TORSION ON ELLIPTIC CURVES AND MAZUR’S THEOREM
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ABsTrACT. We discuss several results about rational torsion points on elliptic
curves. First, we outline the proof of the Mordell-Weil Theorem, a fundamental
result which ensures the subgroup is finite. Next, we explain how to compute
the torsion of a specific elliptic curve using local methods. Finally, we discuss
modular curves, which make it possible to study torsion points of every elliptic
curve at once. This allows us to state (but not prove) Mazur’s celebrated
torsion theorem, which says that only 15 specific groups can occur as rational

torsion subgroups of elliptic curves.
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Our focus in this paper will be on elliptic curves, which are smooth, projective
algebraic curves of genus one over a field. The fundamental fact about elliptic
curves is that they admit a group law: given an elliptic curve F, there is a map of
algebraic varieties +: E X E — E which gives E the structure of an Abelian group.
The group operation makes sense for any field, so for instance if the elliptic curve
F is defined over Q, the points on E with complex coordinates form a group, and

the points with rational coordinates form a subgroup.

In 1922, Louis Mordell proved that given any elliptic curve F defined over Q, its
group E(Q) of rational points is a finitely generated abelian group. In 1928, Andre
Weil proved the Mordell- Weil Theorem, which shows that the same holds for any
finite extension K of Q. By the classification of finitely generated Abelian groups,
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we find that E(Q) & Z" x F, where F is some finite Abelian group and r is the
rank of the group E(Q), also known as the rank of the curve E.

This immediately poses two additional questions: first, what are the possible
ranks 7?7 Second, what can we say about the finite torsion subgroup F'? The first
question turns out to be very difficult, and little is known: in fact, it is unknown
whether there are elliptic curves whose rank grows arbitrarily large. The Birch and
Swinnerton-Dyer Conjectures, still unproven, would establish a connection between
the ranks of elliptic curves and certain L-functions.

The second question is much more tractable. In 1978, Barry Mazur proved the
following elegant result, which completely settles it, at least over Q:

Theorem 1.1. Let E be an elliptic curve defined over Q. The possible torsion
subgroups of E(Q) are:

(1) Z/NZ, where 1 < N <10, or N = 12.
(2) Z)2Z x Z/2NZ, where N = 1,2,3, 4[]

In this paper, we develop some of the general theory of torsion on elliptic curves
in order to put Mazur’s Theorem in context. In the first few sections, we state
fundamental results on elliptic curves, skipping all but the simplest proofs. In
the next few sections, we outline the proof of Mordell-Weil in some detail, paying
special attention to local considerations and the role of Galois cohomology. Then,
in order to make the argument in the proof of Mordell-Weil more explicit, we
discuss how to calculate the group of rational points on a specific curve, as well
as how these methods can fail. In the final sections, we develop the basic theory
of modular curves. These are (roughly) curves whose points correspond to elliptic
curves with specified torsion points. Studying them provides an effective way to
answer questions about torsion across all elliptic curves, and they played a central
role in the proof of Mazur’s Theorem. The proof of the full theorem is far beyond
our scope, but we discuss proofs of several specific cases.

In general, we work over an arbitrary number field for the proof of Mordell-Weil.
For the rest of the paper, we specialize to elliptic curves defined over Q, where
finding possible torsion subgroups is much easier. In the final section, we briefly
consider elliptic curves defined over C rather than a number field.

In general, we assume the reader has seen the basic theory of algebraic curves,
at the level of [4] or the first two chapters of |16]; in particular, a couple of results
which we quote without proof depend on the Riemann-Roch theorem for curves.
We also assume a solid knowledge of Galois theory, and familiarity with some basic
notions from algebraic number theory. In the final sections, we will occasionally
need basic facts from complex analysis, and these sections use very little from the
rest of the paper.

We don’t assume any prior exposure to elliptic curves, although some basic
results will be quoted without proof. Most of these results come from [16|, and can
also be found in |10].

IThe fact that every torsion subgroup is either of the form Z/NZ or Z/NZ x Z/2Z follows from
the structure of F(R), which will either be S! or S! x Z/2Z, depending on the discriminant. For
a discussion, see Chapter V of |15].
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2. BAsic THEORY

For the purposes of this paper, all curves considered will be projective, unless
stated otherwise. We will need a couple of basic results from the theory of algebraic
curves, which we state here for reference.

Theorem 2.1 (Bézout’s Theorem). : Let C,C" be projective plane curves of degree
m and n respectively. Then C, C intersect with total multiplicity mn.

Proof. See Chapter 5 of [4]. O

Theorem 2.2 (Degree-genus formula). Let C' be a smooth projective plane curve
defined by an equation of degree d, with genus g. Suppose further that C is defined
over a field of characteristic 0. Then:

_(d-1)(d-2)
N 2
Proof. This is a consequence of the Riemann-Hurwitz formula, which states that

if ¢: C1 — C5 is a degree n map between smooth curves Cp,Cs of genus g1, g2
respectively, both defined over a field K with char(K) = 0, then:

291 —2=n(202—2)+ »_ (es(P) 1)
pPeCy

Here, ey (P) is the ramification index of ¢ at P, which is one for all but finitely
many P. For a proof of this formula, see Chapter II of [16]. In order to prove
the degree-genus formula, pick a line L C P? which is not tangent to C, and let
¢: C — L be the projection map. The line L is isomorphic to P!, and hence
has genus 0 (the genus of P! can be calculated from the Riemann-Roch theorem,
discussed in Chapter 8 of |4]). The map ¢ will have degree d, by Bézout’s Theorem.
Likewise, by Bézout’s Theorem, since L is not tangent to C, L N\ C will consist of d
distinct points, which are the ramification points of the map, and each such point
will ramify to degree d. Thus, we have:

29(C) — 2 = —2d + d(d — 1)

)(d=2)
2

Rearranging terms, we find that ¢(C) = (d-1 , as desired. O

First, we give the general definition of an elliptic curve:

Definition 2.3. Let K be any field. An elliptic curve defined over K is a pair
(E,O), where:

(1) E is a projective algebraic curve of genus one, defined over K.
(2) O is a point on F with coordinates in K (a ‘K-rational point’).

Note that the point O is part of the definition. In particular, if a curve has an
equation with coefficients in K but has no K-rational points, then the curve is not
an elliptic curve defined over K. When we give the curve E a group law, O will be
its identity element. For ease of notation, however, we will usually just call a curve
E, allowing the point O to be understood. We will also write E/K to indicate that
F is defined over the field K.

In order to simplify proofs, it helps to introduce a more explicit description of
elliptic curves. This motivates the following definition:
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Definition 2.4. A Weierstrass equation is an equation of the form:
(2.5) Y2+ a1 XY 4+ a3y = X3 +a,X? +asX + ag

where a1, as,as,a4,a¢ are contained in some field K. Working in homogenous
projective coordinates, this corresponds to the equation:

Y2Z + a1 XYZ+asYZ% = X2+ au X%Z + ay X Z? + ag Z°

Every Weierstrass equation defines a plane curve, C. The equation has an as-
sociated number A, called the discriminant, whose definition we give in a special
case below. The discriminant A is nonzero if, and only if, the associated curve C
is nonsingular (for more details on this, see Chapter III of [16]). Note that if C' is
nonsingular, then C' can be made into an elliptic curve defined over K. Indeed, by
the degree-genus formula, C' will have genus one, so we only need to check that C
contains a K-rational point O. For this, note that the point [0 : 1 : 0] is K-rational,
and is the unique point at infinity contained on the curve C'. By convention, if a
curve C is defined by a Weierstrass equation, we always take the point O to be the
point at infinity.

What is less clear is that the converse is true. That is, an elliptic curve can
always be written in Weierstrass form:

Lemma 2.6. Let E/K be an elliptic curve. There are functions x,y € K(E) such
that the map ¢: E — P? given by:
is an tsomorphism.

Proof. See |16], Proposition III.3.1. O

In particular, we now know that every elliptic curve is a plane curve.
Over a field of characteristic 0, such as QQ, we can change coordinates to write
any Weierstrass equation in the simpler form:

v =23+ Az + B
We will usually work with Weierstrass equations of this form. In this case, the
discriminant is given by:

A = —16(4A3 + 27B?)
We also associate another quantity, called the j-invariant, and defined by:
. (4A4)3
= —1728———

J A
The j-invariant will become important in the final section when we study modular
curves. This is because of the following fact:

Fact 2.7. Suppose K is algebraically closed. Then two elliptic curve E, E’ are
isomorphic over K if and only if they have the same j-invariant.

Elliptic curves have a group law which is compatible with their algebraic struc-
ture. More formally, we have:

Theorem 2.8. Let (E, O) be an elliptic curve. Then there exists a map + : EXE —
E, such that:

(1) E is an Abelian group with the binary operation +, with identity element
0.
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FIGURE 1. An illustration of the group law on the elliptic curve
=3 —-z+1

(2) The map + is a morphism of varieties.

Proof. By the above discussion, we may take E to be a plane curve, allowing us to
apply Bézout’s Theorem. The group law on F is given by the following algorithm:
given two points A, B € E, the line between A and B intersects E at a unique third
point P, by Bézout’s Theorem (if A = B, take the tangent line). The line between
P and O likewise intersects at a unique third point P’, and we define A + B = P'.
A proof that this gives an Abelian group law, via the Riemann-Roch theorem, is
given in Chapter III of [16]. For a different argument, see Chapter 5 of [4]. O

We now define maps between elliptic curves. An elliptic curve is compatibly both
a group and an algebraic variety, so it makes sense to require that maps preserve
both structures. Thus, we define an isogeny to be a map f: E — E’ between
elliptic curves which is a morphism of varieties and also a group homomorphism.
It turns out that a weaker condition is enough:

Proposition 2.9. Suppose f: E — E' is a morphism of varieties and maps O € E
to O' € E'. Then f is an isogeny.

Proof. See [16], Theorem IIT.4.8. O

Every elliptic curve E has corresponding isogenies [m]: E — E, mapping P to
mP. Many basic properties of elliptic curves can be verified by carefully considering
these maps. Here is one example:
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Lemma 2.10. Let E/K be an elliptic curve, pick m € Z>°, let E[m] be the sub-
group of E(K) consisting of m-torsion points, and suppose K is algebraically closed
of characteristic 0. Then E[m| = (Z/mZ)?2.

Proof. The kernel of the isogeny [m] has size m? for all m (|16], Theorem IIL.6.2),
and this kernel is exactly E[m]. If n divides m, then E[n] C E[m|. Writing
G = E[m)], this means that for every n dividing m, the n-torsion subgroup of G has
size n?. But the only Abelian group of size m? with this property is (Z/mZ)%. O

Remark 2.11. A version of this statement is true in characteristic p, but we won’t
need it. See |16], Corollary I11.6.4.

3. LocAL FIELDS, AND A RESULT ON TORSION

For the proof of the Mordell-Weil Theorem, we will need several basic facts about
local fields and elliptic curves defined over them. We state them here for reference.
For proofs of the basic facts on local fields and definitions of terminology (absolute
value, completion, Q) local field, and so on), see any standard book on algebraic
number theory such as [12] or [14]

Let K be a finite extension of Q (a number field). Given an absolute value v on
K (which we always assume to be nontrivial), we will often want to consider the
completion K, of v with respect to K. If v is Archimedean, K, will be isomorphic
either to R or to C. Otherwise. K, will be isomorphic to a finite extension of Q,
for some prime p, and hence will be a local field. We will often make use of the
following result, which characterizes the set of absolute values on K.

Theorem 3.1 (Ostrowski). Let K be a number field.

(1) The only fields complete with respect to an Archimedean absolute value are
R and C. In particular, the Archimedean absolute values on K correspond
to real embeddings of K or conjugate pairs of complex embeddings.

(2) The non-Archimedean absolute values on K are exactly the p-adic absolute
values, where p is a prime ideal in the ring of integers O . The completions
with respect to non-Archimedean absolute values are finite extensions of Qp,
for some prime p.

Proof. See [2]. O

Let K be a local field. The absolute value on K corresponds to a unique nor-
malized discrete valuation, mapping elements of K to Z U {co}; this is because K
is the fraction field of the ring R of elements with absolute value at most 1, and
the ring R is a discrete valuation ring. We always assume discrete valuations are
normalized, which means that the minimum positive valuation of any element is
1. We will need the fact that valuations extend to algebraic extensions, and that
finite extensions of local fields are local.

Lemma 3.2. Let K be local. If E/K is an algebraic extension, the discrete valua-
tion on K extends uniquely to a valuation on E. If E is assumed to be finite, then
the valuation on E will be discrete, making E into a local field as well.

Proof. See Chapter II, §3 of |14]. O

Let E/K be a finite extension of local fields. Suppose that © € K is an element
of valuation 1 in K. We define the ramification degree of the extension, necessarily
a positive integer, to be the valuation of 7 in E.
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Now, suppose that L/K is a Galois extension of number fields, not necessarily
finite, and let v be a valuation on K. The valuation v may have multiple extensions
to L, since K is not complete with respect to v. It turns out that Gal(L/K) acts
on the set of valuations extending v by sending the valuation w to w o o. For fixed
w, we define the decomposition group G,, C Gal(L/K) to be the stabilizer of the
valuation w. In general, not all the decomposition groups above a given valuation
will be the same, but they will be conjugate, since the action of the Galois group
is transitive. Given a choice of valuation w extending v, we have a corresponding
extension L, /K, of complete fields.

Theorem 3.3. The extension L., /K, is Galois, with Galois group Gal(L,,/K,) =
Gy.

Proof. See [14], Chapter 11, §3. ]

Given a Galois extension of local fields L/ K, there is a corresponding extension
of finite residue fields /K, and the Galois group Gal(L/K) maps into Gal(L/K).
In the case discussed above, we define the inertia group I, C G, to be the kernel
of the reduction map on Galois groups. The inertia group will be trivial if and
only if the extension is unramified (has ramification degree 1). Furthermore, the
reduction map on Galois groups is surjective, so unramified extensions of local fields
correspond to extensions of the residue field.

Next, we consider elliptic curves defined over local fields. let K be a local field
and let F/K be an elliptic curve. By changing coordinates if necessary, we can
find a Weierstrass equation for E all of whose coordinates are integral (that is,
have nonnegative valuation); in this case, the discriminant, which is a polynomial
in the coefficients, will also be integral. If the valuation of the discriminant is
minimal across all Weierstrass equations with integral coefficients, we say that the
Weierstrass equation is minimal. Given any point [x : y : 2] € P2, we can rescale
coordinates so that all three are integral, and so that at least one has valuation
zero. Since at least one reduced point will be nonzero, reducing these coordinates
modulo the maximal ideal (7) gives a map:

E(K) — E(K)

Here, K is the finite residue field of K, and E is the curve whose equation is the
reduced form of the equation for E. The discriminant of the equation corresponding
to E will be nonzero in K if, and only if, the valuation of the original discriminant
was zero.

Definition 3.4. Let E/K be an elliptic curve over a local field, and pick a minimal
Weierstrass equation for . We say that E has good reduction if the reduced curve
E is nonsingular. This is equivalent to requiring the discriminant of the minimal
Weierstrass equation for E to have valuation 0, and does not depend on which
minimal Weierstrass equation is chosen.

Usually, we will be interested in elliptic curves over a number field K. Given
some E /K, we can interpret it as an elliptic curve over K, for every valuation v on
K. We say E has good reduction at v if the corresponding curve E/K, has good
reduction. For example, given an elliptic curve defined over QQ, we will often reduce
its coefficients mod p, where p is a prime number.
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By studying how the coordinates of Weierstrass equations transform, we can
show that the discriminant only changes by 12th powers. This gives the following
result:

Proposition 3.5 (|16], Remark VII.1.1). Let E be an elliptic curve over a local
field K given by a Weierstrass equation. If the Weierstrass equation has integral
coefficients, and the discriminant has valuation less than 12, then the Weierstrass
equation is minimal.

For example, if an elliptic curve F/Q has discriminant A, and A is not divisible
by p'? for any prime p, then the corresponding Weierstrass equation is minimal
at every prime p. In particular, F has good reduction at exactly the primes not
dividing A.

The following result, which tells us how torsion points transform under reduction,
is crucial in the proof of the Mordell-Weil Theorem:

Lemma 3.6. Suppose E/K is an elliptic curve defined over a local field K, and
suppose E has good reduction. Let p be the characteristic of its residue field. If m
is coprime to p, then reduction gives an injective map:

E(K)[m] — E(K)
In other words, the reduction map is injective on m-torsion, for m coprime to p.

Proof. See 16|, Proposition VII.3.1. O

4. GALOIS COHOMOLOGY

Let E be an elliptic curve defined over the field K, and pick o € Gal(K/K).
The map o acts on projective space by acting on its coordinates, sending [z : y : 2]
to [o(z) : o(y) : 0(2)]. Let E? be defined by letting o act on the coefficients of

a Weierstrass equation for E. Then E is an elliptic curve, and o sends E(K) to
E°(K). In particular, if E is defined over K, then o induces a group automorphism
of E(K), although the map will not in general be a morphism of varieties.

The main technical apparatus in the proof of the Mordell-Weil Theorem is the
analysis of Gal(K /K)-actions, especially this one. In this section, we briefly sum-
marize the facts about Galois cohomology, which is a way to frame and simplify
many facts about Galois actions. All facts quoted without proof in this section are
from the appendix to [16]. For many more details, see the article [20].

Let K be a number field. The Galois group Gal(K/K) has a natural topology
as a profinite group, known as the Krull topology, which has the property that the
subgroup Gal(K/F), for F a finite Galois extension, form a neighborhood basis
around the identity (for more details, see [17]). An Abelian group M endowed with
an action of Gal(K/K) is called a Gal(K/K)-module if the action is continuous.
That is, the corresponding map f: Gal(K/K) x M — M is a continuous map of
topological spaces, where M is always taken with the discrete topology.

Proposition 4.1. An action of Gal(K/K) on an Abelian group M is continuous
if, and only if, the stabilizer of any element m € M is an open subgroup of finite
index.

Proof. A standard fact about profinite groups is that the open subgroups are exactly
the closed subgroups of finite index. Therefore, it’s enough to prove an action is
continuous if an only if all stabilizers are open.
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First, suppose the action is continuous, and pick m € M. The stabilizer of m is
the set {0 € Gal(K/K) : o(m) = m}; since M has the discrete topology, this will
be open in Gal(K/K) if and only if P = {(0,m) € Gal(K/K) : (m) = m} is open
in Gal(K/K) x M. However, P = f~Y(m) N {(x,m) : m € M}, and the second set
is open since M is discrete, so we conclude the stabilizer of m is open.

Conversely, suppose that for every m € M, the stabilizer of m is open. We will
show that the action map f: Gal(K/K)x M — M is continuous. Since M has the
discrete topology, it’s enough to show that for every m € M, f~1({m}) is open.
We have:

fH{m}) = (o,n) : a(n) = m}

For any a € M, set B, := f~({m}) N (Gal(K/K) x {a}) = {(0,a) : o(a) = m}.
It’s enough to show that each B, is open in the product, since f~1({m}) is the
union of these sets. Since M is discrete, we find that B, will be open in the product
if and only if

C,:={0:0(a) =m} C Gal(K/K)
is open in Gal(K/K). If C, is empty, then it’s clearly open. Otherwise, pick some
7 with 7(a) = m. Then 77*(m) = a. It follows that for any o, o(a) = m if and
only if 7(o(a)) = a. But then C, is just the stabilizer of a, translated by 7. It
follows from our assumption, along with the fact that Gal(K/K) is a topological
group, that C, is open. This completes the proof. |

Given a Gal(K/K)-module M, the most basic question we can ask is what its
fixed points are. Write:

NfGal(K/K) _ {x e M :o(z) ==, for all 0 € Gal(K/K)}

We also write ME(K/K) — HO(Gal(K /K), M), for reasons which will soon become
clear.

Example 4.2. By the definition of Gal(K/K), it acts on the Abelian group K.
This action is continuous: indeed, the stabilizer of any element x is just the kernel
of the map Gal(K/K) — Gal(F/K), where F is the Galois closure of K(x). By
Galois theory, this kernel is exactly Gal(K /F'), which is open by the definition of
the Krull topology.

In this case, Galois theory says that the fixed points are exactly the elements of
K. By almost the same argument, H°(Gal(K/K), E(K)) = E(K).

Suppose we have a short exact sequence of Gal(K /K )-modules:

0 A1y, c 0
This means that A, B and C are Gal(K/K)-modules, and that the maps f and
g commute with the action of Gal(K/K). It follows that there are correspond-
ing maps f: H(Gal(K/K),A) — H°(Gal(K/K), B) and g: H°(Gal(K/K), B) —
H°(Gal(K/K), C), where we use the same letter by abuse of notation. The restric-
tion of f will still be injective, and the kernel of the restriction of g will be the
image of the restriction of f, so we can form a corresponding sequence:

0 —— HO(Gal(K/K), A) —— H(Gal(K/K), B) —%— H(Gal(K/K),C)

If g were surjective, then H° would preserve exact sequences. Constructions which
preserve exact sequences are immensely helpful, because having an exact sequence
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often allows us to describe unfamiliar objects as quotients of ones we understand.
Unfortunately, g need not be surjective. This suggests we should find a construction
called H' which makes the following result true:

Theorem 4.3. Let A, B,C be as above. Then there exists a natural map § for
which we have the following exact sequence:

0 —— H(Gal(K/K), A) —— H°(Gal(K/K), B) —™ H(Gal(K/K),C

(Gal(K/K),A) —— HY(Gal(K/K),B) —" H'(Gal(K/K),C)

Luckily for us, such a construction exists, although its definition is not immedi-
ately intuitive. The following definition is from [16].

Definition 4.4. Let M be a Gal(K/K)-module. The group of continuous 1-
cocycles from Gal(K/K) to M, denoted by Z.,,(Gal(K/K), M), is the group
of maps ¢: Gal(K/K) — M which are continuous with respect to the discrete
topology on M, and which satisfy the condition:

§(or) = (&(7))7 +£(7)

For any m € M, the map o — m? —m is a continuous cocycle. The group of
coboundaries B! (Gal(K/K), M) is the subgroup of Z,, ,(Gal(K /K), M) consisting
of elements of this form. The first cohomology group of M is the quotient:
chont(Ga'l([_(/K)7 M)

BY(Gal(K/K), M)

HY(Gal(K/K),M) =

Note that when M is equipped with a trivial Gal(K/K)-action, the group
HY(Gal(K/K), M) will just be Hom(Gal(K/K), M), the group of continuous ho-
momorphisms. Indeed, in this case a cocycle is just a continuous homomorphism,
and every coboundary is trivial. When working with (possibly infinite) Galois
groups, the homomorphisms we consider will always be continuous homomorphisms.

With this definition, becomes true. The required map § is defined
in the following way: pick ¢ € H°(Gal(K/K),C). Applying exactness at C, pick
b € B such that g(b) = c¢. Then we define £: Gal(K/K) — B by:

o) =b"—b

This function lands in the image of the mapping A — B, which allows us to interpret
¢ as an element of H!(Gal(K/K), A).

In later sections, we will occasionally omit the Galois group Gal(K/K) to save
space, when it is clear which group is acting.

There are two additional facts about Galois cohomology which we’ll need. First,
suppose we have a finite Galois extension L/K. Then if M is a Gal(K /K)-module,
M is also a module for Gal(L/L) = Gal(K /L), by restricting the Galois action to
a subgroup. This gives a restriction map

Res: H'(Gal(K/K), M) — H'(Gal(K /L), M),

sending each cocycle to its restriction to the smaller group.



TORSION ON ELLIPTIC CURVES AND MAZUR’S THEOREM 11
By Galois theory, Gal(L/K) = Gal(K/K)/Gal(K/L). Thus, the submodule
MGK/L) can be turned into a Gal(L/K)-module| Furthermore, if
¢: Gal(L/K) — MGIE/D)
is a cocycle, we can turn it into a cycle for Gal(K/K) by composition:
Gal(K /K) — Gal(L/K) —5— MGa(K/L) « pp
This is called an inflation map. We have the following:

Lemma 4.5 (Inflation-restriction sequence). With notation as above, there is an
exact sequence

0 —— HY(Gal(L/K), MGUE/L)y ™ i (Gal(K/K), M) —B<s HY(Gal(K /L, M)

The only other specific fact we will need about Galois cohomology is this one:
Theorem 4.6 (Hilbert’s Theorem 90). We have:
H'(Gal(K/K),K*) =1
Proof. For a discussion of several proofs, see [19]. O

Example 4.7. As a first demonstration of the power of Galois cohomology, we
give a quick proof of Kummer theory, which says that if a number field K contains
all mth roots of unity, then any Galois extension L/K with Galois group Z/mZ is
of the form L = K(a'/™) for some a € K. We have the following exact sequence
of Gal(K /K )-modules (using multiplicative notation):

1 Lim K+ 2220 |+ 1

Taking Galois cohomology yields a long exact sequence, from which we pull the
following:

K* 225 gr 0 HYGal(K/K), pim) —— HY(Gal(K/K), K*)

By Hilbert’s Theorem 90, the final term is zero. This, along with exactness at
the second term, implies that:

HY(Gal(E /K, ) = K /()™
Since we assumed that p,, C K, we have:
HY(Gal(K/K), ptr,) = Hom(Gal(K /K), pt,) = Hom(Gal(K /K), Z/mZ)

In this case, the map 0 is defined as follows: given x € K*, pick y € K* such
that ™ = x — in other words, take y = /. Then define ¢ by £(0) =y —y. The
kernel of this map will evidently be Gal(K /K (z'/™)).

Suppose L/K is Galois with Galois group Z/mZ. Then there is a surjective
homomorphism f: Gal(K/K) — Z/mZ, whose kernel is Gal(X/L). But by what
we wrote above the kernel must be of the form Gal(K /K (x'/™)) for some z € K*,
with = defined up to mth powers. By Galois theory, we conclude L = K (xl/ ™,

2The astute reader will complain that we only defined Galois cohomology for absolute Galois
groups. However, a finite group is profinite with the discrete topology, and likewise all other
definitions carry over without difficulty; this is because what we’re doing is an (important) special
case of the general study of group cohomology.
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5. SELMER GROUPS AND THE MORDELL- WEIL THEOREM

In this section, we outline the proof of the following result, mostly following
chapters VIII and X of [16]:

Theorem 5.1 (Mordell-Weil). Suppose E/K is an elliptic curve defined over a
number field K. Then its group of K-rational points E(K) is a finitely-generated
Abelian group.

As we said in the introduction, this means that F(K) & Z" x F, where r is a
nonnegative integer and F' is some finite group.

At the highest level, the proof of Mordell-Weil proceeds in two steps. First, we
prove the Weak Mordell-Weil Theorem, which says that the group E(K)/mE(K)
is finite, for every m > 1. This condition certainly holds of any finitely generated
Abelian group, but the converse doesn’t hold; for instance Q/mQ is trivial, even
though Q isn’t finitely-generated.

To bridge this gap, one introduces an object called a height function. Roughly
speaking, this measures the complexity of a point with algebraic coordinates. Usu-
ally, we require that the height function transforms in predictable ways under sum-
ming of points, and that only finitely many points have height below a given bound;
along with the Weak Mordell-Weil Theorem, these conditions force E(K) to have
a finite set of generators. However, we won’t discuss height functions in any detail
and instead refer the reader to |16].

To start, we consider the isogeny [m] : E — E. Letting E[m] denote all m-torsion
points of E defined over K, we have the following exact sequence:

[m]

0 E[m] E E 0

In fact, this is an exact sequence of Gal(K /K )-modules, since all the maps are
defined over K. Taking Galois cohomology gives us the following exact sequence:

0 —— E(K)[m] —— E(K) —™— E(K)

HY(E[m]) —— HY(E) —/—— HY(E)

Here, we leave the Galois group Gal(K /K) out from our notation to save space.
From the middle, we extract the following:

0 —— E(K)/mE(K) -2, HY(E[m]) —— HY(E)jm] —— 0
Here, H'(E)[m] denotes the m-torsion subgroup of H'(E). We call H'(E) =
HY(Gal(K/K), E) the Weil-Chatelet group, and write:
H'(Gal(K/K),E) = WC(E/K)
Note that this depends on a choice of the field K.

Remark 5.2. The group WC(E/K) has a fairly natural interpretation as a group
of homogeneous spaces, which are curves isomorphic to E over K, modulo isomor-
phisms defined over K. We won’t discuss this: for more details see section X.3 of
|16].



TORSION ON ELLIPTIC CURVES AND MAZUR’S THEOREM 13

This sequence looks promising, since it injects E(K)/mFE(K) into another group
we might hope to directly prove is finite. However, the middle term need not be
finite: indeed, if E[m] C E(K), then H'(Gal(K/K), E) = Hom(Gal(K/K), E),
which is not finite. To fix this, we repeat the same procedure with respect to local
completions and combine the results. Let Mg denote a complete set of inequivalent
absolute values on K: that is, Mg contains exactly one representative of each
equivalence class of absolute values. The elements of My are also called places,
and a place is called finite if it corresponds to a non-Archimedean absolute value.

Given any v € Mg, we can extend v (non-uniquely) to K, by [Lemma 3.2} This
allows us to define a completion K,, into which K naturally embeds. By abuse
of notation, we let v denote the valuation on K, chosen arbitrarily to extend the
valuation on K. Then we have a decomposition group G, C Gal(K/K), which is
the group of elements o € Gal(K/K) that preserve the valuation. By
G, = Gal(K,/K,).

The group G, in its guise as Gal(K,/K,), acts on E(K,) in the obvious way.
Indeed, since the previous argument used no facts about the field K, we can once
again use Galois cohomology to construct an analogous sequence in the local case:
(5.3)

0 — E(K,)/mE(K,) —>— HY(G,, E[m]) —— HY(G,, E)[m] — 0

Note also that the last term is equal to WC(E/K,)[m]. Combining all the local
diagrams, we have the following commutative diagram:
(5.4)

0 —— B(K)/mE(K) —— HY(Gal(K/K), E[m]) —— WC(E/K)[m] —— 0

| | |

0—— [[ BEK)/mEEK,) —2= ][ H'(G.Em) —— [] WC(E/K,) — 0
vEM K vEMpc vEMp

Here, the first vertical arrow comes from inclusion (modulo the appropriate quo-
tient), and the other two come from restriction of a cocycle to the subgroup G,,.
One can check directly from the definitions that this commutes.

By , the Weak Mordell-Weil Theorem exactly says that the kernel of the
map H!(Gal(K/K), E[m]) — WC(E/K)[m] is finite. We will in fact show slightly

more.
Definition 5.5. The m-Selmer group of E/K is the kernel of the map
H'(Gal(K/K),E[m]) » [[ WC(E/K,),

vEMK

defined in (b.4). By commutativity, either path defines the same map.
We also define the Shafarevich-Tate group, II(E/K), to be the kernel of the
map WC(E/K) — [[WC(E/K,)[

We will show the m-Selmer group is finite; as makes clear, this is stronger
than showing the kernel of the map H'(Gal(K/K),E[m]) — WC(E/K)[m] is
finite. The technical heart of this proof is the following. For its proof, which is
mostly an exercise in algebraic number theory, see Proposition VIII.1.6 of [16].

3An open conjecture states that III(E/K) is always finite.
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Proposition 5.6. Let K be a number field, let S C Mg be a finite set of places
containing all the infinite places, and pick an integer m > 2. Let L/K be the
mazimal abelian extension such that:

(1) L has exponent m: that is, every element of Gal(L/K) has order dividing
m.
(2) L/K is unramified outside of S.

Then L/K is finite. O

To see how [Proposition 5.6] will help us, we will state a couple of additional
definitions.

Definition 5.7. Let M be any set which admits an action by Gal(K/K), and let
v be a finite place. We say M is unramified at v if I, C Gal(K/K) acts trivially
on M. Now, suppose M is an Abelian group. We say ¢ € H'(Gal(K/K), M) is
unramified at v if the restriction of £ to H'(I,, M) is trivial (recall that £ is a map
from Gal(K/K) to M).

Remark 5.8. We can motivate this definition in the following way: let L/K be a fi-
nite Galois extension of number fields, and define M = Gal(L/K). Since Gal(L/K)
is a quotient of Gal(K/K), it admits a natural action. The extension L/K will be
unramified at the prime corresponding to v if and only if the inertia group I, C L/K
is trivial. But this will hold if and only if the inertia subgroup of the absolute Galois
group acts trivially on L.

Now, let S C Mg be any finite set of places, assumed to contain all the infinite
places. We define:

Hi(Gal(K/K),M) = {¢ € H (Gal(K/K), M) : ¢ is unramified at all v ¢ S}.

Remark 5.9. The group HE(Gal(K/K), M) is often also called a Selmer group,
and its definition more or less corresponds to doing cohomology “subject to local
restrictions.” The key fact is that these restricted cohomology groups are always
finite.

Lemma 5.10. Let M be a finite abelian group with an action of Gal(K/K),
and let S C My be a finite set of places containing all infinite places. Then
HY(Gal(K/K),M) is always finite.

Proof. We verified in that since Gal(K/K) acts continuously, the stabi-
lizer of any given element is an open subgroup of finite index. Since M is finite,
this means that the set of elements fixing all of M is an open subgroup of finite
index, and in particular closed. By Galois theory, this subgroup will be of the form
Gal(K/K') = Gal(K'/K'), for some finite extension K’'/K. Applying inflation-
restriction (Lemma 4.5)), we have the following exact sequence:

0 — H'(Gal(K'/K), MK /KDy s HY(Gal(K/K), M) — H'(Gal(K'/K'), M)
One can check that this sequence passes to Selmer groups, giving the following;:

0 — HLY(Gal(K'/K), MK /KDYy s HL(Gal(K/K), M) — H&(Gal(K'/K"), M)

The lefthand group is finite since both Gal(K’/K) and MEE'/K) are finite.
Therefore, to show the middle group is finite it’s enough to show that the righthand
group is. Replacing K with K’, we may assume Gal(K /K) acts trivially on M.
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Suppose m has exponent M, where m > 2 (in other words, that maz = 0 for all
z € M). As in[Proposition 5.6} define L/K to be the maximal Abelian extension of
exponent m which is unramified outside of S. Then we know L/K is finite. From
inflation-restriction, we have an inflation map:

Homg(Gal(L/K), M) — Homg(Gal(K/K), M)

In particular, we can see that pre-composition takes unramified cohomology classes

to unramified cohomology classes. Recall that the first cohomology group corre-

sponding to a trivial action is just a group of homomorphisms; thus it makes sense

to consider Homg, even though we originally only defined the group Hé To show

the righthand group is finite, it’s enough to show that the restriction map
Homg(Gal(K/K), M) — Homg(Gal(L/L), M)

is trivial.

To prove this, consider any f € Homg(Gal(K/K), M). The kernel of f will be
an open subgroup of Gal(K /K) of finite index, hence also closed, and thus will be of
the form Gal(K/F), where F/K is a finite Galois extension. The extension F must
have exponent m: indeed, by Galois theory Gal(F/K) = Gal(K/K)/Gal(K/F).
Given any z € Gal(K/K), f(mx) = mf(z) =0 € M, so mx € ker(f) = Gal(K/F),
and this proves F' has exponent m.

Furthermore, the extension F' is unramified outside of S. Indeed, by assumption,
the map f is unramified outside of S, so for all v ¢ S, f(I,) = 0 (since all group
actions considered here are trivial). But this means that for any such v, I, C
Gal(K/F), so I, is mapped to 0 in Gal(F/K), which exactly means that F is
unramified at v.

Now, however, we know that F' C L, since it’s an extension of exponent m,
unramified outside S. This means ker(f) = Gal(K/F) > Gal(L/L). But this
means that f is in the kernel of the restriction map described above. Thus, the
restriction map is trivial, and by our discussion above this completes the proof. [

Lemma 5.11. With notation as above, the m-Selmer group S™(E/K) is finite.

Proof. Recall that S™(E/K) C H'(Gal(K/K),E[m]). Let S be a finite set of
places containing all infinite places, all places v such that v(m) > 0, and all places
v such that F/K does not have good reduction at v. By the previous lemma, it’s
enough to show that any £ € S™(FE/K) is unramified outside S.

Pick some such &, and pick any v ¢ S. Let I,, be the inertia group for v, contained
in the decomposition group G,. By the definition of the Selmer group as a kernel,
we know that £ maps to 0 in WC(E/K,). By the exact sequence (5.3)), this means
the restriction of £ to G, is in the image of the connecting map §: F(K,)/mE(K,).

By the definition of the connecting map, this means for some P € E(K,), we have:
§(0) = (P7 - P}
Recall that I, is the kernel of the reduction map:
Gal(K/K) — Gal(K,/K,)

Thus, if o € I,,, then letting E, be the reduction of E with respect to v (which is
an elliptic curve since F has good reduction at v), we know that o acts trivially on
E,. In particular, we have:

—~— ~

P°—P=P° - P=0.
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Furthermore, since ¢ € H(Gal(K/K), E[m]), £(0) = P° — P € E[m)] for every o.
By definition of S, v(m) = 0, so in particular m is coprime to the characteristic of
the residue field. Applying[Lemma 3.6} we find that E(K)[m] is mapped injectively
into E, by the reduction map Thus, since the reduction of P — P is trivial, we
must have P? = P for any o € I, so £ is trivial restricted to I,. This proves that
¢ is unramified outside of S, which completes the proof O

Now, we are ready to prove our main result for this section.

Proof of the Weak Mordell-Weil Theorem. It follows from (5.4)) that E(K)/mE(K)
bijects with the kernel of the map H!(Gal(K/K), E[m]) — WC(E/K)[m]. How-
ever, the kernel of this map is clearly contained in the kernel of the map

H'(Gal(K/K),E[m]) - [] WC(E/K,)ml,
vEMg
since the second map factors through the first. This latter kernel is exactly the
m-Selmer group, which we have verified is finite. O

The remainder of the proof of the Mordell-Weil Theorem is based on the idea
of a height function, as we said above, and is laid out in detail in Chapter VIII of
[16].

Remark 5.12. In fact, the full Mordell-Weil Theorem says more than we stated
here: given any Abelian variety A over a number field K, the group A(K) is finitely
generated. The proof of this stronger result has the same basic structure: first prove
the Weak Mordell-Weil Theorem, then introduce a notion of height to finish the
argument. However, the details are significantly more complicated. For a proof,
see Yuri Manin’s appendix to |11].

6. TwWo EXAMPLES

In this section, we illustrate the proof of the Mordell-Weil Theorem with two
specific examples. First, we apply techniques described in Chapter X of [16] to
compute the rational points (the Mordell-Weil group) of a specific elliptic curve.
Then, in order to illustrate some of the possible difficulties, we discuss a harder
and more pathological example which will end up being important in our study of
modular curves.

The computational strategy we will describe works with curves all of whose 2-
torsion points are rational (recall that by there are four 2-torsion
points over an algebraic closure, including the identity). It can also be extended to
curves which only have one 2-torsion point aside from the identity. However, as our
second example will indicate, things can very quickly become difficult when neither
assumption holds.

Here is an outline of what we do, omitting most of the proofs. Let E/K (where
K for us will usually be Q) be an elliptic curve defined by an equation

y? = 2%+ Az? + Bx + C.

The first step is to compute the K-rational torsion on E. For simplicity, assume
that K = Q. By changing coordinates, we may always assume that the equation for
E is integral. Then except for finitely many bad primes dividing the discriminant,
the reduction E of this curve mod p will be an elliptic curve over F,, and according
to whenever m is coprime to p this map will be injective on m-torsion.
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By reducing modulo several different small primes and computing the resulting
group E(Fp), we can easily bound the size of the torsion group, and then we only
need to find generators for the torsion points whose existence we can’t exclude.

For example, suppose we reduce a curve mod 2 and find that it has 5 points, and
then reduce it mod 5 and find that it has 5 points. Then we know the m-torsion for
m coprime to 2 is a subgroup of Z/5Z by the first reduction, and we likewise know
by the second reduction that the 2-torsion is trivial. It follows that the torsion
subgroup of E(Q) is either 0 or Z/5Z, and if the first case holds then we should be
able to verify the torsion subgroup is trivial by reducing modulo additional primes.

Once we know the torsion subgroup F', the harder task is to determine the rank
r of the curve, giving a decomposition F(Q) = Z" x F. To determine the rank, it’s
enough to determine the size of the group E(Q)/2F (Q)ﬁ Indeed, once we know
the group F, we know how large F/2F is, and the group E(Q)/2E(Q) will have
size 2" - |F/2F).

Therefore, it’s enough to compute the size of E(Q)/2E(Q). Since the procedure
is not much more complicated in general, we describe it over an arbitrary number
field K. Furthermore, we assume that all four 2-torsion points on E are K-rational.
We observe from its equation (given above) that E is symmetric over the x-axis.
Since the origin is O = [0 : 1 : 0], this means that for every P = (x,y) € E(C),
we have —P = (x, —y). Thus, the 2-torsion points, aside from the origin, are the
points for which y = 0. These are exactly the roots of the righthand side of the
defining equation, which tells us that it factors:

23+ Ax® + Br +C = (z —e1)(x — e2)(x — e3),e1,e2,e3 € K

We will let S C Mk be a finite set of “bad places” (recall that M is a complete
set of absolute values on K). In this case, S will contain the infinite places, the

places corresponding to primes that divide 2, and all places corresponding to primes
at which E has bad reduction. We define:

K(S,2) = {zx e K*/(K*)?:v(z) = 0 mod 2, for all v ¢ S}
By the fundamental theorem of Kummer Theory, we find that:
K(S,2) = HY(Gal(K/K), {+1})

In particular, an element £ of the cohomology group is unramified at a given v ¢ S
if, and only if, the corresponding x € K*/(K*)? satisfies v(x) = 0 mod 2. This
isomorphism tells us that the group K(S,2) is finite, by the results proved in the
previous section.

Recall that the group E[2] of 2-torsion points on an elliptic curve is isomorphic to
Z/27 x 7./2Z as a group. Furthermore, since all 2-torsion points on E are assumed
rational, the Galois action is trivial, so this isomorphism is also an isomorphism of

trivial Gal(K /K )-modules. One checks once again that the conditions imposed for
places v ¢ S line up appropriately, and then we have:

H(Gal(K/K), E[2]) = H:(Gal(K/K),{£1}) x H(Gal(K/K), {+1})
>~ K(S,2) x K(S,2)

Recall that the Selmer group S?(E/K) is a subgroup of Hi(Gal(K/K), E[2]), and
that E(K)/2E(K) embeds into S?(E/K). By composition, this gives an injective

4H0wever, finding specific generators for the group E(Q) is harder, and this is not a problem
we will deal with.
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homomorphism E(K)/2E(K) — K(S,2) x K(S,2). By tracing through the defi-
nitions, we can explicitly determine what this map is, and then computing the size
of E(K)/2E(K) reduces to computing the size of its image in K(S,2) x K(S,2).
It turns out that determining whether a given element is in the image amounts to
finding rational solutions to a pair of polynomial equations.

Theorem 6.1 (|16], Proposition X.1.4). Let E/K, S, and K(S,2) be as above.
Then there is an injective homomorphism

E(K)/2E(K) — K(S,2) x K(S,2)
defined by
(x—e,x—e3) ifx#er, e

£1-€3 €1 — €y z'fz::el,

P=(z,y)— crmea’
62_617ﬁ if$:€27
(1,1) ifP=0

Suppose (b1,b2) € K(S5,2) x K(S,2) is not the image of O, (e1,0), or (ez,0).
Then (b1, bs) is in the image of the mapping if and only if the equations:

b12’% — bgz’% = €2 — €1
blz% — blbgzg — €3 — €1
have a solution (z1,22,23) € K* x K* x K.

If we get lucky, then given each pair (b1, bs), we can either find a point that
maps to it, or show that the corresponding system of equations is insoluble over
some completion of K . However, it can happen that a given system of equations
is “locally” solvable in every completion of K, but not solvable in K itself. This is
one reason why the procedure describes does not give a guaranteed algorithm to
compute the Mordell-Weil group.

Example 6.2. We illustrate the procedure described above, by computing the
Mordell-Weil group on the curve

E:y?=2% 32>+ 22 =2(x — 1)(z —2)

It is clear from the equation that E has all 2-torsion rational, and computing its
discriminant we find that it has good reduction at all primes except 2. Reducing
mod 3, we find that the curve contains the four points O, (0,0), (0,1) and (0, 2).
Therefore, the torsion subgroup of E(Q) is either (Z/27Z)? x Z/37Z, or (Z/2Z)*. To
exclude the first possibility, we reduce mod 5: the resulting curve has 8 points, so
there cannot be any 3-torsion. Therefore, the torsion subgroup of E(Q) is (Z/2Z)2.

Since E has good reduction away from 2, S will contain only the infinite places
and the prime 2. This allows us to explicitly compute:

Q(Sv 2) = {Iv Z __17 __2}

Here, the bars denote equivalence classes. It remains only to check which elements
of K(S5,2) x K(S,2) are in the image. The points (1,1),(2,1),(1,—1), and (0,0)
come from O, (2,0), (1,0) and (0, 0) respectively. By considering the first equation,
we can eliminate all four possibilities where b; < 0, by > 0: in this case both b 27
and —by23 will be non-positive, and hence the equation has no solutions in R. A
similar argument eliminates the four cases where by < 0, by > 0, leaving only four
cases to check.
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In fact, we only need to check one more case, namely (1,—2). This is because
the map in question is a homomorphism, and hence its image is a subgroup: if any
of the points (1,2),(2,2) or (2,—2) were in the image, then multiplying by other
elements of the image would give that (1,—2) is as well. So we are reduced to
studying the equations:

224225 =1,2] +225 =2
We will show these equations have no solution in Q. Indeed, from the first equation
we find that v(1) = 0 = v(2? + 22?) = min(2v(21),2v(22) + 1). The final equality
follows because the two valuations are necessarily different — one is even, the other
odd — in which case a basic fact about Q, is that their sum will take the smaller
valuation. Since 0 is even, we find v(z1) = 0, v(z2) > 0. However, the second
equation gives

v(2) =1 =min(2v(z1),1 + 2v(z3)) = min(0, 1 + 2v(z3)) = 0,

where the final equality follows from the same basic fact. This is a contradiction,
so the equations have no 2-adic solutions.

It follows that the image of E(Q)/2E(Q) has size 4, which means that the group
E(Q)/2E(Q) itself has size 4. We conclude that the rank is 0, which gives:

B(Q) = (2/22)°

In this case, computing the Mordell-Weil group proved not to be very hard.
However, as we said, no general method is known. Here is an important example
of a curve E for which the group E(Q) is not so easy to compute.

Example 6.3. Consider the elliptic curve E : y?+y = 23 — 22 Using the procedure
described above, we can easily compute the torsion subgroup of E(Q), which turns
out to be Z/5Z. However, with the methods described in this section it will be
difficult to go much further, since none of this curve’s 2-torsion points are rational.

The procedure described above is known as 2-descent. As we said above, a
somewhat more complicated version, called descent by 2-isogeny, can be used when
only one two-torsion point is rational. We can also generalize the procedure to
m # 2, but for larger m the process becomes significantly more complicated and
the equations become much harder to work with.

Alternatively, we could pass to a finite extension K/Q such that F[2] C E(K),
and directly apply the procedure applied above. However, this raises its own diffi-
culties. In particular, it may be difficult to determine how much larger the group
E(K) is, compared to the group E(Q).

With more work, one can overcome these issues; it turns out that this curve has
rank 0, so the Mordell-Weil group is Z/5Z (this curve is indexed as 11.a3 in the
database [18]).

7. MODULAR CURVES
We now change direction substantially, in order to discuss the following question:

Question 7.1. Let E be an elliptic curve defined over Q. What are the possible
torsion subgroups (necessarily finite) of the group E(Q)?

On the basis of the theory we’ve developed so far, this is a very difficult question
to answer. As the examples developed in the previous section show, computing
the torsion subgroup of a specific curve is not difficult, and by applying a little
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ingenuity we can often determine the full group of rational points. But these results
say nothing about which torsion subgroups could potentially occur across all elliptic
curves.

The solution to this problem is called a modular curve, and can be thought
of as a quotient of the upper half plane which parameterizes classes of elliptic
curves along with additional structure. In order to define modular curves, we first
discuss the analytic theory of elliptic curves over the complex numbers, skipping
most proofs. For the rest of the paper, we assume basic background in complex
analysis, including the definitions of holomorphic and meromorphic functions and
the statement of Liouville’s Theorem. However, analysis is not our focus and those
willing to take things on faith should be able to follow along.

7.1. Elliptic Curves as Riemann Surfaces. Let F/C be any elliptic curve de-
fined over the complex numbers (which includes those defined over Q). Any non-
singular algebraic curve over C can be given the structure of a one-dimensional
complex manifold, or Riemann surface. This is a consequence of the holomorphic
implicit function theorem ([5], Chapter 0), and in any case fits well with our intu-
ition that smooth curves are smooth.

In the case of elliptic curves, we can say much more: it turns out that every
elliptic curve is isomorphic to a quotient of C. First, some terminology. We say
that an additive subgroup A C C is a lattice if A is generated by two complex
numbers «, 5 which are not R-linearly dependent. In this case, we observe that the
quotient C/A is compact and topologically isomorphic to a torus. Furthermore,
C/A is an Abelian group, since it’s the quotient of C by a subgroup. The group law
is given by addition of complex numbers, modulo the equivalence relation defined
by the lattice. The fundamental parallelogram spanned by « and § surjects onto
C/A, giving rise to the following topology and group structure:

\
r

In complex analysis, a function which is periodic with respect to two R-linearly
independent periods «, 8 is called doubly periodic, or (for reasons that will soon
become clear) elliptic. It is not hard to see that any nonconstant elliptic function
cannot be everywhere holomorphic. Indeed, if it were, then the image of C would
be the same as the image of the fundamental parallelogram, and hence compact.
In particular, the function would be bounded, and thus constant by Liouville’s
Theorem. As a result, elliptic functions are only required to be meromorphic rather
than holomorphic.

Given a lattice A = {(a, 8), we could ask for a nice description of the elliptic
functions which are periodic with respect to A. It turns out that such a description
exists in terms of what are called Weierstrass p-functions.
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Definition 7.2. Let A C C be a lattice. The Weierstrass o-function relative to A

is defined by
1 1 1
plih) =5+ X <22)-
SIS v AN C R

Theorem 7.3. Let A C C be a lattice. Then all elliptic functions are rational
combinations of p(z; A) and its derivative, p'(z; A).

Proof. See [16]|, Theorem VI1.3.2. O

We will give no details on the theory of elliptic functions; for an introduction,
see Chapter I of [15]. For our purposes, what makes p-functions interesting is that
they give the Riemann surface C/A the structure of an elliptic curve, by acting as
coordinate functions. Remarkably, this allows us to identify the group structure on
C/A with the group structure on the corresponding elliptic curve.

Theorem 7.4. Given a lattice A, there exists an elliptic curve E/C, such that the
map ¢: C/A — P? defined by

2 [p(z) 1 ¢/ (2) 1]
is an isomorphism both of Riemann surfaces and of groups onto E(C).

Proof. See [16], Theorem VI.3.6. O

An even more remarkable fact is that we can go in the opposite direction. Com-
bined, these two results will allow us to study complex elliptic curves by studying
equivalence classes of lattices.

Theorem 7.5 (Uniformization theorem for elliptic curves). Let E/C be an elliptic
curve. Then there exists a lattice A C C, such that the map ¢ defined above identifies
C/A with E.

Proof. See |15, Chapter I, Corollary 4.3. ]

This looks promising: lattices look easier to study than elliptic curves, and indeed
they are. For instance, given lattices A, A’, all the maps between them are given
by linear functions.

Proposition 7.6. Let A, A’ be lattices. Then:

(a) Every holomorphic map C/A — C/A' is of the form ¢(z+A) = mz+b+ A,
where m,b € C and mA C A'.

(b) If ¢ is also a group homomorphism, then we may take b = 0. In particular,
C/A =2 C/N as complex Lie groups if and only if A = v\ for some v € C*.
In this case, we say the two lattices are homothetic.

Proof. For the proof of (a), see Proposition 1.3.2 in [3|; the trick is to lift the map
¢ to the complex plane, and analyze it there. To prove (b), suppose ¢ is a group
homomorphism. This means in particular that ¢ sends the equivalence class of 0
to the equivalence class of 0. But ¢(0) = b, so we must have b € A’, and up to
the quotient we obtain the same map by taking b = 0. Finally, if ¢(z) = mz, ¢ is
clearly invertible if and only if m # 0, which shows the final statement. (]
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7.2. The Action of SLy(Z). In this section we define a specific modular curve
in detail. Everything we do will extend to the case of general modular curves,
discussed in the next section.

Following [3], call a quotient C/A a complex torus. We now know that to study
elliptic curves over C, we only need to study complex tori, and to study complex
tori, we only need to study lattices over C up to homothety. To do this, let’s pick a
basis (a, 8) for the lattice over Z. Further, let’s assume that the basis is positively
oriented, or in other words that §/« has positive imaginary part (it should be
clear that we can always pick a basis with this property by reversing the order if
necessary).

Since we are free to rescale the lattice, we divide by a. This gives rise to a basis
of the form (1, 7), and since {(a, 8) was positively oriented, we find that Im(7) > 0.
We write H for the set of complex numbers x + iy with y > 0.

Question 7.7. Given two numbers 7,7" € H when are (1,7) and (1,7} bases for
the same lattice?

Define SLy(Z) to be the following group:
SLy(Z) = {(‘; Z) a,b,c,d € Z,ad — be = 1}

We will also use the notation I'(1) = SLy(Z). For now, the number 1 only exists to
create a sense of mystery; later, we’ll define groups I'(N) for all N. SLy(Z) has a
natural action on the upper half plane, given by:
a b at +b
<C d) T o d
One can check (|15, Chapter I, Lemma 1.1) that this maps the upper half plane to
itself.

If we want, we can view this as a special case of an action of SL(C) on the com-
plex projective line, whose definition is the same as the one given above. The cor-
responding automorphisms are called fractional linear transformations; in general,
the automorphisms of the projective line over a field k are given by the fractional
linear tranformations corresponding to elements of SLa(k). In our case, the action
of the overall group SL2(C) does not preserve the upper half plane, but the action
of SLa(R) C SLy(C) does preserve it, so SL2(Z) does as well. A version of this idea
will come up later, when we discuss cusps.

For another perspective, observe that lattices are free Z-modules (that is, Abelian
groups) of rank 2. A group automorphism of Z? exactly corresponds to an invertible
2 x 2 matrix with integer entries. In our specific setting, we require that the
determinant be positive in order to preserve orientation, which suggests that we
consider elements of SLy(Z) (the only units in Z are +1). In order to make things
look more familiar, we temporarily reverse the order of the basis to (7,1), and

identify 7 = (1,0),1 = (0,1). Given A = (CCL Z) € SLy(Z), we compute:

AT((LO)) = (avb)aAT((O’ 1)) = (Cv d)

Since we are free to rescale, this corresponds to the choice of oriented basis:

1 ar +b
Ter+df
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FIGURE 2. An illustration of the action of SLy(Z) on the upper
half plane. Image due to Wikimedia user Kilom691.

This suggests the action of SLo(Z) is really just a change of basis in disguise.
Writing A, for the lattice spanned by 1 and 7, we have the following:

Proposition 7.8. Given 7,7 € H, the lattices A, and A, are homothetic if, and
only if, there exists some ¢ € SLy(Z) such that ¢(r) = 7'.

Proof. In one direction, suppose that 7/ = ¢(7) for some ¢ € SLo(Z). By the dis-
cussion above, this means that 1,7 are a basis for the same lattice, up to rescaling.
Conversely, suppose A, = vA,, where v € C*. This means that v,vy7 form a
basis (necessarily positively-oriented) for the lattice which is also spanned by 1,7’.
By our remark above about automorphisms of Z?, we know that 1 = c(y7) + dv,

7' = a(y7) + by for some A = (Z Z) € SLy(Z). Dividing, we find as expected

that A(1) = 7'. O
It turns out, although we won’t need to use this fact, that the group SLy(Z) is

generated by the matrices o = ((1) } ,T = (Ol é) Both of these matrices act
in visually intuitive ways: the first translates 7 — 7 4+ 1, while the second maps
T — %1, which amounts to reflection in the circle S followed by reflection over the
y-axis.

We now know that the orbits of the I'(1)-action on H correspond to the isomor-
phism classes of elliptic curves over C. This makes it natural to define

V(1) = D()\H,

the quotient of the upper half plane by the action of 1"(1)E| The quotient Y'(1) has
a natural quotient topology. In fact, although this is not obvious, more is true:

Fact 7.9. With an appropriate choice of charts, Y (1) is a Riemann surface.

Let w: H — Y(1) be the projection map. At most points 7(z) € Y (1), the
Riemann surface structure is easy to define, because no element of IT'(1) fixes ()
aside from +1, both of which act trivially. Thus, we just take w(U) for a sufficiently
small neighborhood U of z, to obtain a local chart. However, there are two points
for which this condition fails: ¢ and the third root of unity ws. We call these points

5Since multiplying a matrix by £1 does not change its action on H, some authors instead let
the action be that of the quotient group SLa(Z)/{£I}.
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elliptic points; a bit more work is required to define the Riemann surface structure
at these points, but it can be done.

Our ultimate hope is to apply tools from algebraic geometry in order to find
rational points on modular curves such as Y (1). The basis for this approach is the
following theorem.

Theorem 7.10. Every compact Riemann surface is an algebraic curve.

Proof. See [5], among others. O
We can’t immediately use|Theorem 7.10} because the curve Y (1) is not compact.

To fix this, we will add finitely many rational points called cusps, which do not
correspond to elliptic curves. This makes the resulting object worse at classifying
curves, but far better behaved.

To see how to proceed, consider The shaded area, D, is called a
fundamental domain for the group action, roughly because its translations under
the group action form a tiling of H. If D were compact, then its image under the
quotient, which is Y (1), would be as well. In fact, D fails to be compact; after
making the appropriate identifications, we see that D becomes compact when the
point co = [1: 0] on the Riemann sphere is added to it.

However, we cannot just add the point oo, since we also need to consider the
group action. Reflection in the unit circle sends the fundamental domain D to a
wedge which tapers to the point 0, suggesting that this reflection should send oo to
0. In fact, for every ¢ € Q, there is an element of the group which sends oo to gq.

One way to see this is to recall that SLo(Z) is really acting on the Riemann
sphere by fractional linear transformations. In this case, the action is of the form

a-1+b-0 a
c-l+d-y c
where ad — bc = 1. By picking a fraction ¢ = % in lowest terms and using basic
facts about principal ideal domains, we can always find an element of SLo(Z) whose
action is of the form given above.

This motivates the following initially bizarre-looking definition:

Definition 7.11. The modular curve X (1) is the quotient of HU {occ} UQ C C,
under the action of I'(1) by fractional linear transformations.

Points coming from QU {co} are called cusps. In the case we're currently dealing
with, the group action will actually collapse all the added points into a single orbit,
as we just verified. However, we will soon deal with other modular curves which
have multiple cusps.

Fact 7.12. X(1) can be made into a compact Riemann surface, and thus is an
algebraic curve.

Proof. See Chapter 2 of [3]. O

A final issue, which will become much more important in the next section, is the
question of fields of definition. Suppose E, E’/Q are isomorphic over C: then they
are also isomorphic over Q. Indeed, by the curves will be isomorphic over
an algebraically closed field if, and only if, they have the same j-invariant. Since
both fields are algebraically closed, the result follows. However, the isomorphism
need not be defined over Q, and it need not preserve structure relative to Q. For
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instance, two elliptic curves defined over Q may have different groups of rational
torsion points, despite being isomorphic over C (equivalently Q).

In our case, it turns out that if a point on X (1) is rational then there is some
E/Q contained in the corresponding isomorphism class. However, since multiple
such curves may have different rational torsion structure, we want to be able to
distinguish between them.

7.3. Modular Curves and Mazur’s Theorem. In order to solve the problem
just described, we now consider the action of a subgroup I' C SLs (Z)H The resulting

modular curves will “remember more information” about the underlying curves,
giving a finer classification. Three special classes of subgroups show up most often:
Definition 7.13. Pick N > 1. Then:

I'(N) = {(i Z) € SLy(Z) : <‘; Z) ((1) ?) mod N}
T'y(N) = {(C Z) € SLy(Z) : (C Z) = (é D mod N}
To(N) = {(‘C‘ Z) € SLy(Z) : (Z Z) = (3 :) mod N}

Note that for all N, I'(N) C I'1(N) C To(N). Likewise, note that
I'(1) =T4(1) = Ty(1) = SL2(Z),

IS
Q

which explains our notation from the previous section.

Just as with I'(1), we can construct a corresponding modular curve. We call the
corresponding curves Y (N), Y1(N), and Yy(N) respectively. Likewise, we can com-
pactify these curves, arriving at compact Riemann surfaces X (N), X7 (), Xo(N).
However, the compactified curve may now have multiple cusps, depending on how
{00} U Q decomposes into orbits. Knowing exactly how many cusps there are be-
comes critical for classifying torsion, because showing there is no rational n-torsion
for some n amounts to showing that on some modular curve, the only rational
points are the finitely many cusps which were added. Once we give our surfaces
the structure of algebraic curves, the question of which cusps are rational becomes
even more difficult, and depends on which algebraic curve model is used; for more
details on this, see the discussion in [13].

It turns out that the orbits of the above subgroups correspond to information
about torsion on curves.

Proposition 7.14. Pick N > 1.

(a) Points of Yo(N) correspond to pairs (E,G), where E is an elliptic curve
and G C E is a cyclic subgroup of order N. Two such pairs (E,G), (E',G")
are identified when there is an isomorphism of E onto E' taking G to G'.

(b) Points of Y1(N) correspond to pairs (E,P), where E is an elliptic curve
and P € E is a point of exact order N. Two such pairs (E, P),(E’, P') are
identified when there is an isomorphism of E onto E' taking P to P'.

60ne usually requires the subgroup to be a congruence subgroup, or in other words to contain
T'(N) for some N. However, all subgroups we consider will satisfy this condition.
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(¢) Points of Y(N) correspond to triples (E, P, Q), where E is an elliptic curve
and P,Q are two points which generate group E[N] of N-torsion points.
Two triples (E,P,Q),(E', P',Q’) are identified when there is an isomor-
phism of E onto E' taking P to P’ and Q to Q’.

Now that we have added additional structure, issues around fields of definition
become even more subtle. For instance, it turns out that rational points of Y(N)
need not correspond to actual rational torsion points: if a given cyclic subgroup
G C F is invariant under the Galois group, then G will be defined over Q even
if none of its nontrivial points are, and the point corresponding to (F,G) will be
rational. However, when studying the family of curves X;(N), we get lucky.

Theorem 7.15. Suppose N > 4, and suppose (E, P), (E', P') are pairs correspond-
ing to rational points on Y1(N). The two pairs correspond to the same point if, and
only if, there is an isomorphism f: E — E’ defined over Q which sends P to P’.

Proof. This is a hard result. For a discussion, see |21], and for more details see
Chapter 7 of [3]. O

Thus, determining whether there are rational N-torsion points on elliptic curves
defined over Q is equivalent to determining whether the curve X;(N) has rational
points which are not cusps.

We are now in a position to say something about the statement of
It’s not very hard to compute the genus of the modular curve X;(N) for various
N (for example, see Theorem 3.1.1 of [3]). Doing so, one finds that X;(N) has
genus 0 for 1 < N < 10 and N = 12, genus 1 for N = 11,14,15, and genus > 2
for all other N. Observe that the genus 0 cases are exactly the possible torsion
orders, according to the statement of Mazur’s Theorem. This is not surprising:
every modular curve has at least one rational cusp, and every genus 0 curve with
a rational point is isomorphic over Q to the projective line, so in particular every
such curve has infinitely many rational points.

In 1973, Andrew Ogg conjectured in [13]| that these cases are the only possi-
ble cases — in other words, that there is a rational elliptic curve with a rational
N-torsion point if, and only if, X;(N) has genus 0. Barry Mazur proved this
conjecture, in two papers ([9],[7]) published in 1977 and 1978.

By a famous result known as Faltings’s Theorem, any curve defined over Q of
genus at least 2 has only finitely many rational points. This immediately gives the
following step toward Mazur’s theorem.

Theorem 7.16. Suppose N > 16. Then there are only finitely many isomorphism
classes of elliptic curves defined over Q with a rational N -torsion point.

However, this does not provide a uniform bound, and thus does not prove the
full theorem. In any case, Faltings’s Theorem was proved after Mazur’s Theorem,
and its proof is at least as difficult.

Example 7.17. As a special case of Mazur’s Theorem, consider the modular curve
X1(11). This is a compact Riemann surface, hence an algebraic curve. In fact, it is
of genus one and has a a rational point, so X;(11) is an elliptic curve over Q. One
possible Weierstrass equation for X;(11) is:

v 4y = a® — 22
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This is an equation we’ve seen before: as discussed in its group of

rational points is Z/5Z, of size 5. But one can check that the curve has 5 rational
cusps. Therefore, Y7(11) contains no rational points, and we conclude that there
are no rational 11-torsion points on elliptic curves defined over Q.

For more details on this example from the perspective of modular curves, see the
notes |21]. This fact can also be proven much more directly, by using the definition
of addition on an elliptic curve and several changes of coordinates: see the classic
paper |1|, where the result was first proven, or the discussion in [22].

One can carry out a similar analysis on the other cases where X; (V) is an elliptic
curve, and show that all rational points are cusps. Several other special cases were
already known before Mazur’s Theorem was proved: for example, see [§], which
deals with the case N = 13, and [6], which bounds p™-torsion for a fixed prime p.
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