď
|NpXq|

|B|

This inequality is equivalent to |X| ď |A|
|B| |NpXq|, so with |A| ď |B| this is a

stronger inequality than Hall’s matching condition, |X| ď |NpXq|. Harper showed
further that the normalized matching condition is closely related to the existence
of flows in the graph.
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Definition 2.2. Let G “ pV “ pA \ Bq, Eq be a bipartite graph with a non-
negative real-valued weight function ν : V Ñ Rě0 considered as a measure; that is,
for X Ď V

νpXq :“
ÿ

xPX

νpxq

Then a normalized flow on G is a function f : E Ñ Rě0 with the conditions that
for all a P A,

ÿ

bPNpaq

fpa, bq “
νpaq

νpAq

and similarly for all b P B,
ÿ

aPNpbq

fpa, bq “
νpbq

νpBq

These two notions are closely related by Ford-Fulkerson’s max-flow min-cut the-
orem.

Theorem 2.3. (Max-flow Min-cut Theorem [4]) The maximum flow in a network
is equal to the minimum capacity across all cuts in the network.

Which has a pertinent corollary first mentioned by Harper [5] without proof:

Corollary 2.4. A bipartite graph G “ pV “ A\B,Eq with vertex capacity ν has
a flow of capacity νpAq iff νpXq ď νpNpXqq for all X Ď A.

Proof. Construct a flow network G1 “ pV 1, E1, ωq with V 1 “ ts, tu Y V and E1 “
E Y ptsu ˆAq Y pB ˆ ttuq, and with

ωpx, yq “

$

’

&

’

%

νpyq x “ s

νpxq y “ t

8 otherwise

Since the flow along any edge from s to a P A is determined by the amount of flow
coming out of a, and similarly the flow along any edge to t from b P B is determined
by the flow into b, there is a natural bijection between flows on G and flows on G1
that matches the amount of flow on each edge from A to B. It follows then that
the maximum flow capacity on G1 is the maximum flow capacity on G. Any set of
edges spanning a cut of finite capacity on G1 is determined by a set X Ď A and is
of the form

CpXq “ tps, xq | x P AzXu Y tpy, tq | y P NpXqu

Suppose Cp∅q “ tsu ˆ A is the minimum cut with capacity cpCp∅qq. This is
equivalent to saying that for all X Ď A, cpCpXqq ě cpCp∅qq. By construction of
CpXq and the definition of cut capacity, it follows that

cpCpXqq “ cpCp∅qq `
ÿ

yPNpXq

νpyq ´
ÿ

xPX

νpxq “ cpCp∅qq ` νpNpXqq ´ νpXq

Therefore Cp∅q is the minimal cut iff νpNpXqq ě νpXq for all X Ď A. �

Corollary 2.5. A bipartite graph G “ pA \ B,Eq with vertex capacity ν ” 1 has
a normalized flow iff it satisfies the normalized matching condition.
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Proof. Consider G1 as the same graph as G but with the alternate vertex capacity
function

ν1pxq “

#

1
|A| x P A
1
|B| x P B

Again think of ν1 as a measure in the sense that ν1pXq “ |X|
|A| , ν

1pY q “ |Y |
|B| for

X Ď A, Y Ď B. By Corollary 2.4, G1 has a flow of capacity ν1pAq “ 1 if and
only if ν1pXq ď ν1pNpXqq for every X Ď A. By definition of ν1, this condition is
equivalent to the normalized matching condition on G. Furthermore, a flow on G1
having capacity ν1pAq “ 1 is equivalent to a normalized flow on G with capacity
function ν ” 1: since the maximum flow on G1 has capacity ν1pAq, each vertex
in A must have maximum flow going through it, as must the vertices in B since
ν1pBq “ |B|

|B| “ 1 “ ν1pAq. It follows then that the edge flows in the maximum flow
on G1 follow this condition for all a P A:

ÿ

bPNpaq

fpa, bq “ ν1paq “
1

|A|
“
νpaq

νpAq

and similarly for all b P B,
ÿ

aPNpbq

fpa, bq “ ν1pbq “
1

|B|
“

νpbq

νpBq

which are precisely the conditions defining normalized flow on G. �

The weight function ν ” 1 is of particular interest to the problem of determining
whether a poset is Sperner, as will be shown later. These definitions of normalized
flow and of the normalized matching condition are applied to posets in much the
same way as we applied Halls’ matching condition in the proof of Sperner’s theorem
by applying that property to the subgraph of adjacent ranks in the Hasse diagram.

Definition 2.6. A finite ranked and weighted poset pP,ď, νq is said to have the
normalized flow property (NFP) if every pair of adjacent ranks Rk, Rk`1 considered
as a bipartite graph has a normalized flow with respect to ν.

This brings us to the crucial result in the study of normalized flow on posets,
namely the Product Theorem.

Definition 2.7. Let pP,ďP q, pQ,ďQq be ranked, weighted posets with rank func-
tions rP , rQ and weight functions νP , νQ. Define the product of P and Q, P ˆ Q,
as a poset pP ˆQ,ďq with ď defined as

pp, qq ď pp1, q1q ðñ pp ďP p1q ^ pq ďQ q1q

with a weight function ν : P ˆQÑ Rě0 defined as

νpp, qq “ νP ppqνQpqq

Finally, the rank function for P ˆQ is given by r ” rP ` rQ.

Definition 2.8. Let pP,ď, νq be a ranked weighted poset with ranks R1, ..., Rn

sorted from lowest to highest rank. P is called log-concave or 2-positive if for every
k,

νpRkqνpRk`2q ď νpRk`1q
2
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Figure 2. The product of Sperner posets is not necessarily
Sperner. Both tA,B,C,D,Eu (left) and tP,Q,R, S, T u (middle)
are strong Sperner under their respective partial orders, but their
product (right) is not Sperner: its largest rank isR1 with |R1| “ 12,
but pR1ztpD,Rquq Y tpA,Rq, pB,Rqu is an antichain size 13.

Theorem 2.9. (Product Theorem) Let P,Q be two ranked, weighted, log-concave
posets with the normalized flow property. Then, P ˆ Q is a ranked, weighted, log-
concave poset with the normalized flow property.

Proof. See Harper [5]. �

3. Applications of NFP to Sperner Theory

The Product Theorem yields a way in which NFP posets can be combined and
thus considered in an inductive way which does not otherwise apply to Sperner
posets: it is not generally true that the product of Sperner or even strong Sperner
posets is Sperner (see Figure 2). The crux of this consideration is that, as Harper
proved, the Sperner property follows from a particular form of NFP.

Theorem 3.1. (Generalized Sperner’s Theorem) Let pP,ď, νq be a ranked weighted
poset with NFP. Define a Sperner weight of order k as a function ωk : P Ñ Rě0

with the following properties:
(i) ωkpxq ď νpxq for all x P P .
(ii) For every chain C Ă P ,

ÿ

xPC

ωkpxq

νpxq
ď k

And as usual, ωk is considered as a measure with ωkpSq “
ř

sPS ωkpsq. Then, the
supremum of ωkpP q over all k-order Sperner weights ωk is less than or equal to the
weight of the k largest ranks in P. That is,

(3.2) sup
ωk

ωkpP q ď max
|I|“k

ÿ

iPI

νpRiq

Proof. See Harper [5]. �
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Corollary 3.3. Let pP,ď, νq be a ranked poset with weight function ν ” 1. If P
has NFP, then P is strong Sperner.

Proof. Take some k P N. Let A1, ..., Ak Ă P be antichains. Define the function

ωkpxq “

#

1 x P
Ťk

i“1Ai

0 otherwise

This ωk is a k-order Sperner weight: ωkpxq ď 1 “ νpxq for all x. Any chain C can
only intersect any antichain A at most once, so it follows that

ÿ

xPC

ωkpxq

νpxq
“

ÿ

xPC

ωkpxq “ |C X pA1 Y ...YAkq | ď k

Since ωk is a Sperner weight and P has NFP, the bound provided by the generalized
Sperner theorem applies, which implies

max
|I|“k

ÿ

iPI

|Ri| ě ωkpP q “ |A1 Y ...YAk|

That is, the size of the k biggest ranks is at least the size of the choice of antichains
A1, ..., Ak. Since this was a general choice of antichains, P is k-Sperner by definition.
Since this was a general choice of k, P is strong Sperner by definition. �

This result combines quite powerfully with the Product Theorem since it takes
ν ” 1; since the weight function of the product poset is the product of its factor
posets’ weight functions, a product of two log-concave NFP posets with ν ” 1 will
itself be a log-concave NFP poset with ν ” 1 and will therefore be strong Sperner.
This means that if one knows two posets are Sperner particularly because it has NFP
with ν ” 1, posets of that type can be inductively combined to study more complex
classes of poset. Two of the simplest posets that are deployed in this sort of study
are chains and claws. A chain poset is essentially how we described them before:
a poset whose order is total, i.e. a poset ptx1, ..., xnu,ďq with x1 ď x2 ď ... ď xn.
Denote such a chain poset as Cn. A claw poset, on the other hand, is a poset of form
ptx1, ..., xnu,ďu where x1 ď xi for all i ě 2, and all other xi, xj are incomparable.
Each of these can be used as factors for more complex posets.

Example 3.4. To demonstrate the power of the Product Theorem, we here employ
it to write a much more succinct proof of the fact that Bn is strong Sperner.

Proof. Represent C2 as pt0, 1u,ďq with 0 ď 1. There is an isomorphism of posets
f : C n

2 Ñ Bn defined by fpa1, ..., anq “ ti P rns | ai “ 1u. Since Bn is isomorphic
to a product of chains, it has normalized flow with ν ” 1 and is strong Sperner. �

Example 3.5. Define the lattice of factors L pnq for n P N as a poset pS,ďq where
S “ tm P N | m|nu and a ď b ðñ a|b. The lattice of factors L pnq is strong
Sperner for all n P N.

Proof. The number n has unique prime factorization n “
śk

i“1 p
ai
i . For every

x, y P L pnq, x and y their own prime decompositions x “
śk

i“1 p
xi
i , y “

śk
i“1 p

yi

i

and from this follows the fact x ď y if and only if xi ď yi for all i. Represent each
Cn as having the set t1, ..., nu and the usual ď relation of the natural numbers.
There is then a natural isomorphism of posets f : L pnq Ñ

Śk
i“1 Cai defined by

f ppx1
1 p

x2
2 ...p

xk

k q “ px1, x2, ..., xkq
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xn

xn´1

OO

...

OO

x2

OO

x1

OO

(a) Chain poset Cn.

x2 x3 x4 . . . xn

x1

hh aa OO 66

(b) Claw poset Cn.

Since L pnq is isomorphic to a product of chains, it has NFP with ν ” 1 and is
strong Sperner. �

This ability to combine NFP posets inductively proves extremely powerful, and
it is because of this capacity for inductive combination that Harper writes "if the
analogue of Sperner’s theorem were to be proven for any infinite family of posets,
it would almost have to follow from NFP" [6]. In the following, we will review a
recent result that has used NFP decomposition to prove the Sperner property for
posets that have not been proven Sperner in any other way.

4. The Prefix Order on Coxeter Groups

Definition 4.1. A Coxeter group is a group defined by the presentation

〈r1, ..., rn | prirjqmij “ 1〉
where mii “ 1 and mij ě 2 for i ‰ j.

For finite Coxeter groups, this definition generalizes the notion of the symmetry
group of a regular polytope, and every finite coxeter group is precisely the symmetry
group of some regular polytope. There are four infinite classes of Coxeter group,
denoted An, Bn, Dn, and I2pnq. The groups An – Sn are the symmetries of the
n-simplices, the groups Bn are the symmetry groups of the n-cubes, the Dn groups
are those of the n-demicubes, and the I2pnq – D2n are the symmetry groups of
regular polygons. Apart from these 4 classes there are only finitely many finite
Coxeter groups, called the exceptional groups.

Since each symmetry group is generated by its reflections, there is a natural
consideration of a "length" of each element in terms of the reflections, particularly
how many reflections it takes to express that element as a product. Furthermore,
there is a notion of comparability where two symmetries can be closely related by
reflections, each being the product of the other with a reflection. We formalize
these notions below:

Definition 4.2. Let G be a Coxeter group with T Ă G the set of reflections
(elements conjugate to simple reflections). The absolute length of an element x P G,
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denoted lT pxq, is defined as the least number of reflections in T it takes to express
x as a product.

With this notion of absolute length, the relationship of two symmetries being
one reflection away from each other can be further specified into a partial order,
where the shorter of the two symmetries is less than the longer.

Definition 4.3. Let G be a Coxeter group with reflection T . The prefix order or
equivalently the absolute order, denoted ď, is defined as follows:

a ď b ðñ lT pa
´1bq ` lT paq “ lT pbq

It follows from this definition that a ď b iff there is a shortest possible represen-
tation of b as a product of reflections that contains a representation of a as a prefix.
That is, a ď b iff there exists reflections r1, ..., rlT pbq such that b “ r1r2...rlT pbq and
a “ r1r2...rlT paq.

Figure 4. A Hasse diagram for Coxeter Group A3 under the ab-
solute order.

The Hasse diagrams given by this order on Coxeter groups typically lack much
of the symmetry that was used to show that Bn was Sperner and strong Sperner.
In particular, the rank graphs are often not biregular; this can be seen in Figure 4
where in rank 1 the rightmost vertex has more outward edges than the vertex to
its left. There is also no single element of highest rank in A3, meaning it cannot
be a product of chains. In fact, the arguments used to show that these orders are
Sperner do not use a direct isomorphism at all, but rather use an embedding of
NFP constructions as spanning subposets.

Definition 4.4. Let P “ pS,ďq be a ranked poset with rank function r : S Ñ N.
A poset P 1 “ pS,ĺq defined on the same vertex set S is a spanning subposet if
x ĺ y ùñ x ď y and if r is still a rank function on P 1.

Lemma 4.5. Let P “ pS,ďq be a ranked poset and let P 1 “ pS,ĺq be a spanning
subposet of P . Then, if P 1 has NFP with respect to some ν, then P also has NFP
with respect to that same ν.
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The following proof elaborates on an idea first mentioned by Gaetz and Gao [9].

Proof. Let Rk, Rk`1 be adjacent ranks in P . Since P 1 has the same ranks as P ,
these ranks have a normalized flow with respect to ν ” 1 along the edges determined
by ĺ. Since a ĺ b ùñ a ď b, all of the edges between Rk, Rk`1 as ranks of P 1
are also there between them as ranks of P . There is therefore a normalized flow
between Rk, Rk`1 as ranks of P constructed by taking the flow between them as
ranks of P 1 and assigning zero flow to all extra edges introduced by expanding to
P . Since any two ranks of P have normalized flow, P has NFP by definition. �

This lemma underlies the final step to the following theorems:

Theorem 4.6. [8] Coxeter groups of classes An and Bn have NFP with respect to
ν ” 1 and are strong Sperner.

Theorem 4.7. [9] Coxeter groups of class I2pnq have normalized flow with respect
to ν ” 1 and are strong Sperner.

Gaetz and Gao also verified by computer search that all of the exceptional group
types have NFP as well. The arguments for the non-exceptional cases all operated
on the same principle of embedding products of claws Cn (with aptly chosen n
values) as spanning subposets into the Coxeter poset.

Figure 5. The Hasse diagram of C2 ˆ C3 ˆ C4. This has NFP by
the Product Theorem and is a spanning subposet of A3 (see Figure
4).

Whether or not the Dn groups are Sperner and/or have NFP is still open. Gaetz
and Gao verified that Dn has NFP for n ď 8 by computer search and conjectured
the Dn groups do have NFP in general, but showed that there is product of claws
isomorphic to a spanning subposet of Dn.

5. Conclusion

In the preceding we have attempted to show the power that NFP and the product
theorem have in trying to answer these combinatorial questions. There are still
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many problems yet to be approached with this technique; we lay out a few possible
routes based on the preceding discussion.

Question 5.1. Do the Dn groups have NFP? Is there some product of chains and
claws that embeds as a spanning subposet?

Question 5.2. For what other kinds of groups does the notion of generator word
length and prefix order apply? Do the posets induced by those orders have NFP?
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