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Abstract. The purpose of this article is to develop the method of forcing

and explain how it can be used to produce independence results. We first
remind the reader of some basic set theory and model theory, which will then

allow us to develop the logical groundwork needed in order to ensure that

forcing constructions can in fact provide proper independence results. Next,
we develop the basics of forcing, in particular detailing the construction of

generic extensions of models of ZFC and proving that those extensions are

themselves models of ZFC. Finally, we use the forcing notions Cκ and Kα to
prove that the Continuum Hypothesis is independent from ZFC.
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The Continuum Hypothesis (CH) is the assertion that there are no cardinalities
strictly in between that of the natural numbers and that of the reals, or more for-
mally, 2ℵ0 = ℵ1. In 1940, Kurt Gödel showed that both the Axiom of Choice and
the Continuum Hypothesis are relatively consistent with the axioms of ZF ; he did
this by constructing a so-called inner model L of the universe of sets V such that
(L,∈) is a (class-sized) model of ZFC + CH. And in 1963, Paul Cohen shocked
the mathematical world with his discovery of the method of forcing, whereby he
was able to prove that the negation of the Continuum Hypothesis is also rela-
tively consistent with ZFC. Combined with Gödel’s earlier work, this means that
Con(ZFC)→ Con(ZFC +CH) and Con(ZFC)→ Con(ZFC +¬CH) both hold,
which in turn means that the Continuum Hypothesis is logically independent from
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ZFC set theory (unless ZFC is inconsistent). This is significant because essen-
tially all of ordinary mathematics is conducted within ZFC; in order to make the
Continuum Hypothesis true or false, then, we should have to add it or its negation
to our list of axioms.

Working in ZFC, one can use forcing to show that whenever (M,∈) is a count-
able transitive model of an arbitrary finite collection of axioms of ZFC (called a
finite fragment, denoted ZFC∗), then one can carefully choose another set G and so
build a new model M [G] containing M such that (M [G],∈) models ZFC∗+¬CH.
One can also use forcing to prove that for a different G, M [G] is a model of
ZFC∗ + CH. Together, these arguments are actually sufficient for proving both
Con(ZFC) → Con(ZFC + ¬CH) and Con(ZFC) → Con(ZFC + CH). In this
paper, we (i) remind the reader of the basic results in logic needed in order to un-
derstand why the form of argument outlined above is sufficient for proving that the
Continuum Hypothesis is independent from ZFC; (ii) justify the existence of count-
able transitive models of arbitrarily large finite fragments of ZFC; and (iii) develop
the basic theory of forcing and show how it can be used to extend any countable
transitive model M of a finite fragment ZFC∗ to a model of ZFC∗ + CH and to
a model of ZFC∗ + ¬CH. Our development closely follows those of Halbeisen [2]
and Kunen [4].

1. Preliminaries

1.1. Set Theory. The language L of set theory consists of a single symbol “ε,”
which is used to denote the binary relation of set membership. In this paper,
lowercase Greek letters such as “ϕ,” “ψ,” etc. will always denote formulas of set
theory.

We assume that the reader is familiar with the axioms and basic results of ZFC
set theory, as can be found in [3]. In particular, the reader should feel comfortable
with transfinite recursion, with the basic theory of ordinals and cardinals, and with
the most common uses of the Axiom of Foundation. For matters of convenience,
we post an informal account of the axioms of ZFC below:

Axiom 1.1 (Extensionality). For all sets x and y, if x and y possess precisely the
same members, then x = y.

Axiom 1.2 (Foundation). Every non-empty set x has a member y such that the
intersection of x and y is empty.

Axiom 1.3 (Axiom Schema of Comprehension). For each set x and each formula
ϕ without y free, there exists a set y such that for all sets z, z ∈ y if and only if
z ∈ x and ϕ(z) both hold.

Axiom 1.4 (Pairing). For every pair of sets x and y, there exists a set z such that
x ∈ z and y ∈ z.

Axiom 1.5 (Union). For every set x there exists a set y such that every member
of x is a subset of y.

Axiom 1.6 (Replacement Schema). Let ϕ be a formula such that x and y are free
and B is not. If A is a set such that for each x ∈ A, there is a unique y satisfying
ϕ(x, y), then there exists a set B containing each such y.

Axiom 1.7 (Infinity). There exists a set x with ∅ ∈ x and such that {y} ∪ y ∈ x
whenever y ∈ x.
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Axiom 1.8 (Power Set). For every set x, there exists a set y such that every subset
of x is a member of y.

Axiom 1.9 (Axiom of Choice). The cartesian product of a non-empty collection
of non-empty sets is non-empty. Equivalently, if X is a non-empty collection of
non-empty sets, then there exists a function f with domain X such that for each
y ∈ X, f(y) ∈ y.

1.2. Model Theory. We also assume that the reader is familiar with the funda-
mental definitions and results of first-order logic and model theory (as can be found
in [1] and [4]), but remind her of the main theorems that will be needed.

Theorem 1.1 (Completeness of First-Order Logic). Let T be a collection of sen-
tences written in a first-order (F.O.) language L. Then T is consistent if and only
if T has a set model.

Given Theorem 1.1, we can now explain why Con(ZFC) → Con(ZFC + CH)
and Con(ZFC) → Con(ZFC + ¬CH) together show that CH is independent
from ZFC. If ZFC is inconsistent, then ZFC proves every F.O. sentence in the
language of set theory, including both CH and ¬CH. We need not bother with
this degenerate case, so assume that ZFC is consistent, and then suppose that
CH is provable within ZFC. Combined with Con(ZFC) → Con(ZFC + ¬CH),
Theorem 1.1 gives that there is a model M of ZFC+¬CH. Since M is in particular
a model of ZFC, we can (by assumption) prove CH within M . But then CH and
¬CH both hold in M , and this is impossible. A completely analogous argument
shows that ¬CH cannot be proved within ZFC if ZFC is consistent, so that CH
is independent from ZFC.

The following remarks are aimed at clarifying some meta-points and at further
justiyfing the specific line of argument that will be employed. Standard model
theory is developed in V , where for our purposes, “∈” will always be interpreted
as the real set membership relation. We of course take the axioms of ZFC to hold
for (V,∈), and by Tarski’s Definability Theorem, the satisfaction relation “|=” is
formalizable within ZFC as a relation between sets. Hence, if U is a set model
and ϕ is a first-order sentence, then the new sentence “U |= ϕ” is realizable as
a corresponding statement in the language of set theory. However, by Tarski’s
Undefinability Theorem, when B is a proper class, there is no general method for
formalizing “B satisfies ϕ” in ZFC as a set relation. Because of this, there is no
way to write “(V,∈) |= ZFC” in ZFC, so the statement “the axioms of ZFC hold
in V ” must be viewed as a collection of statements in the meta-theory. This point
is closely related to Gödel’s Second Incompleteness Theorem, which tells us that
ZFC is unable to prove its own consistency in the first place:

Theorem 1.2 (Gödel’s Second Incompleteness Theoem). Let T be a first-order
theory that contains Peano Arithmetic and whose collection of axioms is recur-
sively enumerable. Then T is able to prove its own consistency if and only if it is
inconsistent.

Theorem 1.2 explains why, when working in ZFC, we cannot pass to set models
of ZFC. However, as we shall soon see, ZFC is capable of proving the existence
of “nicely-behaving” set models of arbitrarily large finite fragments of ZFC.

We will make use of one more theorem in the course of our exposition:
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Theorem 1.3 (Downward Löwenheim-Skolem-Tarski Theorem). Let M be a model
of some first-order language L, and let the domain of M be M . Then for any subset
S ⊆ M , there exists an elementary substructure N 4M with domain N such that
S ⊆ N and |N | = |S|+ |L|.

In particular, if |S| = ℵ0 and L is at most countable, then we can find a countable
elementary substructure of M.

Finally, we make some simplifying remarks. A set model of a finite fragment
of ZFC is typically denoted by the pair (M,E), where M is a set and E is an
interpretation of the symbol “∈” on M . However, our development will soon show
that we need only concern ourselves with models of form (M,∈), where “∈” is
the real set relation in V . In all future instances, then, “M |= ZFC∗” will just
mean “(M,∈) |= ZFC∗.” Furthermore, we note that the logical symbols “∨,” “→,”
“ ⇐⇒ ,” and “∀” can be defined in terms of the symbols “∧,” “¬,” and “∃.” In
order to simplify our work, then, we will refer only to the latter three symbols when
writing definitions or proving results that rely on a recursion on the complexity of
formulae.

2. The Logical Justification for Forcing

In this section, we develop the machinery needed in order to ensure that forcing
constructions can indeed be used to provide proper independence results.

2.1. The Reflection Principle. As we mentioned before, ZFC cannot prove the
existence of a set model of itself (unless it is inconsistent). However, ZFC is capable
of proving the existence of set models of arbitrarily large finite fragments of ZFC;
this is known as the Reflection Principle. As it turns out, this will be sufficient
for our purposes. In this subsection, we prove the general form of the Reflection
Principle; in the next subsection, we combine this result with the Mostowski Col-
lapsing Theorem, which will allow us to pass to “nice” models of arbitrarily large
finite fragments of ZFC.

Before proving the Reflection Theorem, we shall need some additional definitions,
and eventually, a lemma.

Definition 2.1 (Relativization). Let M be a class and let ϕ be a formula of set
theory. We define the relativization of ϕ to M by recursion on the following scheme:

(x = y)M := x = y,

(x ∈ y)M := x ∈ y,

(φ1 ∧ φ2)M := φM1 ∧ φM2 ,

(¬ϕ)M := ¬ϕM ,

(∃x : ϕ)M := ∃x ∈M(ϕM ).

Definition 2.2 (Absoluteness). Let M be a subclass of N , and let ϕ(x1, . . . , xn)
be a formula with free variables among those listed. Then we say that ϕ is absolute
in M , N , written M 4ϕ N , if and only if ϕM (x1, . . . , xn) and ϕN (x1, . . . , xn) hold
for precisely the same tuples (x1, . . . , xn) of sets.
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Note that for all tuples (x1, . . . , xn) of sets, ϕV (x1, . . . , xn) means the same
thing as ϕ(x1, . . . , xn). When N = V , then, ϕ is absolute in M,V just in case
ϕM (x1, . . . , xn) holds for precisely the same tuples as ϕ(x1, . . . , xn) does. In this
case, we simply say that ϕ is absolute in M .

Definition 2.3. A set Λ of formulas
{
ϕ1, . . . , ϕn

}
is subformula-closed if and only

if every subformula of each ϕi is in Λ, and if additionally no ϕi ∈ Λ makes use of
the universal quantifier “∀”.

Using these definitions, we can now state the lemma that will aid us in the proof
of the Reflection Principle:

Lemma 2.4. Let
{
ϕ1, . . . , ϕn

}
be subformula-closed, and let A be a non-empty

subclass of B. Then the following statements are equivalent:

(1) A 4ϕi B holds for i = 1, . . . , n.
(2) For all existential formulae ϕi(x1, . . . , xri) of form “∃yϕj(~x, y)” and for all

tuples (a1, . . . , ari) of sets in A, ϕBi (~a) implies that there exists a b ∈ A
satisfying ϕBj (~a, b).

Proof. (1) → (2): Let ϕi be an existential formula from the given collection, and
suppose that ϕBi (~a) holds for some a1, . . . , ari ∈ A. By assumption, then, ϕAi (~a)
holds. With

{
ϕ1, . . . , ϕn

}
subformula-closed, this means that for some j, there

exists a b ∈ A for which ϕAj (~a, b) holds. Applying (1) to ϕj(~a, b), we obtain ϕBj (~a, b).
Again, with b ∈ A, the desired conclusion follows.

(2) → (1): We will prove that A 4ϕi B holds for each ϕi by induction on the
complexity of each such formula. For atomic ϕi, the result is trivial. Now, fix
a formula ϕi, and suppose that we have proved A 4ϕj B for each ϕj of length
shorter than ϕi. If ϕi is constructed from shorter ϕj ’s by means of “¬” or “∧,”
then the result is again trivial. Now, suppose that ϕi(~x) is of form “∃yϕj(~x, y).”
Fix a1, . . . , ari ∈ A. From (2) and the meaning of ϕBi , it follows that ϕBi (~a) holds
if and only if there exists a b ∈ A satisfying ϕBj (~a, b). By the induction hypothesis

together with A ⊆ B, it follows that ϕBj (~a, b) holds just when ϕAj (~a, b) does. Since
ϕi ≡ ∃yϕj , the desired conclusion follows.

�

It is important to note that Theorem 2.4 is a scheme of theorems in the metathe-
ory: Given formulae ψA and ψB that “define” the classes A and B, if ψA(x) implies
ψB(x) for all sets x ∈ V , then the above result is a theorem of ZFC. Using this
theorem scheme, we can now prove the main result of this subsection:

Theorem 2.5 (The Reflection Principle). Let {ϕ1, . . . , ϕn} be a collection of for-
mulae, let B be a nonempty class, and assume that Aε is a set for every ε ∈ Ω.
Furthermore, suppose that the following conditions hold:

(1) If ε < η, then Aε ⊆ Aη.
(2) Aη =

⋃
ε<η Aη for limit ordinals η.

(3) B =
⋃
ε∈ΩAε.

Then for every ordinal ε, there exists a limit ordinal η > ε such that Aη is
nonempty and Aη 4ϕi B for i = 1, . . . , n.

Proof. We may produce a subformula-closed list from
{
ϕ1, . . . , ϕn

}
in the following

fashion. For each ϕi, replace every instance of a universal quantifier “∀” by the



6 F. CURTIS MASON

equivalent “¬∃¬”; call the (possibly) new formula ψi. Then add the necessary
subformulae to the end of the new list in order to make it subformula-closed. Let{
ψ1, . . . , ψm

}
denote the subformula-closed list obtained in this way, where m ≥ n.

If we can prove that the result holds for
{
ψ1, . . . , ψm

}
, then it will also hold for{

ϕ1, . . . , ϕn
}

.
We will define several collections of functions in quick succession, each new col-

lection being defined in terms of the last. For each ψi( ~xri) of form ∃yψj( ~xri , y),
define Fi : Bri → Ω as follows: For ~a ∈ Bri , if ψBi (~a), then Fi(~a) is the least ε ∈ Ω
such that ψBj (~a, b) holds for some b ∈ Aε; if ψBi (~a) fails, then set Fi(~a) = 0. Now,

for each i, define Gi : Ω → Ω by Gi(ε) = sup
{
Fi(a1, . . . , ari) | a1, . . . , ari ∈ Aε

}
if φi is existential; otherwise, set Gi(ε) = 0. Finally, define K : Ω → Ω by setting
K(ε) to be the larger of ε and max

{
Gi(ε) | i ≤ n

}
.

Now, fix some ε ∈ Ω. Define the sequence
{
ζk | k ∈ ω

}
by letting ζ0 be

the smallest ζ > ε such that Aζ is nonempty and then letting ζk+1 = K(ζk) for
k ∈ ω. Let η = sup

{
ζk | k ∈ ω

}
. Then η is a limit ordinal for which Aη 6= ∅.

Furthermore, (2) of Lemma 2.4 holds for Aη, B and
{
ψ1, . . . , ψm

}
: Let ψi( ~xri) be

an existential formula of form “∃yψj( ~xri , y),” and suppose that a1, . . . , ari ∈ Aη
are such that ψBi (~a) holds. Since ri is finite, there must exist a q ∈ ω such that
a1, . . . , ari ∈ Aζq+1 . By our previous definitions, ζq+1 ≥ Gi(ζq) ≥ Fi(a1, . . . , ari).

By definition of Fi, then, there must exist a b ∈ A(ζq) such that ψBi (~a, b) holds.
With existential ψi and a1, . . . , ari ∈ Aη held arbitary, Lemma 2.4 shows that
Aη 4ϕi B holds for i = 1, . . . , n. Now, since A 4ϕ B if and only if A 4ψ B
whenever ϕ and ψ are logically equivalent, the proof is complete. �

We once again remark that this theorem is actually a scheme in a metatheory:
Given a collection of formulae

{
ϕ1, . . . , ϕn

}
, a class B, and a class-sized function

that maps ε→ Aε for ε ∈ Ω, the above is a theorem of ZFC. Now, before we use
the Reflection Principle to show that every finite fragment of ZFC has a set model,
we remind the reader of the Von Neumann Hierarchy of Sets:

Definition 2.6 (Von Neumann Hierarchy of Sets). By transfinite induction, define

V0 := ∅,

Vα+1 := P(Vα),

Vα :=
⋃
β<α

Vβ for limit ordinals α.

The statement “V =
⋃
α∈Ω Vα” is equivalent to the Axiom of Foundation (see

[3]). Using this fact, we arrive at the desired form of the Reflection Principle:

Corollary 2.7. Let ZFC∗ be a finite fragment of ZFC. Then there exists an
η ∈ Ω such that Vη |= ZFC∗.

Proof. Letting B = V , ZFC∗ =
{
ϕ1, . . . , ϕn

}
, and Aε = Vε for ε ∈ Ω, Theorem

2.5 shows that there is some limit η > ω such that Vη 4ϕi V holds for i = 1, . . . , n.
Since each axiom of ZFC holds in V , this implies that Vη |= ZFC∗. �
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2.2. The Mostowski Collapsing Theorem and Countable Transitive Mod-
els. In this subsection, we prove the Mostowski Collapsing Theorem and show how
it can be combined with the Reflection Principle to prove that each finite frag-
ment ZFC∗ of ZFC has a countable transitive model (ctm). When we develop the
method of forcing, we shall always assume that we are working with a ctm M – we
will need M to be countable in order to make certain key forcing arguments work,
and we will need M to be transitive in order to ensure that certain arguments can
be made inside of M in the first place. The latter point will be explored in the next
subsection.

In order to state the Mostowski Collasping Theorem, we shall need the following
definitions:

Definition 2.8. Let E be a relation on a class P .

(1) E is well-founded if and only if the following conditions hold:
(a) Every nonempty set x ⊆ P contains an E-minimal element, i.e., an

element y such that z E x does not hold for any z ∈ x.
(b) The extension of x, defined extE(x) :=

{
z ∈ P | z E x

}
, is a set for

every x ∈ P .
(2) E is extensional on P if and only if distinct members of P have distinct

extensions.

We assume that the reader is familiar with rank functions and with well-founded
induction. A discussion of these topics can be found in [3] and [4].

Theorem 2.9 (Mostowski Collapsing Theorem). Let E be a relation on a class P .
If E is well-founded and extensional, then there is a transitive class M such that
(P,E) ∼= (M,∈), i.e., there exists a bijection π : P → M such that x E y if and
only if π(x) ∈ π(y).1

Proof. By well-founded induction, define π : P → V by setting π(x) =
{
π(z) | z E x

}
for x ∈ P . Let M = π(P ); then by the definition of π, M is a transitive class.
Now, suppose that π fails to be injective. Then let z ∈ M be of least rank such
that π(x) = z = π(y) for distinct x, y ∈ P . With E extensional, this means
that extE(x) 6= extE(y), so that (WLOG) there exists a u ∈ extE(x) such that
u /∈ extE(y). Let t = π(u). Since t ∈ extE(x) = extE(y), there must exist a
v ∈ extE(y) such that t = π(v). Thus π(u) = t = π(v) and u 6= v; but since t ∈ z, t
has smaller rank than z. This, however, contradicts our assumption about z. Thus
π is injective.

Now, by construction, x E y implies π(x) ∈ π(y). Conversely, suppose that
π(x) ∈ π(y). Once again, the definition of π gives us that π(x) = π(z) for some
z E y. With π injective, it follows that x = z, so that x E y. �

We can now apply the Mostowski Collapsing Theorem to produce ctms of finite
fragments of ZFC:

Corollary 2.10. Let ZFC∗ be a finite fragment of ZFC. Then there exists a ctm
M of ZFC∗.

1In fact, one can prove by ∈-induction that the π constructed above is the unique isomorphism
between (P,E) and (M,∈) (see [3]). Although beautiful, this fact will not be needed for our

development.
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Proof. Let ZFC∗∗ denote the finite collection of axioms of ZFC obtained by adding
the Axiom of Extensionality to ZFC∗. By the Reflection Principle, there ex-
ists a model Vη of ZFC∗∗ for some limit η > ω. It follows from the Downward
Löwenheim-Skolem-Tarski Theorem that there is a countable subset N ⊆ Vη such
that N |= ZFC∗∗. Since the Axiom of Extensionality holds in N , ∈ is extensional
on N ; and by the Axiom of Foundation, ∈ is well-founded on N . We may therefore
apply the Mostowski Collapsing Theorem to (N,∈) to obtain a countable transitive
M such that (N,∈) ∼= (M,∈). Since N |= ZFC∗∗, so too does M |= ZFC∗∗; with
ZFC∗ ⊆ ZFC∗∗, the proof is complete. �

2.3. Basic Absoluteness Results. As mentioned earlier, our forcing construc-
tions will take place in ctms M of finite fragments of ZFC, and we should like
to know (i) that certain notions are definable in M , and (ii) that those notions
“mean” the same thing in M as they do in V . Luckily, if M is a transitive model
of a sufficiently large finite fragment of ZFC, then a wide variety of notions are
definable in M using formulae that are absolute in M ; this is precisely what we
want. Now, we say that an instance of a quantifier in a formula is bounded if and
only if it is of the form “∃x ∈ y” or “∀x ∈ y,” and we say that a formula ϕ is ∆0 if
and only if every quantifier in ϕ is bounded. As the following theorem shows, the
notion of boundedness allows us to formalize the well-behaved nature of transitive
classes.

Theorem 2.11. If M is a transitive class, then all ∆0 formulas are absolute in
M .

Proof. We prove this result by induction on the complexity of the ∆0 formula ϕ.
Since (x = y)M = (x = y) and (x ∈ y)M = (x ∈ y), the result holds for all atomic
formulae. Furthermore, the induction steps for the connectives “¬” and “∧” are
obvious. Now, suppose that ϕ(~x, z) is of form “∃y ∈ z ∧ ψ(~x, y, z),” where ψ
is a ∆0 formula and M 4ψ V . Let ~a be an appropriate tuple of sets in M . It
follows from the definition of relativization together with the relationship between
ϕ and ψ that ϕM (~a, z) holds if and only if there exists a b ∈ M such that b ∈ z
and ψM (~a, b, z). By the transitivity of M , if b ∈ V is such that b ∈ z, then with
z ∈ M , it follows that b ∈ M . Coupled with the induction hypothesis, this means
that there exists a b ∈M such that b ∈ z and ψM (~a, b, z) if and only if there exists
a b ∈ V such that b ∈ z and ψV (~a, b, z). Given that ψV means the same thing as
ψ, and given the relationship between ϕ and ψ, the proof is complete. �

Corollary 2.12. If M is a transitive model for a sufficiently large finite fragment
of ZFC, then the following notions are definable in M using formulae that are
absolute in M :

(1) x ⊆ y.
(2) x = ∅.
(3) x ∩ y.
(4) S(x).
(5) x is a transitive set.
(6) x is an ordinal.
(7) x = ω.

We omit the rather routine proof of this statement. For a detailed account of
absoluteness, including a greatly expanded list of notions that are definable and
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absolute in transitive models of sufficiently large finite fragments of ZFC, see [4]
and [5]. Note that by Corollary 2.12, the set of natural numbers in M is the
“standard” ω of V whenever M is a transitive model of a large enough portion of
ZFC.

3. The Logical Structure of the Argument

We now explain how we can use forcing to show Con(ZFC)→ Con(ZFC+CH)
and Con(ZFC)→ Con(ZFC + ¬CH). But first, we must point out that we were
slightly disengenous in the introduction: Given a ctm of a finite fragment ZFC*,
the method of forcing does not immediately guarantee the existence of new models
of ZFC∗+CH and of ZFC∗+¬CH; this is because in order to carry out the forcing
construction in a ctm M , we need a certain finite collection of axioms of ZFC to
hold in M . So, given any finite fragment ZFC*, we adjoin a suitable collection of
axioms of ZFC to ZFC* in order to ensure that the forcing construction can take
place. Calling the finite fragment obtained in this way ZFC**, forcing then shows
that any ctm M of ZFC** can be extended to a model of ZF ∗∗ + CH and to a
model of ZFC∗∗ + ¬CH.

We may now proceed with our explanation. If, say, we can derive an inconsis-
tency from ZFC + ¬CH, then the proof of this inconsistency must employ only a
finite collection ZFC∗ + ¬CH. For some possibly larger finite fragment ZFC**,
ZFC proves that there is a model N of the inconsistent set ZFC∗∗ + ¬CH. This
contradicts the Completess Theorem, which is also provable within ZFC. Thus
ZFC is also inconsistent.

Throughout the rest of this paper, when we say “ctm of ZFC,” we will really
mean “ctm of a large enough finite fragment of ZFC to carry out the argument at
hand.” It is not necessary to explicitly produce such a finite list of axioms of ZFC;
it is merely sufficient to check that once we fix a finite fragment ZFC*, only finitely
many theorems of ZFC are needed in order to produce the desired results, so that
only finitely many axioms of ZFC are referenced in the entirety of the argument
for the case of the fixed fragment ZFC*.

4. Forcing Notions

Over the course of the next few sections, we develop the basics of forcing, in
particular showing how to extend a ctm M of ZFC to a larger model M [G] of
ZFC. The intuitive idea behind this construction is as follows (see [3] and [4]):
Suppose that there are people living in M . For them, M is the entire universe of
sets, so that they reject the existence of any objects lying outside of M . Now, for
some set G not belonging to M , there is a way to construct an extended universe
M [G] via a set-theoretic naming processes that occurs in M . Because of this,
the people living in M can determine whether certain statements are true or false
in M [G], even though they know nearly nothing about G, and in fact, reject its
existence in the first place.

We now introduce the basic notions needed in order to construct M [G].

Definition 4.1. Let M be a ctm of ZFC. A forcing notion P in M is an ordered
triple (P,≤, 0) in M satisfying the following conditions:

(1) ≤ is a transitive, reflexive relation on P.
(2) 0 is the smallest element in P .
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If, furthermore, P has the property that for each p ∈ P , there exist q1, q2 ∈ P such
that p ≤ q1, q2 but q1, q2 � q for all q ∈ P , then P is called a separative forcing.

Note that if M is a ctm of ZFC and P ∈ M , then the statement “P is a forcing
notion” is absolute in M (see [4]). Note, furthermore, that the transitivity of M
shows that each of P , ≤, and 0 are in M . The elements of P are often referred
to as “conditions,” and for p, q ∈ P , p ≤ q is usually read “p is weaker than q” or
“q is stronger than p.” In order to ensure that a forcing notion P in M produces
a non-trivial extension of M , we require that P be separative (as will be seen in
Theorem 5.2). The following two separative forcing notions will be used later to
prove the independence of CH from ZFC:

Notation 4.2. Let I, J be sets. Then Fn(I, J) denotes the collection of functions
I → J with finite domain.

Example 4.3 (The Cohen Forcing). Let κ be a cardinal. Then the Cohen Forcing
Cκ is the ordered triple (Fn(κ× ω, 2),⊆, ∅).

Example 4.4. Let α be an ordinal. LetKα denote the collection of functions p from
a subset of ωα+1 to P(ωα) such that |dom(p)| < ωα+1, and define Kα := (Kα,⊆, ∅).

We leave it to the reader to check that these are indeed separative forcing notions
(see [2]). Now, let M once again be a ctm of ZFC, and let P be a forcing notion
in M . For a certain subset G ⊂ P , we wish to construct an extension M [G] of M
by building new sets from G via set-theoretic processes definable in M . In order to
do this, we consider a special class V P that encodes how elements of the extension
are constructed from G:

Definition 4.5. Let P be a forcing notion. Define V P, the class of P-names, by
recursion in V :

V P

0 := ∅,

V P

α+1 := P(V P

α × P ),

V P

α :=
⋃
β<α

V P

β for limit ordinals α,

and set

V P :=
⋃

α∈ON
V P

α .

“Ordinary” P-names will be denoted by the symbols x˜, y˜, f˜, and so on. We will

reserve the symbols
˙
x,

˙
y,

˙
f , etc. for a special subclass of V P (which we will soon

introduce). Now, the defining structure of V P allows us to define a rank function
on this class, which will in turn allow us to define the elements of M [G].

Definition 4.6. Let P be a forcing notion. Define the rank function rk on V P by
setting

rk(x˜) := max
{

rk(y˜) + 1 | ∃p ∈ P
(
(y˜, p) ∈ x˜)

}
.
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In particular, if (y˜, p) ∈ x˜ for some p ∈ P , then rk(y˜) < rk(x˜) (see [2]). Using

this fact, we are able to make the following definition.

Definition 4.7. Let G ⊆ P . By recursion on the ranks of P-names, define

x˜[G] :=
{
y˜[G] | ∃q ∈ G

(
(y˜, q) ∈ x˜)

}
.

Then set
V [G] := {x˜[G] | x˜ ∈ V P}.

Because the notion of being a P-name is also absolute in M (see [4]), the following
definition means the same thing in M as it does in V :

Definition 4.8. Let P be a forcing notion in a ctm M of ZFC. Then we define
MP := M ∩ V P =

{
x ∈M | (x is a P-name)M

}
.

Using this definition, we can then set M [G] := {x˜[G] | x˜ ∈MP}. Now, in order
to show that M ⊆ M [G], we will first have to produce a special class of P-names
that identify the elements of V . If 0 ∈ G, then there is a particularly slick way to
do this.

Definition 4.9. Let G ⊆ P and suppose that 0 ∈ G. By rank-recursion, define

˙
x :=

{
(
˙
y,0) | y ∈ x

}
.

So, for example,
˙
∅ = ∅,

˙
1 = 1,

˙
2 = 2, and so on. In what follows, we limit

ourselves to working with G that contain 0.

Theorem 4.10. Suppose that G ⊆ P and that 0 ∈ G. Then
˙
x = x for all x ∈ V .

Proof. Work by induction on the rank of
˙
x ∈ V P. First, note that since 0 ∈ G, we

have that
˙
x =

{
(
˙
y,0) | y ∈ x

}
. Now, if rk(

˙
x) = 0, then

˙
x =

˙
0, so that

˙
x[G] =

{
(
˙
y,0) | y ∈ ∅

}
= ∅.

Now, suppose that rk(
˙
x) = α and that

˙
y[G] = y for all P-names

˙
y of rank smaller

than α. Then

˙
x =

{
(
˙
y,0) | y ∈ x

}
= {y | y ∈ x} = x.

By induction, the proof is complete. �

Using an absoluteness argument, one can check that if x is a member of M , then
so is

˙
x (see [4]). Together with Theorem 4.10, this immediately gives the following

corollary:

Corollary 4.11. Let P be a forcing notion in a ctm M of ZFC, and suppose that
G is a subset of P containing 0. Then M ⊆M [G].

We should also like to know that G ∈ M [G]. In order for this to be the case,
we need to find a P-name G˜ in MP such that G˜ [G] = G. Now, if we make the

assignment G˜ :=
{

(
˙
p, p) | p ∈ P

}
, then Theorem 4.10 shows that G˜ [G] = G.

Before we move on to consider the particular characteristics that G needs to have
in order to make forcing arguments work in M [G], we mention two special kinds of
P-names that identify pairs in M [G]. For P-names x˜, y˜, define

up(x˜, y˜) :=
{

(x˜, 0), (y˜, 0)
}

and
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op(x˜, y˜) :=

{({
(x˜, 0)

}
, 0
)
,
({

(x˜, 0), (y˜, 0)
}
, 0
)}

.

Through a tedious check, one can verify that if G ⊆ P and 0 ∈ G, then up(x˜, y˜) =

{x˜[G], y˜[G]} and op(x˜, y˜) = (x˜[G], y˜[G]) (see [2]).

5. Generic Extensions

In this section, we consider the basic theory of generic filters, these being the
special sets that are needed in order to make forcing arguments work. Now, if M is
a ctm of ZFC and G is a generic filter, then M [G] is called a generic extension of
M . Combined with the fact that M [G] is constructed using a naming process that
occurs in M , the special characteristics of G allow us to develop a technique within
M for determining many important characteristics of the generic extension M [G].
For the people living in M , this technique – called the forcing relation – is mere
formalism; they do not believe that it really says anything about objects outside of
M . We will develop the forcing relation in the next section.

Although the verification of some of the following results is left to the reader, a
complete account of the topics presented in this section can be found in [2].

Definition 5.1. Let P be a forcing notion.

(1) Two conditions p1, p2 ∈ P are compatible if and only if there exists a q ∈ P
such that p1 ≤ q ≥ p2. In this case, we write p1 | p2. Otherwise, we say
that p1 and p2 are incompatible, written p1 ⊥ p2.

(2) A set A ⊆ P is an anti-chain if and only if every pair of conditions in A are
incompatible. If, additionally, A is not a proper subset of any antichain A′

in P , then A is called a maximal antichain.
(3) A set D ⊆ P is open dense if and only if the following conditions hold:

(a) If p ∈ D and q ≥ p, then q ∈ D (open).
(b) For every p ∈ P , there exists a q ∈ D such that q ≥ p (dense).

(4) Let p ∈ P . A subset D ⊆ P is dense above p if and only if for every q ≥ p,
there is a q′ ∈ D such that q′ ≥ q.

(5) A nonempty subset G ⊆ P is a filter on P if and only if the following
conditions hold:
(a) If p ∈ G and q ≤ p, then q ∈ G (downwards closed).
(b) For every pair of conditions p1, p2 ∈ G, p1 | p2 (directed).

(6) A filter G ⊆ P is P-generic over M if and only if G∩D 6= ∅ for every open
dense D ⊆ P in M .

In the language of compatibility, a forcing notion P is separative if and only if for
each condition p ∈ P , there exist incompatible conditions q1, q2 that are stronger
than p. Now that we know what generic filters are, we make good on our earlier
claim that the people living in M reject the existence of G:

Theorem 5.2. Let P be a separative forcing notion in a ctm M of ZFC. If G is
a P-generic filter over M , then G /∈M .

Proof. Set DG := P −G, and let p ∈ P . With P a separative forcing notion, there
are incompatible elements above p, i.e., there exist q1, q2 ∈ P such that p ≤ q1, q2

and q1 ⊥ q2. With G directed, at most one of q1, q2 lives in G, so that at least
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one of these two elements is in DG. This shows that DG is dense in P . And with
G downwards-closed, DG must be open. Now, if G ∈ M , then DG ∈ G too. By
the definition of P-generic filters, it would then follow that G intersects DG; this,
however, contradicts the definition of DG. Hence G /∈M . �

The people in M therefore have good reason for rejecting the existence of P-
generic filters; but what about us, the people living in V ? If P is a forcing notion
in an arbitrary model N of ZFC, then we are not necessarily guaranteed the
existence of a P-generic filter over N . Luckily for us, the “small” size of M allows
us to explicitly construct such filters:

Theorem 5.3. Let P be a forcing notion in a ctm M of ZFC and let p0 be a
condition in P . Then there exists a P-generic filter G over M containing p0.

Proof. With M countable, we may write down all of the open dense subsets D ⊆ P
in M in a sequence

{
Dn | n ∈

(
ω − {∅}

)}
. With D1 dense in P , there must be

some condition p1 ∈ D1 such that p1 ≥ p0. Additionally, whenever n is nonzero and
pn ∈ Dn, the density of Dn+1 ensures that there exists a condition pn+1 ∈ Dn+1

for which pn+1 ≥ pn. Setting G :=
{
q ∈ P | ∃n ∈ ω(q ≤ pn)

}
, G is easily seen to

be a P-generic filter over M containing p0. �

Note that the enumeration of the open dense subsets of P occurs in V ; this
explains how it is possible for us to know that P-generic filters exist even though
the people living in M reject any such possibility.

In the course of proving some of the basic forcing results, it will be of great use
to have a few alternative characterizations of P-generic filters.

Theorem 5.4. Let P be a forcing notion in a ctm M , and let G be a filter on P .
Then the following statements are equivalent:

(1) G is P-generic over M .
(2) G intersects every maximal anti-chain A ⊆ P that is in M .
(3) G intersects every dense D ⊆ P that belongs to M .

Proof. (1) → (2): Let A be a maximal anti-chain in P that belongs to M . Then
consider the set DA := {p ∈ P | ∃q ∈ A(q ≤ p)}; DA is clearly open in P . We
want to show that DA is dense in P , i.e., that for every condition in P , there is a
stronger condition in DA. So, let p0 ∈ P . If p0 ∈ A, then p0 ∈ DA, and our search
is complete. If p0 /∈ DA, then with A a maximal anti-chain in P , there is some
condition q0 in A such that q0 | p0. With G a filter on P , there must in turn be
some p ∈ G such that p0 ≤ p ≥ q0; by the definition of DA, p ∈ DA. Thus DA is
dense in P , so that G intersects DA. With G downwards-closed, this means that
G must also intersect A.

(2) → (3): Let D be a dense subset of P that belongs to M . Let A be a
maximal anti-chain in D. If A is not a maximal anti-chain in P , then there is some
p0 ∈ P − A such that p0 ⊥ q for every q ∈ A. With D dense in P , there is then
some q0 ∈ D such that p0 ≤ q0. It follows that q0 must be incompatible with every
condition in A, for whenever q0 | p for some condition p, p0 | p too. But then q0 /∈ A
and A ∪ {q0} is an anti-chain; this contradicts the maximality of A. Hence A is a
maximal anti-chain in P too, so that G intersects A. With A ⊆ D, we are done.

(3) → (1): This portion of the proof is obvious, for open dense sets are in
particular dense. �



14 F. CURTIS MASON

Using Theorem 5.4, we can verify one more especially helpful characterization of
P-generic filters:

Corollary 5.5. Let P be a forcing notion in a ctm M of ZFC, and suppose that
p ∈ P . Then a filter G in P is P-generic over M if and only if G intersects every
set D ⊆ P in M that is dense above p.

Proof. Suppose that G intersects every set D ⊆ P in M that is dense above p.
Since dense sets in P are in particular dense above p, this means that G intersects
every dense subset of P that is in M . By Theorem 5.4.3, then, G is P-generic over
M . Conversely, suppose that G is P-generic over M , and let D ∈M be dense above
p. Define E := D ∪ {x ∈ P | x ⊥ p}. Then E ∈ M , and one easily checks that E
is dense in P , so that by Theorem 5.4.3, G ∩E 6= ∅. Let r ∈ G ∩E. With r, p ∈ G
and G directed, this means that r ∈ D. �

6. The Forcing Relation

We are now ready to develop the relation that enables the people living in M to
determine many of the characteristics of M [G]. But before we actually define the
forcing relation, we must first formalize what it means for the people living in M
to make assertions about M [G]:

Definition 6.1 (The Forcing Language). Let P be a forcing notion. The forcing
language in P, denoted FLP, is the collection of F.O. set-theoretic formulae whose
constant symbols are P-names. The forcing language in P,M , denoted FLP,M , is
the collection of F.O. set-theoretic formulae whose constant symbols are P-names
in M .

Hence, the people living in M make statements about M [G] using FLP,M . Now,
the forcing relation:

Definition 6.2 (The Forcing Relation). Let P be a forcing notion in a ctm M of
ZFC, let p0 ∈ P , let ϕ(x1, . . . , xn) be a formula of FLP,M , and let x˜1, . . . , x˜n ∈MP.
Define p0 
P ϕ(x˜1, . . . , x˜n), read “p0 forces ϕ(x˜1, . . . , x˜n),” by a double recursion –
first on the ranks of P-names, then on the complexity of the formula ϕ:

(1) ϕ(x˜1, x˜2) ≡ (x˜1 = x˜2): p0 
P x˜1 = x˜2 if and only if the following two
conditions hold:
(α) For each (y˜1, s1) ∈ x˜1, the set{

q ≥ p0 | q ≥ s1 → ∃(y˜2, s2) ∈ x˜2(q ≥ s2 ∧ q 
P y˜1 = y˜2)
}

is dense above p0.
(β) An analogous statement holds for each (y˜2, s2) ∈ x˜2.

(2) ϕ(x˜1, x˜2) ≡ (x˜1 ∈ x˜2): p0 
P x˜1 ∈ x˜2 if and only if the set{
q ≥ p0 | ∃(y˜, s) ∈ x˜2(q ≥ s ∧ q 
P y˜ = x˜1)

}
is dense above p0.

(3) ϕ(x˜1, . . . , x˜n) ≡ ¬ψ : p0 
P ¬ψ if and only if q 1P ψ for all q ≥ p0, i.e.,
q 
P ψ does not hold for any q ≥ p0.

(4) ϕ(x˜1, . . . , x˜n) ≡ ψ1 ∧ ψ2 : p0 
P ψ1 ∧ ψ2 if and only if p0 
P ψ1 and
p0 
P ψ2.
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(5) ϕ(x˜1, . . . , x˜n) ≡ ∃zψ(z): p0 
P ∃zψ(z) if and only if the set{
q ≥ p0 | ∃z˜ ∈MP

(
q 
P ψ(z˜))}

is dense above p0.

Using Definition 6.2, we can quickly prove:

Theorem 6.3. Let P be a forcing notion in a ctm M of ZFC and let ϕ be a
sentence of FLP,M . Then the following statements hold:

(1) If p 
P ϕ and q ≥ p, then q 
P ϕ.
(2) p 
P ϕ if and only if the set of conditions that force ϕ is dense above p.
(3) The set ∆ϕ := {p ∈ P | (p 
P ϕ) ∨ (p 1P ϕ)} is open dense in P .

Proof. Exercise (see [2] and [4]). �

Using Theorem 6.3, we are now able to prove the first key result about the forcing
relation:

Theorem 6.4 (The Forcing Theorem). Let P be a forcing notion in a ctm M of
ZFC, let ϕ(x1, . . . , xn) be a formula of FLP,M , let x˜1, . . . , x˜n be P-names in M ,
and let G be a P-generic filter over M . Then the following statements hold:

(1) If p ∈ G and p 
P ϕ(x˜1, . . . , x˜n), then M [G] |= ϕ(x˜1[G], . . . , x˜n[G]).
(2) If M [G] |= ϕ(x˜1[G], . . . , x˜n[G]), then there exists a p ∈ G such that p forces

ϕ(x˜1, . . . , x˜n).

Proof. The overall structure of the proof is induction on the complexity of the
formula ϕ, but for the case in which ϕ is an atomic formula of form “x1 = x2,”
we will have to carry out a separate induction on the ranks of the P-names in M
that are substituted for the free variables in ϕ. Since the other induction steps are
much easier, we leave their verification to the reader. Once again, a complete proof
of this theorem can be found in [2].

Set rk′(x˜1, x˜2) := max
{

rk(x˜1), rk(x˜2)
}

. If rk′(x˜1, x˜2) = 0, then x˜1 = x˜2 = ∅.
Since ∅[G] = ∅, and ∅ = ∅ is clearly true in M [G], so that (1) holds. By Definition
6.2.1, it is clear that p 
P ∅ = ∅ for all p ∈ P , so that (2) holds. For rk’(x˜1, x˜2) > 0,
we will verify (1) and (2) separately.
(1): Suppose that p ∈ G, that p 
P x˜1 = x˜2, and that (1) holds for all P-names

y˜1, y˜2 inM with rk′(y˜1, y˜2) < rk′(x˜1, x˜2). We will prove thatM [G] |= x˜1[G] = x˜2[G]

by showing that M [G] |= x˜1[G] ⊆ x˜2[G] and M [G] |= x˜2[G] ⊆ x˜1[G]. Now, suppose
that x ∈ x˜1[G]; then x is of form y˜1[G], where (y˜1, s1) ∈ x˜1 for some s1 ∈ G.

With G directed, there is some r ∈ G such that s1 ≤ r ≥ p. By Theorem 6.3.1,
r 
P x˜1 = x˜2. Using Definition 6.2.1 and Corollary 5.5, it follows that there is
a condition q ∈ G and an ordered pair (y˜2, s2) ∈ x˜2 such that s1 ≤ r ≤ q ≥ s2

and q forces y˜1 = y˜2. Fix such a (y˜2, s2). Then rk′(y˜1, y˜2) < rk′(x˜1, x˜2), so

that by our induction hypothesis, M [G] |= y˜1[G] = y˜2[G]. Furthermore, with

q ≥ s2 and G downwards-closed, s2 ∈ G, which gives us that y˜2[G] ∈ x˜2[G]. Thus

M [G] |= y˜1[G] ∈ x˜2[G], so that M [G] |= x˜1[G] ⊆ x˜2[G]. Since our argument is

symmetric about x˜1, x˜2, we have in fact shown that M [G] |= x˜1[G] = x˜2[G]; by
induction, then, (1) holds for all ϕ of form x˜1 = x˜2, where x˜1 and x˜2 are in M .
(2): Assume that M [G] |= x˜1[G] = x˜2[G] and that (2) holds for all names y˜1, y˜2
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in M with rk′(y˜1, y˜2) < rk′(x˜1, x˜2). Let Dx˜1,x˜2 denote the collection of conditions

r ∈ P such that at least one of the following conditions holds:

(i) r 
P x˜1 = x˜2 .
(ii) There exists a name (y˜1, s1) ∈ x˜1 such that r ≥ s1 and such that for all

(y˜2, s2) ∈ x˜2 and q ∈ P , if q ≥ s1 and q 
P y˜1 = y˜2, then q ⊥ r.
(iii) There exists a name (y˜2, s2) ∈ x˜2 such that r ≥ s2 and such that for all

(y˜1, s1) ∈ x˜1 and q ∈ P , if q ≥ s2 and q 
P y˜1 = y˜2, then q ⊥ r.
We seek to show, first, that no condition in G can satisfy either (ii) or (iii), and

second, that Dx˜1,x˜2 is dense in P . Towards the former: Suppose that there is some

condition r ∈ G and some (y˜1, s1) ∈ x˜1 that satisfy (i). Then s1 ∈ G, so that

y˜1[G] ∈ x˜1[G]. By our assumption, then, M [G] |= y˜1[G] ∈ x˜2[G]. By the definition

of x˜2[G], there is some (y˜2, s2) ∈ x˜2 such that s2 ∈ G and M [G] |= y˜1[G] = y˜2[G].

With rk’(y˜1, y˜2) < rk’(x˜1, x˜2), the induction hypothesis admits the existence of a

condition q0 ∈ G for which q0 
P y˜1 = y˜2. With G directed, there is another

condition q ∈ G such that q0 ≤ q ≥ s2. By Theorem 6.3.1, it follows that q forces
y˜1 = y˜2. By (i), we must then have q ⊥ r. This, however, contradicts the fact that

G is directed. Hence no r ∈ G can satisfy (i), and an analogous argument shows
the same for (ii).

Now, towards showing that Dx˜1,x˜2 is dense in P : Fix a condition p ∈ P ; we wish

to find a condition r ≥ p in Dx˜1,x˜2 . If p 
P x˜1 = x˜2, then we are done. If this is

not the case, then either (α) or (β) of Definition 6.2.1 fails. Suppose that (α) fails.
Then there are (y˜1, s1) ∈ x˜1 and r ≥ p such that r ≥ s1 and such that for all q ≥ r
and (y˜2, s2) ∈ x˜2, either q ≥ s2 fails or q 
P y˜1 = y˜2) fails. Now, let (y˜2, s2) ∈ x˜2. If

there is some condition q′ ∈ P for which q′ ≥ s2 and q′ 
P, then we must have that
q′ ⊥ r, for a common extension of q and r would contradict the above equation.
Thus r ≥ p and r satisfies (i), so that r ∈ Dx˜1,x˜2 . A similar argument holds in the

case that (β) fails, so that Dx˜1,x˜2 is dense in P . By Theorem 5.4.3, G must then

intersect Dx˜1,x˜2 ; by our earlier work, this means that there is some r ∈ G for which

r 
P. By induction, (2) holds for all ϕ of form x˜1 = x˜2, where x˜1 and x˜2 are in
M . �

Using Forcing Theorem, one can quickly prove the following lemma, which is a
standard result in the forcing literature (see [2]).

Corollary 6.5. Let P be a forcing notion in a ctm M of ZFC, let G be P-generic
over M , and let p be a condition in G. Then we have the following:

(1) If p 
P z˜ ∈ y˜, then there exist a P-name x˜ and a condition q ∈ G such that

q ≥ p, rk(x˜) < rk(y˜), and q 
P x˜ = z˜.

(2) If p 
P (f˜ ∈ BA˜∧x˜0 ∈ A˜), then there exist a P-name y˜ ∈ B˜ and conditions

p, r ∈ G such that q ≥ p, (y˜, r) ∈ B˜ , and q 
P f˜(x˜0) = y˜.

Together with Corollary 6.5, the Forcing Theorem now allows us to prove that
generic extensions of ctms of ZFC are also models of ZFC:

Theorem 6.6 (The Generic Model Theorem). Let P be a forcing notion in a ctm
M of ZFC and let G be a P-generic filter over M . Then M [G] |= ZFC.
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Proof. We will prove that the Axioms of Extensionality, Comprehension, Pairing,
and Choice all hold in M [G], and leave the verification of the rest to the reader. A
complete proof of this theorem can be found in [2]; there, one sees that the Forcing
Theorem is really only needed for proving that the Axioms of Comprehension,
Union, Replacement, Powerset, and Choice hold in M [G].

Axiom of Extensionality: In order to prove that the Axiom of Extensionality
holds in M [G], we first show that M [G] is transitive. So, let x ∈M [G], and suppose
that y ∈ x. By the definition of M [G], there is a P-name x˜ such that x = x˜[G].
And by the definition of x˜[G], there exists a P-name y˜ and a condition p ∈ G such

that (y˜, p) ∈ x˜ and y = y˜[G]. But then y ∈M [G] too, so that M [G] is transitive.

Now, let x, y ∈ M [G], and suppose that for each z ∈ M [G], z ∈ x ⇐⇒ z ∈ y.
If z ∈ x, then by the transitivity of M [G], z ∈ M [G]. By assumption, then, z ∈ y.
An analogous argument shows that if z ∈ y, then z ∈ x too. By the Axiom of
Extensionality in V , then, x = y, so that the Axiom of Extensionality holds in
M [G].

Axiom Schema of Comprehesion: Let ϕ(z, p1, . . . pn) be an arbitrary formula
in the language of set theory. We need to show that for all tuples (x, p1, . . . , pn) of
sets in M [G], the set

{
z ∈ M [G] | z ∈ x ∧ ϕ(z, p1, . . . , pn)

}
lives in M [G]. For the

sake of brevity, we shall omit the parameters p1, . . . , pn in the rest of this proof.
Now, let x ∈ M [G], and let x˜ be a P-name for x, i.e., x = x˜[G]. Let dom(x˜)

denote the collection of P-names z˜ ∈ MP such that (z˜, q) ∈ x˜ for some q ∈ P ,
and consider the set of ordered pairs (z˜, p) ∈ dom(x˜) × P such that p forces both
z˜ ∈ x˜ and ϕ(z˜). This set is a P-name; call it y˜. We will be done if we can show

that
{
z ∈ M [G] | z ∈ x ∧ ϕ(z)

}
= y˜[G]. So, let z ∈ y˜[G]; then by the definition

of y˜[G], there exists a P-name z˜ and a condition p ∈ G such that (z˜, p) ∈ y˜ and

z = z˜[G]. Given the definition of y˜, this in turn means that p forces both z˜ ∈ x˜ and

ϕ(z˜). By (1) of the Forcing Theorem, we then have M [G] |= z˜[G] ∈ x˜[G]∧ϕ
(
z˜[G]

)
,

so that y˜[G] ⊆
{
z ∈ M [G] | z ∈ x ∧ ϕ(z)

}
. Conversely, suppose that z ∈ M [G],

z ∈ x, and that ϕ(z) holds. In particular, these statements are true in M [G], so
that by (2) of the Forcing Theorem, there exists a P-name z˜ and a condition p ∈ G
such that p forces both z˜ ∈ x˜ and ϕ(z˜). By the definition of y˜, it follows that

(z˜, p) ∈ y˜). With p ∈ G, we then have that M [G] |= z˜[G] ∈ y˜[G], which is to say

that
{
z ∈ M [G] | z ∈ x ∧ ϕ(z)

}
⊆ y˜[G]. Thus

{
z ∈ M [G] | z ∈ x ∧ ϕ(z)

}
= y˜[G],

so that the proof is complete.
Axiom of Pairing: Suppose that x, y ∈ M [G]. Then there are P-names x˜, y˜such that x = x˜[G] and y = y˜[G]. With G downwards-closed, 0 ∈ G, so that

up(x˜, y˜)[G] =
{
x˜[G], y˜[G]

}
= {x, y}.

Since up(x˜, y˜) ∈M [G], M [G] is a model for the Axiom of Pairing.

Axiom of Choice: Since ZFC proves that the Well-Ordering Theorem is equiv-
alent to the Axiom of Choice (see [3]), it will be sufficient to prove that the Well-
Ordering Theorem holds in M [G]. Towards this end, we first show that for each
x ∈M [G], there exists an injection from x into ΩM . Fix an x ∈M [G], and let x˜ be
a P-name for x. Because dom(x˜) resides in M , and since the Axiom of Choice holds

in M , it follows that there is a bijection between dom(x˜) and κ, where κ ∈ ΩM and
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|dom(x˜)| = κ. This bijection in turn allows us to write down dom(x˜) as a sequence
of P-names {y˜α | α ∈ κ}. Now, set

R˜ :=
{

op(
˙
α, y˜α) | α ∈ κ

}
× {0}.

Then with 0 ∈ G, R˜ [G] =
{

(α, y˜α) | α ∈ κ
}

. By the Axiom of Comprehension in

M [G], the set {
(α, y˜α[G]) ∈ R˜ [G] | ∃p ∈ G

(
(y˜α, p) ∈ x˜)

}
is in M [G]; furthermore, this set is a bijection between a subset of κ and x˜[G] = x.

Hence, for each x ∈M [G], there is a bijection between x and some ordinal in ΩM .
Finally, since ΩM is well-ordered by inclusion, any bijection from a set x onto a

subset of ΩM naturally induces a well-order of x: Letting f denote this bijection,
then simply require that for x1, x2 ∈ x, x1 ≤ x2 if and only if f(x1) ≤ f(x2). The
proof is thus complete. �

Note that in order to prove that the Well-Ordering Theorem holds in M [G], we
only needed to make use of the ordinals in M . This suggests the following result:

Theorem 6.7. Let P be a forcing notion in a ctm M of ZFC, and let G be a
P-generic filter over M . Then ΩM = ΩM [G].

Proof. By Theorem 6.6, we know that M [G] is a transitive model of ZFC. Since
M ⊆M [G], and since the notion of being an ordinal is absolute in transitive models
of ZFC, it then follows that ΩM ⊆ ΩM [G]. We will prove the reverse set inclusion by
transfinite induction. Let X denote the collection of ordinals α such that α ∈ ΩM [G]

implies α ∈ ΩM . Clearly, 0 ∈ X. Now, let γ be a nonzero ordinal, and suppose
that α ∈ X for every ordinal α < γ. If γ /∈ M [G], then γ ∈ X. Suppose, on the
other hand, that γ ∈ M [G]. Let γ˜ be a P-name for γ, so that γ˜[G] = γ˜. By the

Axiom Schema of Comprehension in M , it follows that

T :=
{
x˜ ∈MP | ∃p ∈ P

(
(x˜, p) ∈ γ˜0

)}
is a set in M . As a result, we may in turn form the set

T ′ :=
{
α ∈ ΩM | ∃x˜ ∈ T∃p ∈ P (p 
P ˙

α = x˜)
}

in M . By the induction hypothesis, T ′ contains all of the ordinals in γ, so that
γ ⊆ ∪T ′ (in V ). Since the union of a set of ordinals is once again an ordinal, T ′

must be an ordinal. And since γ and T ′ are ordinals with γ ⊂ T ′, it follows that
either γ ∈ T ′ or γ = T ′ (see [3]). Finally, the transitivity of M guarantees that
γ ∈M . By induction, ΩM [G] ⊆ ΩM , and the proof is complete. �

7. The Independence of the Continuum Hypothesis

Once again, let M be a ctm of ZFC, and let κ be a cardinal in M . We wish
to show that Cκ adds κ reals to M , so that whenever G is Cκ-generic over M ,
M [G] |= 2ℵ0 ≥ κ (where 2ℵ0 is the cardinality of the continuum). In particular, for
κ > ℵ1, this shows that M [G] |= ¬CH. In order to do this, however, we first have
to show that κ remains a cardinal in M [G]. The problem is that cardinalities are
defined in terms of the existence of certain bijective functions between ordinals, and
a priori, there is no reason to believe that M [G] contains the same such bijections
as M does. If M [G] has bijections of this form that are not contained in M , then
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we might then have M |= |κ| = κ but M [G] |= |κ| < κ. As a reminder, if N is any
model of ZFC containing κ, then |κ|N denotes the cardinality of κ as it is defined
in N .

Definition 7.1. Let P be a forcing notion in a ctm M of ZFC, and let κ be
an ordinal in M that M thinks is a cardinal, i.e., for which |κ|M = κ. We say
that P preserves κ if and only if |κ|M [G] = κ for all G that are P-generic over M .
Otherwise, we say that P collapses κ. If P preserves each ordinal that M thinks is
a cardinal, then we say that P preserves cardinalities in M .

Our next goal, then, is to show that Cκ preserves cardinalities. In order to do
this, we first remind the reader of the notion of cofinality, in terms of which we can
then state (and prove) a sufficient condition for P to preserve cardinalities.

Definition 7.2 (Cofinality). Let λ be a nonzero limit ordinal.

(1) A subset C is cofinal in λ if and only if ∪C = λ.
(2) The cofinality of λ denoted cf(λ), is the cardinality of the smallest cofinal

set C ⊆ λ.
(3) An infinite cardinal κ is regular if and only if cf(κ) = κ.

We will say that a forcing notion P in a ctm M of ZFC preserves cofinalities if
and only if cf(λ)M [G] = cf(λ)M for all nonzero limit ordinals λ ∈ ΩM . Additionally,
we shall make use of the following result in the basic theory of cofinalities (see [2]
and [4]):

Theorem 7.3. ZFC ` (If κ is an infinite cardinal, then κ+is regular).

Theorem 7.4. Let P be a forcing notion in a ctm M of ZFC. If P preserves
cofinalities in M , then P preserves cardinalities in M .

Proof. Supppose that P preserves cofinalities in M , let G be P-generic over M ,
and let κ be a regular cardinal in M , i.e., κ = |κ|M = cf(κ)M . By assumption,
cf(κ)M = cf(κ)M [G]. Furthermore, it is clear that cf(κ)M [G] ≤ |κ|M [G] ≤ |κ|M . All
together, we then have that

|κ|M [G] ≤ |κ|M = cf(κ)M = cf(κ)M [G] ≤ |κ|M [G].

Thus all the inequalities must in fact be equalities, so that |κ|M = |κ|M [G] and κ
remains regular in M [G]. Now, if κ is a successor cardinal in M , then by Theorem
7.3, |κ|M = |κ|M [G]. And with M and M [G] both transitive models of ZFC, it
follows that |ℵ0|M [G] = ℵ0 = |ℵ0|M . Finally, suppose that κ is a limit cardinal in
M such that κ > ω. Since successor cardinals are regular, it follows that the set
C := {η < κ | η is regular} is cofinal in κ. Because P preserves regular cardinals
and ΩM = ΩM [G], it follows that CM = CM [G]. Hence M [G] thinks that κ is the
supremum of a collection of cardinals, so that M [G] must in turn think that κ is
itself a cardinal. �

So, if we can prove that Cκ preserves cofinalities, then we will know that Cκ also
preserves cardinalities. Once we do this, we will be on track to prove that Cκ adds
κ reals to M . Towards the end of showing that Cκ preserves cofinalities, we will
need one last bit of theory.

Definition 7.5. A collection of sets A is said to form a delta system with root R
if and only if X ∩ Y = R for every pair of sets X,Y ∈ A.
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Lemma 7.6 (Delta System Lemma). Let κ be an uncountable regular cardinal, and
let A be a collection of finite sets such that |A| = κ. Then there exists a set B ⊆ A
such that |B| = κ and B forms a delta system.

Proof. Let f be a bijection between A and κ. For each n ∈ ω, let Dn denote the set
{X ∈ A | |X| = n}; then let An denote f(Dn). Then for each n ∈ ω, |Dn| = |An|.
If |Dn| < κ for every n ∈ ω, then the regularity of κ implies that

⋃
n∈ω An ( κ;

this, however, contradicts the fact that f is a bijection from the set A =
⋃
n∈ωDn

onto κ. Hence, there must be an n ∈ ω for which |Dn| = κ.
We now use ω-induction to prove that Dn is a delta system. If n = 1, then Dn

is a delta system with empty root: Each element of Dn is a singleton, so that the
intersection of distinct members of Dn is empty. Now, suppose that n > 1 and that
the result holds for n− 1. For p ∈ V , define Sp := {X ∈ Dn | p ∈ X}. We consider
two cases:
Case 1: Suppose that |Sp| = κ for some p ∈ V . Then E := {X − {p} | X ∈ Sp} is
a collection of κ sets, each of size n− 1. By the induction hypothesis, E possesses a
delta system C with some root RC . It follows that the collection {Z ∪ {p} | Z ∈ C}
is a subset of A of size κ and is a delta system with root RC ∪ {p}.
Case 2: Suppose that |Sp| < κ for every p ∈ V . First, note that for any set T ,
{X ∈ Dn | X ∩ T 6= ∅} =

⋃
p∈T Sp. With κ regular, this set has size < κ whenever

T has size < κ. Fix any X0 ∈ Dn; then |{X ∈ Dn | X ∩ T 6= ∅}| < κ, so that there
must be an X1 ∈ Dn such that X1 ∩X0 = ∅. Indeed, the same argument can be
carried out for any α < κ, so that there exists a κ-sequence of pairwise disjoint sets
in Dn. This sequence forms a delta system in A with empty root, and is clearly of
size κ. �

Definition 7.7. Let P be a forcing notion. We say that P satisfies the countable
chain condition (ccc) if and only if every antichain in P is at most countable.

Using the Delta System Lemma, we can now prove that the Cohen Forcing Cκ

satisfies ccc:

Theorem 7.8. Cκ satisfies ccc.

Proof. Suppose, for a contradiction, that there exists an uncountable collection of
pairwise incompatible conditions of Fn(κ × ω, 2). Then in particular, there exists
such a collection of size ℵ1. Write this collection down as the sequence {pε | ε < ω1},
and for each ε < ω1, define Sα := dom(pε). Then with ℵ1 a regular cardinal, the
Delta System Lemma applied to {Sε | ε < ω1} gives that there is an uncountable
B ⊆ {Sε | ε < ω1} and some (finite) R such that Sα ∩ Sβ = R whenever α, β
are distinct ordinals with Sα, Sβ ∈ B. With R2 finite and {pε} uncountable, there
must be α < β < ω1 such that pα|R = pβ |R, which means that pα | pβ . This is the
desired contradiction. �

Theorem 7.9. Let P be a forcing notion in a ctm M of ZFC. If P satisfies ccc,
then P preserves cofinalities in M .

Proof. Let G be a P-generic filter over M , let κ be an infinite cardinal in M ,
let cf(κ)M [G] = λ, and let S˜ be a P-name for a strictly increasing sequence of
length λ that is cofinal in κ. Then S˜[G] is a function from λ to κ such that⋃{

S˜[G](α) | α ∈ λ
}

= κ. By (2) of the Forcing Theorem, there must exist a
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condition p ∈ G that forces both S˜ ∈ κλ˜ and
⋃{

S˜(
˙
α) |

˙
α ∈

˙
λ
}

. Now, for each
α ∈ λ, consider the set

Dα :=
{
q ≥ p | ∃γ ∈ κ

(
q 
P S˜(

˙
α) =

˙
γ
)}
.

Then use Dα to define

Yα :=
{
γ ∈ λ | ∃q ∈ Dα

(
q 
P S˜(

˙
α) =

˙
γ
)}
.

By Theorem 6.3.2, Dα is dense above p for each α ∈ λ. And since each Dα lives in
M , so too is each Yα in M . Now, we would like to show that each Yα is at most
countable. In this vein, fix a Yα, and let q1, q2 ∈ Yα be such that q1 
P S˜(

˙
α) =

˙
γ1

and q2 
P S˜(
˙
α) =

˙
γ2 for distinct γ1, γ2 ∈ κ. If q1 ≤ p0 ≥ q2 for some condition

p0 ∈ P , then by Theorem 5.3, we would be able to construct a P-generic filter
G0 with base condition p0. By (2) of the Forcing Theorem, we would then have
M [G0] |= γ1 = γ2, which is impossible. Hence q1 ⊥ q2. Since P satisfies ccc and
Yα ∈M , it follows that Yα is at most countable.

For each α ∈ λ, let Aα be a maximal antichain in Dα. By the proof of Theorem
5.4.2, G must intersect every such Aα; this implies that M [G] |= S˜[G](α) ∈ Yα
for each α ∈ λ. Setting Y :=

⋃
{Yα | α ∈ λ}, we then have that Y is cofinal in

κ. By the construction of Y , |Y | ≤ λ · ω; and by cardinal arithmetic, λ · ω = λ
(see [3]). Since Y is constructed in M , this implies that cf(κ)M ≤ λ. And since
λ = cf(κ)M [G] ≤ cf(κ)M , we must have cf(λ)M = cf(λ)M [G]. �

Combining Theorem 7.9 with Theorem 7.4 shows that Cκ preserves cardinalities
in M . Using this fact, we can now prove that Cκ adds κ reals to M :

Theorem 7.10. Let M be a ctm of ZFC, let G be P-generic over M , and let
κ be a cardinal in M . Then M [G] |= 2ℵ0 ≥ κ. In particular, if κ > ℵ1, then
M [G] |= ¬CH.

Proof. To shorten notation, set Cκ := Fn(κ× ω, 2). First, we will show that ∪G is
a function from κ× ω to 2 For each α ∈ κ and n ∈ ω, set

Dα,n :=
{
p ∈ Cκ | (α, n) ∈ dom(p)

}
.

One can quickly check that for each α ∈ κ and n ∈ ω, Dα,n is an open dense subset
of P in M . With G P-generic, it follows that G ∩ Dα,n 6= ∅. Hence, for every
pair (α, n) ∈ κ × ω, there is a function p ∈ G that is defined on (α, n). Since G is
directed, it follows that ∪G is a function with domain κ× ω.

We can now use the fact that ∪G is a function to explicitly produce κ distinct
real numbers in M [G]. For α ∈ κ, define rα ∈ ω2 by setting

rα(n) := ∪G
(
(α, n)

)
for n ∈ ω.

Furthermore, for α, β ∈ κ, let Dα,β denote the collection of conditions p ∈ Cκ
that are defined on both (α, n) and (β, n) for some n ∈ ω, and are such that
p
(
(α, n)

)
6= p

(
(β, n)

)
. Once again, one easily checks that Dα,β is an open dense

subset of Cκ in M , so that G ∩ Dα,β must be nonempty. Hence, for any distinct
α, β ∈ κ, there is a natural number n and a condition p ∈ Cκ such that p

(
(α, n)

)
and

p
(
(β, n)

)
are distinct. By the definition of rγ for γ ∈ κ, it follows that rα(n) 6= rβ(n),

so that there are at least κ distinct reals in M [G]. With |ω| = ℵ0, this means that
M [G] |= 2ℵ0 ≥ κ. As mentioned in the statement of the proof, fixing κ > ℵ1 then
gives M [G] |= ¬CH. �
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By the work of Section 3, Theorem shows Con(ZFC) → Con(ZFC + ¬CH).
Now, our next goal is to show that the forcing notion Kα can be used to prove
Con(ZFC)→ Con(ZFC+CH). In fact, we will prove that if M is a ctm of ZFC,
α is an ordinal in M , and Gα is a Kα-generic filter over M , then a generalized form
of the Continuum Hypothesis holds in M [Gα]. But in order for our arguments to
work, we once again need to know that Kα preserves certain cardinals.

Definition 7.11. Let P be a forcing notion, γ ∈ Ω, and let {pε | ε < µ} be a
sequence of conditions in P .

(1) {pε | ε < γ} is increasing if and only if pε1 ≤ pε2 whenever ε1 < ε2 < γ.
(2) {pε | ε < γ} is bounded above in P if and only if there exists a condition

q ∈ P such that q ≥ pε for every ε < γ.
(3) Let κ be an infinite cardinal. P is κ-closed if and only if every increasing

sequence of conditions in P of length shorter than κ is bounded above in
P .

The following theorem will allow us to prove that Kα preserves all cardinals
≤ ℵα+1 by showing that Kα is ℵα+1-closed.

Theorem 7.12. Let P be a κ-closed forcing notion in a ctm M for ZFC, let G be
a P-generic filter over M , let µ < κ be a cardinal, let X ∈ M , and let f : µ → X
be a function in M [G]. Then f belongs to M .

Proof. Let f ∈ Xµ be a function in M [G]. Then there are P-names f˜, Xµ˜ for f and

Xµ, respectively. By (2) of the Forcing Theorem, there is a condition p ∈ G such
that p 
P f˜ ∈ Xµ˜ . We will show that for every p′ ≥ p, there exist a condition q ≥ p′

and a function g : µ → X in M such that q 
P f˜ = g. So, fix a condition p′ ≥ p.

Since M [G] |=
˙
0[G] ∈

˙
µ[G], (2) of the Forcing Theorem shows that there is some

condition r ∈ G such that r 
P
˙
0 ∈

˙
µ. With G directed, there exists a condition

r′ ∈ G such that r′ 
P f˜ ∈ Xµ˜ ∧
˙
0 ∈

˙
µ. By Corollary 6.5.2, it follows that there

is a condition p0 ∈ G such that p0 
P f˜(
˙
0) =

˙
x0 for some x0 ∈ X. Similarly, for

each α ∈ µ and condtion pα ∈ G, the same argument produces a pα+1 ≥ pα such
that pα+1 
 f˜(

˙
pα+1) =

˙
xα+1. By recursion in M , {pα | α ∈ µ} is a well-defined,

increasing sequence that lives in M . Since P is a κ-closed forcing notion, it follows
that there exists a condition q ∈ P such that q ≥ pα for all α ≤ µ. By Theorem
6.3.1, it follows that q 
P f˜ ∈ ˙

Xµ.

We have thus shown that the collection of conditions in P that force f˜ = g for

some function g ∈ Xµ living in M is dense above p. By Corollary 5.5, there is a
condition s ∈ G such that s 
P f˜ ∈ ˙

Xµ. Since
˙
Xµ is the canonical P-name for Xµ

as it is defined in M , it follows that M [G] |= f ∈M . �

Corollary 7.13. Let M be a ctm of ZFC, and suppose that α ∈ M . Then Kα

preserves all cardinals ≤ ωα+1.

Proof. Let γ < ωα+1, and let {pε | ε < γ} be an increasing sequence in Kα. First,
note that q :=

⋃
ε<γ pε is a function from a subset of ωα+1 to P(ωα). By Theorem

7.3, ωα+1 is a regular cardinal, so that
⋃
ε<γ dom(pε) ( ωα+1. This ensures that

q is indeed a condition in Kα, and by construction, q ≥ pε for every ε < γ. With
γ < ωα+1 arbitrary, this means that Kα is ℵα+1-closed.
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Now, let G be a Kα-generic filter over M , let µ < ωα+1 be a cardinal, and let
γ ∈ ΩM . If f : µ → γ is a function in M [G], then Theorem 7.12 shows that f
actually lives in M . Fixing µ < ωα+1 and varying γ ∈ ΩM shows that µ remains a
cardinal in M [G], while setting γ = ωα+1 and varying µ < ωα+1 shows that ωα+1

remains a cardinal in M [G].2 �

Now that we know that Kα preserves all cardinals ≤ ωα+1, we are ready to prove
that the continuum hypothesis holds in Kα-generic extensions of ctms of ZFC:

Theorem 7.14. Let M be a ctm of ZFC, and suppose that Gα is a Kα-generic
filter over M . Then M [Gα] |= 2ℵα = ℵα+1. In particular, M [G0] |= CH.

Proof. We will first show that ∪Gα is a surjective function from ωα+1 onto P(ωα).
Let ε ∈ ωα+1, x ∈ P(ωα), and set

Dε,x :=
{
p ∈ Kα | ε ∈ dom(p) ∧ x ∈ ran(p)

}
.

One easily checks that Dε,x is an open dense subset of Kα, so that G ∩Dε,x 6= ∅.
Hence, for all ε ∈ ωα+1 and x ∈ P(ωα), there is a condition p ∈ Gα such that
ε ∈ dom(p) and x ∈ ran(p). Now working in M [G], the fact that Gα directed implies
that ∪Gα is a surjective function from ωα+1 onto P(ωα). Thus |P(ωα)| ≤ ωα+1

holds in M [G], or in other words, M [G] |= 2ℵα ≤ ℵα+1. And since 2ℵα ≥ ℵα+1

holds by the definition of ℵα+1 together with 2ℵα > ℵα (see [2]), we have that
M [G] |= 2ℵα = ℵα+1.

Letting α = 0 then gives us that CH is true in M [G]. �

By the work of Section 3, Theorem 7.14 shows Con(ZFC)→ Con(ZFC+CH),
so that overall, we have proved that CH is logically independent from ZFC set
theory.
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