MATHEMATICAL STATISTICS

BENJAMIN KONSTAN

ABSTRACT. This paper serves as an introduction to mathematical statistics.
It will precisely define key objects and tools, and then sequentially prove key
theorems that take the reader on a journey from those basic definitions to
some of the main theorems used in the field of statistics. Every statement
along the way will be accompanied by rigorous proof and conceptual discus-
sion, leaving behind a strong understanding of the mechanisms behind applied
statistics. Important concepts covered include: Moment-generating functions;
Chebyshev’s Inequality; Law of Large Numbers.
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1. INTRODUCTION

In high school statistics, students are taught t-tests, p-tests, and even chi-squared
test. They may be told that “in the long run,” a repeated event with probability
one half will result in a success half the time, or that for n > 30, the distribution
of sample means approaches a normal distribution. However, all these statements
fail spectacularly to demonstrate how statistics is a branch of mathematics. They
lack the rigor and precision of mathematical rules, and they are often presented to
students without any proof whatsoever.

The sub-field of mathematical statistics is the theory underlying these statements
that addresses those issues. In it, rigorous and precise definitions provide the frame-
work for proving all of the elementary statistical nuggets we are taught as fact. This
paper will provide an introduction to mathematical statistics, proving from scratch
a chain of statements that help us better and more precisely understand probability
and statistics.
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2. LAYING THE GROUNDWORK

We need to begin by laying out a sequence of definitions to frame everything
we're going to be talking about. We denote the “Event” or “Outcome” space €2 as
the set of possible events; its elements, the elementary events, are denoted by w.
An event is a subset of the event space, denoted C C Q

Example 2.1. Consider a random number generator (RNG) that produces an
integer between 1 and k (inclusive). Its event space is {w1, ws,ws, ..., wy } where w;
represents an output from the RNG of integer .

We can then define a probability measure as a function:
P:Q—10,1]
satisfying several key properties:
e VocqP(C)>0
e P(0)=1
* Voo, P(C:UC)) = P(Ci) + P(C))
Next, we define a random variable as a function:
f: Q=R

This is particularly useful, as the values of f form a set x, and if we have a proba-
bility metric P defined over the domain of f, we call P the probability distribution
of the random variable f.

Moving forward in our study of random variables, x will often refer to the value of
the random variable, and P(z) its probability. However, one last definition we need
is that of a distribution function. Let = be a continuous variable. A distribution of
this variable will be a function f(z) such that:

/bf(x)dx—P(a<x<b)

As R is the event space, it follows from the second property above that | fooo f(x)dx =
1.

Example 2.2. I now present the binomial distribution. Let’s say we have a prob-
abilistic process with two possible outcomes: success and failure, each occurring
with probabilities p € [0,1] and ¢ = 1 — p, respectively. Now consider running this
process n times, independently (such as flipping a coin 3 times where heads is con-
sidered a success). The number of successes over those n trials is a random variable
X Its event space consists of all the possible numbers of successes i.e. 0,1,2,3, ..., n,
and each has an assigned probability. Since one of those numbers of successes will
take place, it is easy to understand that P(2) = 1. We will examine the binomial
distribution in greater detail later, but for now let’s calculate the P(w = n). As you
learned in a high school statistics course, the probabilities of independent events
multiply. Thus, getting n successes requires multiplying the probability of success,
p, n times, thereby getting us p”.
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3. MOMENT GENERATING FUNCTIONS

We define the k** moment of a random variable about the origin as follows:
o0
my, = Z 2* P(z)
=0
Or the analogous version in the continuous case:

o0
my, = / z* f(x)da
— 00

Clearly, the first moment about the origin is what we commonly call the “mean”
or “expected value” of a random variable, m. We can then similarly define the k"
moment about the mean of a random variable as:

o0

my = Z(x —m)*P(z)
=0

Or, for continuous variables,

= [ =) pes

— 00

As it turns out, ms measures the spread of a distribution about its mean - we call it
the variance. Its square root is the standard deviation. Further moments about the
mean measure skewness, peakedness, and many other qualities of a distribution. In
fact, the distribution of a random variable is completely determined by its moments.

While it is theoretically possible to compute any individual moment of a distri-
bution by carrying out the necessary summation or integration, there is an easier
technique called the Moment-Generating Function.

Definition 3.1. We define the moment-generating function for a random variable
X with distribution function f(x):

M, (0) = /OO e®® f(x)dx

— 00

Or, in the discrete case:
o0

M, (0) =) "' P(a)
z=0
To demonstrate that the moment-generating function really generates moments, we
can expand the exponential as follows:

M, (0) = /OO (14 20+ x; +..)f(z)dz

/oo 0o 92 0o )
= f(x)dm—i—@/ xf(z)dx + — x* f(x)dx + ...

oa .

02
=m, +m’19+m'2§ + ...
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We can retrieve these coefficiencts through repeated differentiation. It is easily
verified that:
;o d* M
e = g 0=
It is not hard to see that this holds in the discrete case as well.
Example 3.2. Let’s do an example with the normal distribution - i.e. a bell curve.

Definition 3.3. The normal distribution (centered around ¢, variance 1) is defined
by the distribution

1 x—t 2
J@)= 5o 2
27

We can use this and the above definition to calculate its moment-generating
function for the case of £ = 0:

1 [ 82
o e T da
m — 00
1 [ .2
=3 e Tty
m — 00
]. > 1 2 1p2
_ 675(170) +30
2 J_ o
1 o0 1 2 1p2
= 27 6_5(;8_0) 659
a — 00
oo
et [T L @02
oo 2T
_ bt

The last equality holds because the integrand is just a normal probability distribu-
tion function whose integral must be 1 (this can also be verified using either series
or change of variables). Thus, the result we get is that:

M, (0) = e2?

‘We can use this result to calculate some moments.

dM
m}, = 5 lo=0 = (0)e2 =0

d
This tells us that the mean is 0, exactly as we defined it to be.
d>M
Wb:o =
Since our distribution has mean 0, m5 = ms, so our variance is 1 just like we
expected.

mhy = (0 +1)e? =1

3
ml, = %|9:0 — (0° 1 3(0))e% =0
The third moment - which measures how skewed a distribution is - also leads to
zero (the normal distribution has no skew - it’s perfectly symmetric!). This pattern
reveals an interesting fact about normal distribution - all odd moments obtain a

value of 0.
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This example was used specifically because the normal distribution is incredibly
powerful in the field of statistics. The Central Limit Theorem states that the sum of
independent random variables will converge to the normal distribution irrespective
of the initial distributions. Moreover, the normal distribution is a powerful tool
used to approximate binomial distributions which were discussed earlier and will
continue to be useful to us. Before that however, we want to prove one more thing
about moments that will come in handy:

Lemma 3.4. We claim that ma = mb — mf2.

Proof.

oo

mo = Z(z —m)?P(z)

=0

= i 2’ P(z) — 2zmP(z) + m*P(z)
=0

= Z 2 P(z) + —2m Z zP(x) +m? Z P(x)
=0 =0 x=0

=ml — 2mm +m? == mf —m/?

The last step is clear, as m = m} and by definition, > 7/ P(z) = 1. O

4. MOMENTS OF A BINOMIAL DISTRIBUTION

We want to find the first and second moments of the binomial distribution. To
do so, we can use its moment-generating function. From the definition above, we
know that

M, (0) =) " P(x)
=0
To find P(x), we see that in n trials, the probability of k successes is the number
of arrangements of k successes (and n-k failures) times the probability of each
arrangement i.e. P(k) = (nCk)p*q"~*. Thus, we get:

n

_ - Ox ! T n—r __ z! O\ n—zx
Mz (6) = Ze a:!(nfx)!p ¢ = Z x!(nfz)!(pe )a

=0 =0

This is just a binomial expansion. We can rewrite it as:
M,(0) = (q+pe’)"
To find the desired moments, we can differentiate:
M'(8) = npe’ (q +pe’)"
M"(0) = npe’(q + pe’)"*(q + npe’)

Evaluating these at § = 0, we get uj = np and pb = npg + (np)?. Using lemma 1,
we then get us = ph — p/2 = npq. Thus, we have:

m=np

g = \/npq
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5. THEOREMS

We’re now going to use the resources we’ve built up to prove some useful theo-
rems in probability.

Theorem 5.1. Chebyshev’s Inequality: Assume a continuous distribution function
with finite variance. Then,
1

P(lx —m| > ko) < 72
Proof. Let us start with the integral defining variance (i.e. the second moment
about the mean) as:

oo
o? = / (x —m)?f(z)dx

— 00

Given k > 0, this can be broken down into three integrals to get:

/ " e w2 ) + / e+ / e

—00 m—ko m-+ko

Examining the middle quantity, we see that the integrand is always positive and
that the lower bound is less than the upper bound. Therefore, we can conclude
that:

m—ko 0o

%> / (x —m)*f(x)dx + / (x —m)*f(z)dx

—00 m-+ko
To further simplify this inequality, we can see that the minimum value of the
(r —m)? term takes place at the limit closest to the mean (i.e. the upper limit for
the left integral and the lower limit for the right integral). Thus, we get:

o

m—ko
o? > / (m—ka—m)gf(x)dm—&—/ (z + ko —m)? f(x)dx

—0o0 m+ko

This is equal to:

(kor)?2 l / " e / b f(x)dx)]

—0o0 m+ko

Notice that these two integrals give the probability that x will be at least k£ standard
deviations from the mean (left and right, respectively). Thus, it is equivalent to
saying:
o? > k*0?P(|x — m| > ko)
This can be written as above:
1
P(lx —m| > ko) < =
O
Example 5.2. We'll start with a relatively familiar example with a twist (we don’t
get to assume a normal distribution!). Let’s say that a factory worker suspects that
a new machine isn’t working as quickly as the others at the factory. She had already
measured the average speed down the production line to be 4.5 hours, and that the
standard deviation for the different machines (all of which perform the same task -
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this is a BIG factory) is about 6 minutes. She then tested this new machine, and
found it took a whopping 5 hours. Would she be right, within 95 percent certainty,
to claim that there is something wrong with this new machine?

To answer this question, we need to identify how many standard deviations from
the mean this new machine was. Since it took 30 minutes longer and the standard
deviation is 6 minutes, that means it is 5 standard deviations away from the mean.
The upper bound on the probability of this occurring is given by Chebyshev’s in-
equality:

1 1

2o .04
An event this extreme would only occur at most 4 percent of the time! That means
we would expect it not to occur in 96 percent of machines in the distribution, so
with 95 percent confidence, we can say something is wrong with this one! She
deserves a raise.

Example 5.3. Let’s say you're a biologist working in a laboratory with bacteria.
You know that this strand of bacteria reproduces an average of 5 times per minute,
at a rate that is intrinsic to the individual bacterium. While you don’t know the
complete shape of the distribution, you know that the standard deviation is .5
babies per minute. What percent, at most, of the population can you expect to
reproduce less than 2 or more than 8 times per minute?

This is a straightforward application of Chebyshev’s inequality. We're looking at

a situation where k = 6 since we’re looking at cases where the observation is 6

standard deviations from the mean. The |x — m| > ko is equivalent to our “less

than 2 or more than 8” condition. We know that its probability is less than or
1

equal to %, or, 35 = 2.7%. Thus, at most 2.7 percent of our bacteria will be in

this special category.

Example 5.4. Consider the following: you’re a professor writing an exam. You
are confident in your ability to ensure that the class mean will be 65 percent, and
you have the ability to approximately create the standard deviation for the score
distribution. Lastly, you want at least 99 percent of the class to score above a 40.
What should you set the standard deviation as?

This question requires two steps: first we must find out how many deviations are
guaranteed to be within the 99 percent threshold, and second we must figure out
what value the standard deviation must be for that number of standard deviations
to get us to 40 percent. The first step requires applying Chebyshev’s inequality.
We know that 99 percent of observations are contained in the interval leaving 1
percent out; therefore, we set

1

= 0l —k=10
This implies that within 10 standard deviations, we are guaranteed to find 99
percent of all observations. Now we want those 10 standard deviations to correspond
to the 25 percentage point difference between the mean, 60, and our lower bound,
40. Dividing this out, we get a standard deviation of 2.5 percentage points.
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Theorem 5.5. Law of Large Numbers: The probability of a sample success ratio
differing from its expected value by any amount goes to zero as the sample size
approaches infinity

Proof. Consider n trials of an event whose probability of success in a single trial is
p (and whose probability of failure is ¢ = 1 — p). Moreover, let  be the random
variable representing the success ratio over those n trials. This is just a binomial
distribution (with everything divided by n to get a ratio). Clearly, m = p and
o= \/%T. We can apply Theorem 1 to see that:

g 1
Pz — k) < —
(e =l > by /2 < 5

Now fix any € > 0 and let k = \/L The inequality reduces to:

pq ’

Ple—pl > <2

ne

This shows that for any fixed € > 0, we can take a large enough number of trials n,
and the probability of = being € away from the mean p converges to 0. O

Example 5.6. Let’s say you're throwing a dinner party for a political fundraising
event. You know that some people will show up having eaten, whereas some will
want to eat food. From prior experience, you can say that 70%, on average, of your
200 guests will be hungry. Naturally, you decide to cook a guarantee of 140 meals.
However, as a statistician, you know that you can calculate how many extra meals
you might need, within 95 percent of cases. How many meals should you have in
the back, ready to heat up in case you're hosting a hungry audience? Note, you
can assume that everyone will show up alone, not having talked to each other (i.e.
the variables are independent).

This question is just an exercise of applying the Law of Large Numbers. This
is a binomial distribution where a success represents a guest arriving hungry. We
know that p = .7, ¢ = 1 —.7 = .3, and n = 210. Since we’re concerned with 95
percent of cases, we want P(|x — p| > €) < .05. Thus, we can plug in

pq 21
—_ == =.021
ne 200¢ 05 = ¢ 0

To see how many meals this is, we multiply the ratio by the number of guests:
.021(200) = 4.2

We know that the point estimate of 140 meals will be off by less than 4.2 meals
in 95 percent of meals! We’ll leave it then to your personal philosophy whether to
keep 4 or 5 on your back stove.

Example 5.7. Let’s say you have a suspicion that a certain coin lands on heads
more than it lands on tails. You want to go ahead and actually test this out, so you
design an experiment where you’ll flip the coin n times, and then if the resulting
proportion of heads varies from .5 by more than .01, you conclude that it’s biased.
How many times should you flip the coin so that you’d only diagnose a fair coin
as biased 1 percent of the time? As you may have learned in high school statistics,
this is what we call Type 1 Error.
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Once again, this is an application of the Law of Large Numbers. We are look-
ing for

pq  .5(.5)
P(lx —.5] > .01) < — =
(= > )< ne .0ln
which we want to be less than .01. Thus, we want:
.25
— =.01->2 =
oln 01 — 2500 =n

Therefore, if we do 2500 trials, we get the desired precision for our study!

Example 5.8. Let’s say you're assigning binary identification codes (sequences of
0s and 1s). You do this by choosing a probability for a 1 and randomly spitting
out each digit according to that probability. Moreover, you want to be able to
test whether a given sequence is one you assigned. These sequences are of length
100, and you want to be able to say with 95 percent certainty that if a sequence
varies from its expected number of 1s by more than 1 element, then that sequence
is not one of yours. What should you make the probability of a 1, assuming you
want a probability as close to .5 as possible to minimize the likelihood of randomly
repeating an identification code?

Following a similar pattern, we're looking for
PL_ o5
ne

This time, we know that n = 100 and € = .01, which sets up the equation:

p(1 —p)
100(.01)

At this point, we can note the symmetry between p and ¢ because there’s no
fundamental difference between 1s and 0s. Solving the equation above, we get the
result that p = .947 or p = .053. Indeed, in each case, ¢ will take on the other
value. Thus, we should set the probability of a 1 to be either .947 or .053.

=.05

6. CONCLUDING THOUGHTS

This paper introduced a theoretical, proof-based approach to statistics. Precise
definition and theorem statements were laid out and proven. Fundamental facts of
probability were built from the ground up, in what should have been a relatively
accessible manner. However, I hope the power of these statements we generated
isn’t lost on you. With only a few pages and a couple lines of proof, we have
built all the machinery necessary to conduct a “p-test.” We have been able to put
bounds on probability distributions we know very little about, and we have shown
rigorously that our intuition was true: when you flip a coin one million times, the
probability that the proportion of heads varies by any meaningful amount from
one half is very low. These very general statements, proven through calculus alone,
were then applied to real-world problems ranging from hosting political fundraisers
to handing out exams to working in a scientific lab. I thank you for joining me
on this adventure today and hope that you have a slightly greater appreciation for
both the rigor of the theory behind seemingly obvious statements and the broadness
of application of ostensibly inconsequential theory. Because at the intersection of
application and theory, that’s where the field of mathematical statistics lies.
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