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Abstract. In this paper we outline the arguments put forth by Rufus Bowen

in his 1975 monograph, Equilibrium States and the Ergodic theory of Anasov

Diffeomorphisms. We show the existence of Gibbs measures for Hölder contin-
uous potentials on Markov shift spaces, then use the tools of symbolic dynamics

and Markov partitions to apply our results to Axiom A diffeomorphisms.
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1. Introduction

In the field of Dynamical Systems we study spaces and maps on those spaces.
Often we are interested in describing the behavior of a dynamical system exactly,
but in many cases this is very hard to do.

In the subset of Dynamical systems known as ergodic theory we introduce the
tools of measure theory into dynamics. This is useful because we can obtain sta-
tistical results for our dynamical systems. In ergodic theory we study invariant
measures. Suppose we have a dynamical system on a space X with f : X → X
measurable. Then a measure µ is f -invariant if

µ(A) = µ(f−1(A))
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for all measurable sets A in our space. If we think of µ as a probability measure,
then this statement is equivalent to stating that the probability of finding a point
x in the set A is preserved over time.

In ergodic theory (as the name suggests) we are more concerned with ergodic
measures, because these are in some sense “irreducible”. Any invariant measure
can be reduced into a convex combination of ergodic measures. Therefore it suffices
to study the ergodic measures if we want results on invariant measures.

Definition 1.1. A measure µ is ergodic if it is f -invariant and

f(A) = A ⇐⇒ µ(A) = 1 or µ(A) = 0

for A measurable.

This definition tells us that we cannot decompose the space into sets of positive
measure such that the map preserves the parts of the decomposition. It then seems
clear that most of the points in our space “explore the space,” because no set
of significance is fixed (besides the whole space). The Birkhoff Ergodic Theorem
captures this.

Theorem 1.2 (Birkhoff Ergodic Theorem). Suppose µ is an ergodic measure. Then
for x almost everywhere (w/r/t to µ)

lim
k→∞

φ(x) + φ(fx) + · · ·+ φ(fk−1x)

k
=

∫
X

φ dµ.

for any µ-integrable function φ.

The ergodic theorem states that if we follow a “typical” point and average some
function along its trajectory, then this average will approach the average value of
this function on this space. The time average is equal to the space average.

Unfortunately in order to apply the ergodic theorem we need an ergodic measure.
How do we find ergodic measures for an arbitrary dynamical system?

One issue that we might encounter when looking for ergodic measures is ergodic
measures with trivial support. Consider the interval with 0 and 1 associated, and
the map of multiplication by 3 mod 1. It is clear the set {1/2} is an invariant set
under this transformation. Consequently the measure µ defined by

µ(A) =

{
0, 1

2 ∈ A
1, 1

2 6∈ A

is ergodic. However, we see that µ is of little use when we apply the Ergodic the-
orem. Why? The theorem states that x almost-everywhere has time average equal
to the space average. Recall that almost everywhere means on a set whose com-
plement has measure zero. But, with this measure, we see that any set containing
{1/2} has a complement with measure zero. Thus we see that the theorem could
apply to a set of points with zero Lebesgue measure. Therefore we don’t glean any
significant results in this case.

We would like to define measures that are “physically significant,” i.e. for which
the ergodic theorem applies to a large number of orbits. First we define the basin
of a measure µ as the set of points x ∈ X such that

lim
k→∞

φ(x) + φ(fx) + · · ·+ φ(fk−1x)

k
=

∫
X

φ dµ.
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holds. Then we define a measure µ to be a physical measure if the basin of µ has
positive Lebesgue measure. We would like to find physical ergodic measures for our
spaces, because for these measures the Ergodic Theorem applies to a set of positive
Lebesgue measure.

In this paper we survey the 1975 monograph Equilibrium States by Rufus Bowen.
Our eventual goal is to construct physical measures for a class of chaotic dynamical
systems, in particular Axiom A diffeomorphisms. Our path to constructing this
measure will be slightly roundabout. In Section 1 we will first look to construct
“good” measures for simple spaces. We introduce the physical concept of a Gibbs
distribution, which is the expected distribution of a system’s states at equilibrium.
Then we will look at how to extend the Gibbs distribution to a measure on a simple
infinite system, namely a Markov shift space or subshift of finite type. We will call
the infinite analogue of the Gibbs distribution the Gibbs measure. In section 2
we will examine ways in which to extend our Gibbs measure to more interesting
spaces, such as those exhibiting hyperbolic (chaotic) dynamics. We will use Markov
partitions, which enable us to symbolically encode the dynamics of a system in such
a way that the intricacies of the system are preserved. Once we have a symbolic
encoding for a system, we can apply the theorems proved in section 1 to that system.

Finally, in Section 4 we will combine Sections 2 and 3 and briefly describe how
to transfer results on shift spaces to Axiom A diffeomorphisms.

In writing this paper my goal was to provide intuition for many of the methods
in Bowen, without necessarily proving all of them. In the interest of brevity (and
clarity) I omit many proofs and refer the reader to Bowen’s text.

2. Gibbs Measures

2.1. Gibbs Measures in Finite Systems. We begin our discussion of Gibbs
measures with the physical viewpoint. Suppose we have a physical system which
has a finite number of possible states 1, . . . , n and energies for each state E1, . . . , En.
Suppose also that this system is in equilibrium with a much larger system of tem-
perature T , such that the temperature of the larger system is constant. To be in
equilibrium means that macroscopic observables, for example a function averaged
over the space, are constant.

When the system is at equilibrium we assume that any of its states can occur,
however the probability distribution of these states is fixed. What distribution do
we expect among the different states?

Before answering this question, we introduce the concept of entropy. Entropy is
a measure of our uncertainty about a system’s state. Suppose we have a random
variable X with states 1, . . . , n such that the probability of state i is given by pi.
We would like to measure how uncertain we are of the state of X.

Definition 2.1. The entropy of the random variable X is given by

h(X) =
∑
i

−pi log(pi).

To see that entropy does capture uncertainty of a random variable (or distri-
bution) we note the following facts. Suppose a random variable is constant, i.e.
that there is one state with probability 1 and all the other states have probability
0. Then the entropy of that random variable is 0, because there is no uncertainty
about its outcome. Alternatively, if our random variable is equidistributed with
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pi = 1
n for all i, then the entropy is maximized. Generally, the more biased a

system is towards certain states, the lower the entropy.
It is a fundamental principle in statistical mechanics that a system in equilibrium

maximizes entropy. By this we mean that the entropy of the probability distribution
of the system’s states is maximized.

Let’s return to our question of before. What distribution do we expect of the
physical system with states 1, . . . , n and energies E1, . . . , En. Without any con-
straints on our distribution, we expect the equilibrium distribution to be

pi =
1

n
because this is the unique entropy maximizing distribution.

To derive the Gibbs distribution we make one assumption. We assume that the
average energy

E =

n∑
i=1

piEi

is fixed. Then we can use the method of Lagrange multipliers to find the entropy-
maximizing distribution subject to this constraint. We present the following theo-
rem.

Theorem 2.2. Subject to the constraint
∑
i piEi = E the unique entropy maxi-

mizing distribution is

pi =
e−βEi∑
i e
−βEi

where β is the Lagrange multiplier when optimizing entropy with respect to the
constraint E =

∑n
i=1 piEi.

To prove this one uses the method of Lagrange multipliers and the objective
function

L(p1, . . . , pn, β) =
∑
i

−pi log(pi) + β

(∑
i

Eipi − E

)
with the additional constraint that

∑
pi = 1.

We observe, by plugging in our distribution into our objective function L, that
the maximum value of L is

log

(
n∑
i=1

e−βEi

)
.

Suppose we have some generic energy function φ(i) = ai. Then we can see that∑
i

−pi log(pi) +
∑
i

aipi

is maximized under the gibbs distribution.
It is then a fact of the Gibbs distribution that it maximizes this quantity. When

we construct Gibbs measures on infinite systems, it will be important that we retain
this useful variational principle.

We conclude this section by restating that the Gibbs measure represents the
distribution of states when a system is at equilibrium. Therefore, we would expect
a Gibbs measure to be invariant under the evolution of a dynamical system. It is
with this motivation that we say that the Gibbs measure is a “natural” choice of
invariant measure.
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2.2. Gibbs Measures for Infinite Systems. Previously, we introduced the no-
tion of a Gibbs measure for finite systems. Recall that we interpreted the Gibbs
distribution as the probability distribution of a system at equilibrium. In this sec-
tion we will extend the Gibbs distribution to a measure on a certain class of infinite
dynamical systems.

First let Σn = Π{1, . . . , n}. In other words, the set Σn consists of all the bi-
infinite sequences of symbols in {1, . . . , n}.1 We think of this sequence as a single
dimensional lattice, maybe as a simple model of a gas or of magnetic particles. The
symbol {1, . . . , n} then represents a state for a particle in each position.

We will need some notion of “energy” for each state x ∈ Σn of our system. We
imagine x as representing a single dimensional lattice of particles, each of which
assume states in 1 through n. Then for a physical system, such as a model of gas
particles or magnetic, we have two forms of energy contributions to the total energy
of our system.

(1) For each state k there is some intrinsic contribution to the total energy
Φ0(k) independent of where it occurs in our system;

(2) There is energy due to the interaction between different positions in our
system, dependent on which states we have in those positions. We think of
this as a function Φ2 : Z× {1, . . . , n} × {1, . . . , n} → R where Z represents
the absolute distance between the two points.

Then we can represent the total endergy due to the state x0 occuring in the 0th
position as

φ∗(x) = Φ0(x0) +
∑
j 6=0

1

2
Φ2(j;xj , x0).

(The multiplier of 1
2 prevents double counting of Φ2).

We will now make the simplifying assumption that the energy due to interactions
between particles “decreases quickly” as the distance between those particles grows.
We can state this mathematically by assuming that ‖Φ2‖j = supk1,k2 |φ(j; k1, k2)|
satisfies

∞∑
j=1

‖φ2‖j <∞.

This guarantees that the quantity φ∗(x) is a finite real number. Note that in
many physical systems in physics, such as a magnetic system, the force between
two particles (and therefore the potential energy of their interaction) matches this
criterion.

We can also equip the space Σn with a topology generated by the sets

[a1 . . . an] = {x | xi = ai for i ∈ [1, n]}.

which we will call cylinders. Then any measure on these cylinders will be a Borel
measure. A Borel measure is a measure on a topological space that is defined for
all the open sets.

Suppose we wish to compute the energy contributed by the particles in positions
−m through m. These particles have states x−m . . . x0 . . . xm. We can see that the

1A bi-infinite sequence is a sequence indexed by the integers. This is in contrast to a regular
sequence, also called a right-sided sequence, which is indexed by the natural numbers.
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energy is given by

Em(x−m, . . . , xm) =

m∑
j=−m

Φ0(xj) +
∑

−m≤j≤k≤m

Φ2(k − j, xk, xj)

and the Gibbs distribution (measure) on this system would assign probabilities
proportional to exp(−βEm(x−m, . . . , xm)).

Suppose (and this is a strong assumption) that

µ(x−m, . . . , xm) = lim
k→∞

∑
{µk(x′−k . . . x

′
k) : x′i = xi∀|i| ≤ m}

converges.
Then the measure µ on the cylinder [x−m, . . . , xm] represents the limit of the

measure of that cylinder in the finite system x−k, . . . , xk as k goes to infinity. If this
measure were to exist, then we would be justified in calling it the Gibbs distribution.

Now suppose that instead of Em we took into account the energy contributions
of xj with j ∈ [−m,m] with all other xk’s:

m∑
j=−m

(
Φ0(xj) +

∞∑
k=−∞

1

2
Φ2(k − j;xk, xj)

)
,

but this can be rewritten as
m∑

j=−m
φ∗(σj~x).

How much do the quantities Em(x−m, . . . , xm) and
∑m
j=−m φ

∗(σjx) differ? It turns
out we can bound their difference. Since we assumed

C =

∞∑
k=1

k‖Φ2‖k <∞

we can see that Em differs from
∑m
j=−m φ

∗(σj~x) by at most 2C. Therefore the

Gibbs distributions derived from Em or φ∗(σj~x) are within factors of [e−2C , e2C ]
of each other. Thus taking into account interactions beyond the finite system
x−m, . . . , xm does not drastically change our distribution.

We now define the k-th variation of a continuous potential φ : Σn → R,

varkφ = sup{|φ(x)− φ(y)| : xi = yk,∀|i| ≤ k}.

We have finally developed all the requisite definitions to state the central theorem
of this section:

Theorem 2.3. Suppose φ is a function from Σn to R and there are c > 0, α ∈ (0, 1)
so that varkφ ≤ cαk for all k. Then there is a unique µ ∈ Mσ(Σn) for which one
can find constants c1 > 0, c2 > 0, and P such that

c1 ≤
µ{y : yi = xi ∀i = 0, . . . ,m}

exp
(
−Pm+

∑m−1
k=0 φ(σkx)

) ≤ c2
for every x ∈ Σn and m ≥ 0.

Let’s deconstruct the theorem statement slightly.
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(1) We think of φ as some sort of energy or potential function on Σn. If we
interpret it as the energy of the particle in the 0th position due to interaction
with all the other particles, then the statement varkφ ≤ cαk for all k is
equivalent to saying that interaction between particles decays rapidly with
distance.

(2) The central inequality of the theorem is interpreted as saying that the
measure of the cylinder [x1, . . . , xm] is approximately,

exp
(∑m−1

k=0 φ(σk~x)
)

e−Pm

within factors of [c1, c2]. The quantity e−Pm is seen as a normalization con-
stant. As we saw before, the numerator is close to exp(Em), and therefore
approximates the finite Gibbs measures.

We observe that Theorem 2.3 does not have a dynamical flavor. The set Σn does
not have any map defined on it. Recall from the introduction that our purposes for
developing these symbolic systems is quite different from that of physicists. We are
interested in modeling the dynamics of another system using a symbolic dynamical
system.

How can a Gibbs measure be relevant to symbolic dynamics? The key idea is
in noting that the quantity

∑m−1
k=0 φ(σkx) can be seen as a partial ergodic sum for

the point x under the map σ. So we see that the Gibbs measure might have some
relation to the shift operator. Conveniently, when we apply symbolic dynamics to
diffeomorphisms it will become clear that the shift operator is precisely the right
map.

Now, while we could simply consider the properties of the Gibbs measure for
the system (Σn, σ), when we wish to model other systems with symbolic dynamics
we will want greater generality. In Section 3 we will show that if one partitions a
space correctly, then we have symbolic representations of points in the space via
their itinerary, which represents the orbit with respect to the partition. However,
if we restricted ourselves to Σn, we would only be able to model systems where
particles can move from any section of the partition to any other. Thus we would
like to expand our models so that they might apply to systems without such nice
behavior.

Let A be an n× n matrix of 0’s and 1’s. Define

ΣA = {x ∈ Σn : Axixi+1 = 1 ∀i ∈ Z}.
We think of A as an incidence matrix for a directed graph. Then ΣA is the space
of bi-infinite walks on this directed graph. If Axixi+1 = 1 then we say that the
sequence xixi+1 is allowed. Then ΣA consists of all sequences such that xixi+1 is
allowed for all i ∈ Z.

For a concrete look at the meaning ΣA, we can think of a directed graph corre-
sponding to A, where we think of A as an incidence matrix. Then ΣA is the set of
all possible infinite walks on our graph.

In order to make ΣA a dynamical system we need to equip it with some map.
We define the left-shift operator σ where

σ(x)i = xi+1.

We call the dynamical system (ΣA, σ) a subshift of finite type (or in some of
the literature, a Topological Markov Shift Space). Note that σ is an invertible
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map on ΣA. When we introduce symbolic dynamics, (ΣA, σ) will model invertible
dynamical systems.

Subshifts of finite type are particularly nice because of their simplicity. First,
the orbit of any point x ∈ ΣA is very clear, and for this reason periodic points
are much easier to identify. These subshifts of finite type also have a “Markov”
property. If there is a word a1 . . . an in ~x and a word an . . . am in ~y then a1 . . . am
appears in some ~z.

We arrive at the following much more dynamical theorem, which yields a σ-
invariant measure for a topologically mixing system ΣA. This is the most important
theorem of this section.

Theorem 2.4. Let ΣA be topologically mixing, φ ∈ FA. There is a unique σ-
invariant Borel probability measure µ on ΣA for which one can find constants c1 >
0, c2 > 0 and P such that

(2.5) c1 ≤
µ{y : yi = xi ∀i = 0, . . . ,m}

exp
(
−Pm+

∑m−1
k=0 φ(σkx

) ≤ c2
for every x ∈ ΣA and m ≥ 0. We denote this measure µ with µφ and call it the
Gibbs measure of φ.

We will spend the remainder of this section outlining the proof of this theorem,
as well as looking at the properties of the Gibbs measure µφ.

2.3. The Construction of Gibbs Measures. We will omit the technical proof
of the existence of Gibbs measures here in hopes of reducing it to its most essential
conceptual parts. We will highlight the use of Transfer Operators as well as the
analogy between the Ruelle-Perron-Frobenius theorem and the Perron-Frobenius
Theorem on matrices.

In constructing the Gibbs measure it can be shown that we need only consider
functions φ(x) that are determined by xi for i ≥ 0. We refer the reader to [1], Lem-
mas 1.5 and 1.6 on pages 7-8. Any Gibbs measure constructed on these functions
will extend to a Gibbs measure for any Hölder continuous φ. We take φ ∈ FA,
where FA is the family of continous functions φ : ΣA → R where varkφ ≤ bαk for
all k ≥ 0 and for some constants b and α ∈ (0, 1).

Consider a dynamical system (X, f). Suppose we want to find a f -invariant
measure on X. The method of transfer operators is a useful tool in dynamics
because they allow us to use spectral theory to identify invariant measures, as well
as determine the rate of decay of correlations.

It is a fact that an equivalent definition for a f -invariant measure µ is that∫
X

φ ◦ f dµ =

∫
X

φ dµ

for any function φ : X → R.
We define the transfer operator L, acting on φ, such that∫

X

φ ◦ fdµ =

∫
X

L(φ)dµ.

Then it is clear that any fixed point of the transfer operator is an invariant measure
for our system. To find such a fixed point, we employ the use of spectral theory
from functional analysis. This also allows us to give bounds on convergence of
certain measures toward an invariant measure.
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In constructing Gibbs measures we use a similar method but we define a very
special operator,

Lφ(f(x)) =
∑

y∈σ−1(~x)

eφ(y)f(y)

called the Ruelle transfer operator.
The key theorem for constructing Gibbs measures is the following:

Theorem 2.6 (Ruelle-Perron-Frobenius Theorem). Let ΣA be topologically-mixing,
φ ∈ FA ∩ C (Σ+

A) and L = Lφ as above. There are λ > 0, h ∈ C (Σ+
A), with h > 0

and ν ∈M(Σ+
A) for which Lh = λh,L∗ν = λν, ν(h) = 1 and

lim
m→∞

‖λ−mLmg − ν(g)h‖ = 0 for all g ∈ C (Σ+
A).

This theorem is a generalization of the Perron-Frobenius theorem for matrices,
which is used to prove that there are unique stationary distributions for finite
Markov chains. In this case we are dealing with a linear operator L operating on
an infinite-dimensional vector space. We see that any probability distribution g
will converge to h under the repeated application of 1

λL.
We will now examine the various properties of the measure µφ = hν. that make

it desirable for our statistical studies. The first is that µ = µφ is invariant under
the dynamics of our system.

Lemma 2.7. µ is invariant under σ : Σ+
A → Σ+

A.

Proof. To show µ is invariant we want to show that µ(f) = µ(f◦σ) for all continuous
f (where we are viewing µ as a linear functional). We first note that

((Lf) · g)(x) =
∑

y∈σ−1~x

eφ(y)f(y)g(x)

=
∑

y∈σ−1~x

eφ(y)f(y)g(σy)

= L(f · (g ◦ σ))(x).

Using this fact we have

µ(f) = ν(hf)

= ν(λ−1Lh · f)

= λ−1ν(L(h · (f ◦ σ)))

= λ−1(L∗ν)(h · (f ◦ σ))

= ν(h ◦ (f ◦ σ))

= µ(f ◦ σ),

as desired. �

Not only is the measure µ invariant but it is also mixing, which implies ergodicity.
See Bowen [1] for details. Most importantly, µφ is the Gibbs measure for our system.

Theorem 2.8. µφ is a Gibbs measure for φ ∈ FA ∩ C (Σ+
A).

Proof. See Bowen [1]. �

Finally we can characterize µ using a variational principle, just like in the finite
case we examined at the start of this section.
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2.4. The Variational Principle and Equilibrium States. One of the foremost
properties of the Gibbs measure is that it satisfies a similar variational principle to
the Gibbs distribution for finite systems. By this we mean that the Gibbs measure
maximizes a certain quantity. Furthermore, we know the maximum value that this
quantity attains over all measures, so we can verify whether or not a measure is a
Gibbs measure.

Before we can state this variational principle we need to define a notion of entropy
for our measure µ. We will build up to the entropy of a measure in increments.

First, we define the entropy of a partition C = {C1, . . . , Ck} of the measure space
(X,B, µ) to be

Hµ(C) = Σki=1(−µ(Ci) logµ(Ci)).

This definition is directly inspired by the entropy of a random variable or distri-
bution. In fact, we can form a random variable that takes on states 1, . . . , k with
probabilities µ(C1), . . . , µ(Ck). Then the two forms of entropy coincide. Intuitively,
the entropy of the partition is a measure of how much uncertainty we have about
which section of our partition Ci a point x ∈ X lies in, and conversely how much
information we gain about a point when we are told which section of the partition
Ci it inhabits.

Then we can define the refinement of two partitions C and D as

C ∨ D = {Ci ∩Dj : Ci ∈ C, Dj ∈ D}.
For any point x ∈ M , knowing its position relative to the partition C ∨ D conveys
the same information as observing its position relative to both C and D.

If D is a finite partition we define

hµ(T,D) = lim
m→∞

1

m
Hµ(D ∨ T−1D ∨ · · · ∨ T−m+1D).

This quantity hµ(T,D) captures the average increase in complexity of the orbit
structure of our space relative to the partition D.

Finally we are ready to define the entropy of the measure µ.

Definition 2.9. Let µ be a σ-invariant measure on ΣA and U = {U1, . . . , Un}
where Ui = {x ∈ ΣA | x0 = i}. Then we define the entropy of the measure µ to be

s(µ) = Hµ(T,U)

This definition of entropy is quite particular to our symbolic dynamics (ΣA, σ).
We are tracking the average increase in complexity of our orbits over time. If many
points with the same initial condition (i.e. in the same section Ui) diverge, then
our entropy will be higher.

We now look to define a quantity known as the pressure of a function φ ∈ FA.
Pressure will also in some sense measure the rate at which complexity of orbits
grows, but is more subtle in that it weights orbits differently dependent on our
choice of φ.

We define

sup
a0...am−1

Smφ = sup{
m−1∑
i=0

φ(σkx) : x ∈ ΣA, xi = aifor all0 ≤ i ≤ m}

and

Zm(φ) =
∑

a0a1...am−1

exp

(
sup

a0...am−1

Smφ

)
.
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For each φ ∈ C (ΣA) we define the pressure of φ to be

P (φ) = lim
m→∞

1

m
logZm(φ).

As stated earlier, the pressure is a more subtle way to track orbit complexity.
Note also the similarities between pressure and the maximum value attained by the
Gibbs distribution in the finite case.

Finally we arrive at the following characterization of a Gibbs measure of φ:

Theorem 2.10. Let φ ∈ FA, ΣA topologically mixing and µφ the Gibbs measure
of φ. Then µφ is the unique measure σ-invariant measure µ such that

s(µ) +

∫
φ dµ = P (φ).

Proof. For a full proof, see [1], p. 20-22. �

This variational principle is an exact analogue of the finite case, with s(µ) rep-
resenting entropy and

∫
φ dµ representing the average value of our function under

the measure µ.
We note that all of the definitions given above can be generalized to any mea-

surable dynamical system. However, the most important thing is that we call µ an
equilibrium state of a dynamical system for a potential φ if

s(µ) +

∫
φ dµ = P (φ).

For a general thermodynamic formalism, we refer the reader to chapter 2 of Bowen’s
monograph [1].

3. Symbolic Dynamics

The discussion of symbolic dynamics which follows is largely drawn from Adler
[2].

Our goal in this section is to apply symbolic dynamics to non-symbolic systems.
Consider a dynamical system consisting of a space X and a map T on that space.
We would like a map π from our space X to some shift space

∑
A with the following

properties:

(1) We would like an encoding for each element x ∈ X. In order for our shift
space to fully capture the dynamics of the system (T,X) we need to be able
to distinguish all points via their symbolic encoding; so we also require that
π to be injective. We also want to make π surjective.

(2) We would like σ to be conjugate to the map T . The maps σ : ΣA → ΣA
and T : X → X are conjugate via π if

σ(π(x)) = π(Tx)

and π is a homeomorphism.
When two dynamical systems are conjugate, we can transfer many dy-

namical properties from one to the other. For instance the number of fixed
points and periodic points of each period are preserved under conjugation.

Given these two properties, we can study our dynamical system using the sym-
bolic structure we have built in the previous sections. Is this wishful thinking? Can
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such an encoding exist, and if so for which systems?2 The following examples show
that in some cases this is definitely possible and also serve to point us toward a
more general method of obtaining a symbolic encoding.

Example 3.1 (Multiplication by 2). We will start with a classic dynamical system
map. Let X = [0, 1) and T (x) = 2x mod 1.

Consider the binary decimal expansion of a point x ∈ X,

x = 0.a1a2a3 . . .

It seems natural to let π send a = a1a2a3 . . . to the number x which has decimal
expansion x = 0.a1a2a3.... Now under the map T , we see that

0.a1a2a3 · · · → 0.a2a3a4 . . . .

So the shift operator corresponds to the map T in our symbolic space.
It is worth noting that we don’t necessarily have a unique encoding for each real

number. For instance the real number x = 0.5 is encoded by

1000000 . . .

as well as

0111111 . . .

Example 3.2 (Encoding with Partitions). The method of encoding described in
the previous example seems rather cheap. For most dynamical systems we won’t
have an analogue to the decimal expansion of a number to rely on. So in a general
dynamical system (T,X) how might one approach this problem?

One idea is to partition our space X into disjoint sets X1, . . . , Xn such that
X = ∪iXi.

Then for each point x ∈ X we can generate a symbolic representation (si)i∈N as
follows:

(1) Clearly x ∈ Xi for some i. Write down this i.
(2) Apply T to x and we now have Tx ∈ Xj for some j. Write down this j.
(3) Repeatedly apply T , each time writing the corresponding symbol for the

part of the partition that T k(x) is in.

With this procedure we can generate an infinite two sided sequence (sn)∞n=−∞ such

that T k(x) ∈ Xsk for all k ∈ Z. (This is sometimes called the itinerary of the point
x). The issue with the partition scheme laid out above is that we might not have
uniqueness of symbolic encoding. For instance, we could have two points which
follow the same trajectory with respect to our partition. In what partitions is this
issue avoided? Can it be avoided? Our next example will show that there exist
partitions for which we have a unique point for every symbolic sequence.

Example 3.3 (Encoding Multiplication with a Partition). Let’s return to Example
3.1. Recall that our issue with Example 3.1 was that, despite offering a good
encoding, it did not feel generalizable. In Example 3.2 we introduced the idea of
using a partition to encode points in our dynamics, yet we did not have any clear
examples of partitions with good encodings.

2As an aside, we note that if maps are not sufficiently chaotic then we cannot use this symbolic
encoding. For instance if we have an infinite set and we apply the identity map as our dynamics,

then under any finite partition we will not obtain injectivity.
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As we will show in this example, we can view the binary decimal expansions
through the lens of partitions, thereby unifying these two approaches and giving
support to the partition approach as a general method.

Again let T (x) = 2x mod 1 and X = [0, 1). Then we will partition X into two
sets,

X0 = (0,
1

2
) and X1 = (

1

2
, 1).

Note that the union of the closure of these two sets is the whole space X.
Then for any point (s1, s2, s3, . . . ) we identify the point

{x} =

∞⋂
n=0

Xs1 ∩ f−1(Rs2) ∩ · · · ∩ f−n(Rsn+1
).

The next example is particularly important because it will serve as the concrete
model with which we interpret many of the more general results in the next section.

Example 3.4 (Toral Automorphism). We define a map on the 2-dimensional torus,
T2. We model the torus with a unit square where opposite sides are associated. We
can also think of the torus as R2 mod Z2. Consequently, any linear transformation
on R2 that fixes the lattice Z2 yields a valid map on the torus.

We define the map Γ : T2 → T2 where

Γ

([
1 1
1 0

])
(In the literature this is often referred to as the cat map on the torus. The etymology
is that when V.I. Arnold introduced the map, he demonstrated the result of iterating
the map on a square picture of a cat). This linear transformation is diagonalizable
into two eigendirections, lλ and lµ corresponding to the eigenvalues

λ = (1 +
√

5)/2 and µ = (1−
√

5)/2.

In the direction of lλ our map expands, while in the direction of lµ it contracts
points.

Observe that the region outlined below

covers the torus. Therefore any partition of this region is a partition of the torus.
We can split this region into three rectangles as follows:
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We observe that the parts of the partition have a simple behavior under appli-
cation of Γ. The map Γ flips over the expanding axis, and then stretches in that
direction, while squishing in the contracting direction. Thus rectangles aligned with
the eigendirections stay rectangles.

We will see that this partition is a “good” partition in that any sequence of
symbols in {1, 2, 3} corresponds to exactly one orbit in our dynamics.

We note several characteristics of this partition that we will hope to generalize.

(1) These rectangles are in some way “aligned” with our dynamics, in that their
boundaries have expanding and contracting directions. This is formalized
by the product structure being preserved, which we will discuss later.

(2) Second, the boundaries are preserved. When the rectangles are iterated
under the map, we see that the boundaries aligned with the expanding
direction are mapped onto themselves. When iterating the inverse the same
is true of the boundaries aligned with the compressing direction. For this
reason rectangles map across each other in the expanding direction as we
iterate the map, and stretch across in the contracting direction when we
iterate the inverse.

Consider a sequence (sk)k∈Z where sk ∈ {1, 2, 3}. We get unique representation
because the rectangles stretch across the entire space in both directions. Therefore
they must intersect. In other words

∩nk=−nφ
−kRsk 6= ∅

so
∩∞k=−∞φ

−kRsk
has exactly one point in its intersection.

3.1. Axiom A Diffeomorphisms. For constructing Markov partitions we restrict
ourselves to hyperbolic systems. There is a practical reason for this. Hyperbolic
systems lend themselves to an encoding. Recall that we intend to use a finite parti-
tion to generate symbolic dynamics for our systems. In order to give a meaningful
symbolic dynamics, we need different points to be distinguishable at some iteration
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k ∈ Z of our map T . For a hyperbolic system we know that for any point, points
around it are either expanding as we iterate the map, or expanding as we iterate its
inverse. Therefore we see that points move farther away from each other at some
time, leading to them being distinguishable under our partition.

In this section we will construct Markov Partitions on certain subsets of Axiom
A diffeomorphisms using the methods of Bowen [1].

The previous examples are a step in the direction of successfully encoding dy-
namics. We would now like to focus our attention on a certain sub-class of maps
where we think a general method would be attainable. These will be the hyperbolic
maps.

In particular we will be looking at hyperbolic differentiable dynamical systems.
These encompass both of our preceding examples which were hyperbolic and locally
linear. The underlying space for a differentiable dynamical system is a differentiable
manifold. For our purposes it suffices to think of a differentiable manifold Mn in
n-dimensions as a n-dimensionable differentiable surface, or submanifold, of RN ,
where N > n. For each point x ∈ M we have some local coordinate system identi-
fying a neighborhood of the point x with a neighborhood of zero in Rn. We define
a tangent space TxM ⊂ Rn as the set of all the vectors tangent to M at x. A one-
to-one map with a differentiable inverse is called a diffeomorphism. For complete
generalization, see [1], Chapter 3.

Let f : M → M be a diffeomorphism on a compact C∞ Riemannian manifold
M . We define a hyperbolic set as follows:

Definition 3.5. A closed subset Λ ⊆M is hyperbolic if f(Λ) = Λ and each tangent
space TxM with x ∈ Λ can be written as a direct sum

TxM = Eux ⊕ Esx
of subspaces so that

(1) Df(Esx) = Esf(x), Df(Eux ) = Euf(x);

(2) there exist constants c > 0 and λ ∈ (0, 1) such that

‖Dfn(v)‖ ≤ cλn‖v‖ when v ∈ Esx, n ≥ 0

and
‖Df−n(v)‖ ≤ cλn‖v‖ when v ∈ Eux , n ≥ 0

(3) Esx, E
u
x vary continuously with x.

In words, at every point x in a hyperbolic set Λ, we can decompose the deriv-
ative (linear approximation) of f into expanding and contracting directions. The
derivative preserves these directions. Also, the rate of expansion and contraction is
controlled by a single value λ, which is strictly smaller than 1.

In building up to defining Axiom A diffeomorphisms we make the following
definitions.

Definition 3.6 (Non-wandering Set). A point x ∈M is called non-wandering if

U ∩
⋃
n>0

fnU 6= ∅

for every neighborhood U of x. We denote the set of non-wandering points by
Ω = Ω(f).

Remark 3.7. (1) If a point x is periodic then x is in the non-wandering set.
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(2) The set Ω is closed and f -invariant.

The Axiom A diffeomorphisms are characterized by their behavior on the non-
wandering set. This is analogous to how in one-dimensional dynamics, fixed and
periodic points capture much of the dynamics in many cases (asymptotically).

Definition 3.8. We say that a diffeomorphism f satisfies Axiom A if the non-
wandering set Ω(f) is hyperbolic and Ω(f) is the closure of the set periodic points.

For any point x ∈ M we can define the stable set W s(x) and the unstable set
Wu(x).

Definition 3.9. For a point x ∈M let

W s(x) = {y ∈M : d(fnx, fny)→ 0 as n→∞}
W s
ε (x) = {y ∈M : d(fnx, fny) ≤ ε as n→∞}

Wu(x) = {y ∈M : d(f−nx, f−ny)→ 0 as n→∞}
Wu
ε (x) = {y ∈M : d(f−nx, f−ny) ≤ ε as n→∞}.

In some texts the sets W s(x) and Wu(x) are referred to as the stable and un-
stable manifolds of x respectively. We note that the sets W s

ε (x) and Wu
ε (x) are

approximations of W s(x) and Wu(x) respectively.
We can then prove the following stable manifold theorem for Axiom A diffeo-

morphisms:

Theorem 3.10 (Stable Manifold Theorem). Let Λ be a hyperbolic set for a Cr
diffeomorphism f . For small ε > 0

(1) W s
ε (x),Wu

ε (x) are Cr disks for x ∈ Λ with TxW
s
ε (x) = Esx, TxW

u
ε (x) = Eux ;

(2) d(fnx, fny) ≤ λnd(x, y) for y ∈W s
ε , n ≥ 0 and

d(f−nx, f−ny) ≤ λλnd(x, y) for y ∈Wu
ε (x), N ≥ 0;

(3) W s
ε (x),Wu

ε (x) vary continuously with x (in Cr topology).

Proof. See Bowen [1], p.48. �

This theorem shows that for small enough ε we have W s
ε (x) ⊂ W s(x). In other

words, once a point gets within ε of x, it will converge to x under iteration of f . A
similar property holds for Wu

ε (x) and Wu(x) except with respect to iterations of
f−1.

The following theorem introduces a product operator for points in the nonwan-
dering set.

Theorem 3.11. Suppose f is an Axiom A diffeomorphism. For any small ε > 0
(as in Theorem 3.10) there is a δ > 0 such that W s

ε (x)∩Wu
ε (y) consists of a single

point whenever x, y ∈ Ω(f). We define this point to be [x, y]. Then

[·, ·] : {(x, y) ∈ Ω(f)× Ω(f) : d(x, y) ≤ δ} → Ω(f)

is continuous.

Proof. See Bowen p.49 for a rigorous proof.
The proof of the first sentence hinges on W s

ε (x) and Wu
ε (x) intersecting trans-

versely. Transversality is basically the opposite of tangency. It is a fact that trans-
verse intersections are preserved under small perturbations.

For the proof that [x, y] ∈ Ω(f), use the density of periodic points in Ω(f)
(Axiom A). �
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We arrive finally at the following very important characterization of a hyperbolic
set.

Theorem 3.12. Let Λ be a hyperbolic set. Then there is an ε > 0 such that Λ is
expansive in M , i.e. if x ∈ Λ and y ∈M with y 6= x, then

d(fkx, fky) > ε for some k ∈ Z.

Proof. We prove the contrapositive. Suppose d(fkx, fky) ≤ ε for all k ∈ Z. Then
y ∈W s

ε (x) ∩Wu
ε (x). So y = x by the previous theorem. �

Remark 3.13. This statement formalizes the exact intuition we had earlier about
why hyperbolic sets were good candidates for symbolic encoding. Even if there are
points that are very close together, we can find some point in the future or past of
the map during which they were distinguishable by some fixed ε. Thus we can be
hopeful that a partition can distinguish between even the most closely associated
points.

The preceding theorems show that we can get uniqueness of symbolic encodings.
In the next section we will look at the appropriate conditions for a partition to
generate “Markov” encodings, i.e. encodings that form a Markov shift space.

Assume from now on that f is an Axiom A diffeomorphism.

Theorem 3.14 (Spectral Decomposition). One can write Ω(f) = Ω1∪Ω2∪· · ·∪Ωs
where Ωi are pairwise disjoint closed sets with

(a) f(Ωi) = Ωi and f |Ωi is topologically transitive;
(b) Ωi = X1,i ∪ · · · ∪Xni,i with the X ′j,is disjoint closed sets,

f(Xj,i) = Xj+1,i(Xnj+1,i = X1,i

and fni |Xj,i topologically mixing.

Proof. For the proof see Bowen [1] p. 58-60. �

We call the sets Ωi basic sets. We will eventually construct equilibrium states
on these basic states.

3.2. Rectangles. We will now define an abstract notion of a rectangle. These
“rectangles” will be the sections that make up our partitions. They are called
rectangles because they are seen to have a product structure. They are also gener-
alizations of the “aligned” rectangles that we saw in Example 3.

Definition 3.15. A subset R ⊆ Ωs is called a rectangle if it has small diameter
and

[x, y] ∈ R whenever x, y ∈ R.

We say that R is proper if R is closed and R = int(R).
For x ∈ R let

W s(x,R) = W s
ε (x) ∩R and Wu(x,R) = Wu

ε (x) ∩R.

As with the torus example, we can express the boundary as a union of expanding
and contracting sets.
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Lemma 3.16. Let R be a closed rectangle. As a subset of Ωs, R has boundary
δR = δsR ∪ δuR where

δsR = {x ∈ R : x 6 int(Wu(x,R))}
δuR = {x ∈ R : x 6 int(W s(x,R))}.

Proof. See Bowen. �

Before giving the definition of a Markov partition, we give some intuition for
why this is the correct definition.

Suppose have partitioned our space into rectangles, R = {R1, . . . , Rn}. Suppose
we have a point R1 ∩ f(R2) 6= ∅ and a point in R1 ∩ f−1(R3). This is equivalent to
saying that in our symbolic encoding the sequence 21 is allowed, and the sequence 13
is allowed. If our symbolic encodings form a Markov shift space then naturally the
sequence 213 should occur in some encoding. In other words f(R2)∩R1∩f−1(R3) is
nonempty. In a Markov shift space if the sequence a1 . . . an is allowed, and an . . . am
is allowed, then a1 . . . am is allowed.

We say that a Markov partition should have the n-fold intersection property,

Rsk ∩ φ−1Rsk+1
6= ∅, 1 ≤ k ≤ n− 1 =⇒

n⋂
k=1

φ−kRsk .

for sequences s1, . . . , sn of length n ≥ 3. This is called the Markov property of a
partition.

However, while this property clearly communicates its meaning, it is hard to
check because it is essentially an infinite condition. Our goal is to find an easier
but equivalent condition for a partition to have the Markov property.

Suppose we have partition such that

fWu(x,Ri) ⊃Wu(fx,Rj)

and

fW s(x,Ri) ⊂W s(fx,Rj)

when x ∈ int(Ri), fx ∈ int(Rj). We will call this Property M (alluding to the fact
that this is actually a Markov-like property).

Suppose we were looking at the symbolic encodings generated by the orbits of
the point x. Suppose a point y is in W s(x,Ri). This means that after no iterations
of our map f , y and x lie in the same rectangle. Then by the second property, after
an iteration of our map we see that fy and fx again lie in the same partition. By
iterating the second equation we see that fkx and fky lie in the same rectangle for
all k ≥ 0. Similarly we can see that if z ∈ Wu(x,Ri) then fkz and fkx lie in the
same rectangle for all k ≤ 0.

In fewer words, y looks like x in the future, z looks like x in the past. Suppose
R = {R1, . . . , Rn} is a partition with Property M. Then it satisfies the 3-fold
intersection property.

Proof. Suppose p ∈ fRi∩Rj 6= ∅ and q ∈ Rj∩f−1Rk. Then consider their product
[p, q]. We know that [p, q] ∈ Rj because of the product structure of rectangles. Then
we see that [p, q] ∈ f−1W s(fq) �

The following theorem allows us to extend this result to the n-fold intersection
property.
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Theorem 3.17. For a partition R = {R1, . . . , Rn} with property M the following
two properties hold

fnWu(x,Ri) ⊃Wu(fnx,Rj) and fnW s(x,Ri) ⊂W s(fnx,Ri).

Proof. Induction on Property M leads to this result. �

It follows from this theory that n-fold intersection property holds for any n.
Therefore we see that Property M implies the Markov Property, and it is there-

fore a suitable replacement condition.
We are finally able to state the definition of a Markov partition (for a basic set

Ωs).

Definition 3.18. A Markov partition of Ωs is a finite covering R = {R1, . . . , Rm}
of Ωs by proper rectangles with

(1) int(Ri) ∩ int(Rj) = ∅ for i 6= j,
(2) fWu(x,Ri) ⊃Wu(fx,Rj) and

fW s(x,Ri) ⊂W s(fx,Rj) when x ∈ int(Ri), fx ∈ int(Rj).

3.3. Existence of Markov Partitions. In this section we will prove that every
basic set Ωs of an Axiom A diffeomorphism has a Markov partition R of arbitrarily
small diameter. Before doing so, we introduce pseudo orbits and shadowing.

Definition 3.19. A sequence of points ~x = {xi}bi=a of points in M is an α-pseudo-
orbit if

d(fxi, xi+1) < α for all i ∈ [a, b− 1).

A point x ∈M β−shadows x if

d(f ix, xi) ≤ β for all i ∈ [a, b].

And we provide the following property of the nonwandering set.

Theorem 3.20. For every β > 0 there is an α > 0 such that every α-pseudo orbit
{xi}bi=a in Ω (i.e. every xi ∈ Ω) is β-shadowed by a point x ∈ Ω.

Proof. See Bowen [1] p.51. �

Theorem 3.21. Let Ωs be a basic set for an Axiom A diffeomorphism f . Then Ωs
has Markov partitions R of arbitrarily small diameter.

Proof. Let β > 0 be small and choose α > 0 such that every α-pseudo orbit is
approximated within β by an actual orbit. Since f is continuous we can choose
γ < α/2 such that if d(x, y) < γ, we have d(fx, fy) < α/2.

Now we will construct a rough cover and clean it up after we have attained
approximately good encoding.

So let P = {p1, . . . , pr} be a γ dense subset of Ωs. See the diagram below. This
means that every point x ∈ Ωs is contained in at least one ball.

Now let

Σ(P ) =
{
q ∈ Π∞−∞P : d(fqj , qj+1) < α for all j

}
.

These are all the sequences of points in P that are α-pseudo orbits. We can think
about that seqeunce of points as a symbolic representation. We would now like to
find an actual point x that “looks like” this sequence of points. By Theorem 3.20
we know that we can find x that β shadows q. We will denote x = θ(q). We can see
that this x is actually unique, i.e. the symbolism corresponds to only one point.
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Conversely, for each x is there q ∈ Σ(P ) such that θ(q) = x? Well, for each k,
choose qk such that x is in the γ ball around qk. Then we have

d(fqj , qj+1) ≤ d(fqj , f(f j(x))) + d(f j+1(x), qj+1) < 2(α/2) = α.

We have d(fqj , f(f j(x))) < α/2 because d(qj , f
j(x)) < γ. We know that

d(f j+1(x), qj+1) < γ

because we chose qj+1 to be γ-close to f j+1(x), and γ < α/2 as chosen earlier.
Then we can define a product operator on the set of symbolic sequences that

is equivalent to the product operator. For q, q′ ∈ Σ(P ) with q0 = q′0 we define
q∗ = [q, q′] ∈ Σ(P ) such that

q∗j =

{
qj , j ≥ 0

q′j , j ≤ 0.

We would like to show that the element θ(q∗) = [θ(q), θ(q′)]. Naturally

d(f jθ(q∗), f jθ(q)) ≤ 2β

for j ≥ 0 and d(f jθ(q∗), f jθ(q′)) ≤ 2β for j ≤ 0. Thus

θ(q∗) ∈W s
2β(θ(q)) ∩Wu

2β(θ(q′))

which implies that

θ[q, q′] = [θ(q), θ(q′)]

as desired.
We would now like to make some rectangles. Let

Ts = {θ(q) : q ∈ Σ(P ), q0 = ps}.

We will show that Ts is actually a rectangle. Choose x, y ∈ Ts. Then we write
x = θ(q) and y = θ(q′) where q0 = ps = q′0. Then

[x, y] = θ[q, q′] ∈ Ts.

Therefore we have

fW s(x, Ts) ⊂W s(fx, Tt)

A similar proof shows that

fWu(x, Ts) supWu(fx, Tt).

So we see that we almost have a Markov partition except for the fact that our
rectangles are not disjoint (so we don’t have a partition). The rest of the proof
serves to amend this fact.

Bowen shows that θ is continuous in his book, as well as how to get rid of overlaps
between the rectangles Ts to get a partition. We refer the reader to Bowen [1] for
this part of the proof. �
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3.4. Encoding. We have a Markov Partition. Now we define a corresponding
symbolic space in the way we alluded to earlier in our discussion of partitions.
What we will end up showing is that for each symbolic sequence we have only one
point in our basic set corresponding to it.

For the Markov partition R = {R1, . . . , Rm} we define the transition matrix
A = A(R) where

Aij =

{
1 if int(Ri) ∩ f−1int(Rj) 6= ∅,
0 otherwise.

We define the notion of a subrectangle. This is more than just a subset that is
rectangle.

Definition 3.22 (u-subrectangle). We say that S is a u-subrectangle of a rectangle
R if

(1) S 6= ∅, S ⊂ R,S is proper, and
(2) Wu(y, S) = Wu(y,R) for y ∈ S.

Then we have the following (interesting) Lemma from Bowen (p. 59).

Lemma 3.23. Suppose S is a u-subrectangle of Ri and Aij = 1. Then f(S) ∩ Rj
is a u-subrectangle of Rj.

Using this lemma we have our desired theorem.

Theorem 3.24. For each a ∈ ΣA the set ∩j∈Zf−jRaj consists of a single point,
denoted π(a). The map π : ΣA → Ωs is a continuous surjection, π ◦ σ = f ◦ π, and
π is one-to-one over the residual set

Y = Ωs \
⋃
j∈Z

f j(δsR∪ δuR).

Proof. Suppose a1a2 . . . an is an allowable word. Then by induction we see that

n⋂
j=1

fn−jRaj = Ran ∩ f

n−1⋂
j=1

fn−1−jRaj


is a u-subrectangle of Ran . So we see that

Kn(a) = ∩nj=−nf−jRaj
is nonempty and the closure of its interior. As Kn(a) ⊃ Kn+1(a) ⊃ . . . we have

K(a) =

∞⋂
j=−∞

f−jRaj =

∞⋂
n=1

Kn(a) 6= ∅.

Then if x, y ∈ K(a) we have f jx, f jy ∈ Raj for all j ∈ Z. So we see that x = y by
expansiveness.

It is clear that π◦σ = f ◦π. The map π is continuous, and this is proved similarly
to how we proved that θ was cont. earlier. �

We would now like to show that some fundamental properties are maintained by
σ : ΣA → ΣA. We know that f restricted to Ωs is topologically transitive. Does
this hold for ΣA under σ? Similarly, does topological mixing transfer? The next
theorem answers these questions.
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Theorem 3.25. The dynamical system σ : ΣA → ΣA is topologically transitive. If
f |Σs is topologically mixing so is σ : ΣA → ΣA.

Proof. See Bowen [1]. �

4. SRB Measures on Anosov Diffeomorphisms

In this section we will use Markov Partitions to transfer our results on symbolic
spaces to Axiom A Diffeomorphisms using Markov partitions.

We will see that the dynamics of an Axiom A Diffeomorphism are in some sense
captured by the basic sets. As we saw earlier, the manifold M can be written as a
union of the stable sets for each basic set:

M =

s⋃
n=1

W s(Ωs).

We will then see that for almost every point in the basin of attraction for a basic
set Ωs, the time average of an observable φ is equal to the space average on the
basic set under the SRB measure.

Recall that a function φ is Hölder continuous if there are constants a, θ > 0 such
that

|φ(x)− φ(y)| ≤ ad(x, y)θ.

Then for Hölder continuous potentials φ we have the following result:

Theorem 4.1. Let Ωs be a basic set for an Axiom A diffeomorphism f and φ :
Ωs → R Hölder continuous. Then

(1) φ has a unique equilibrium state µφ with respect to f on Ωs;
(2) µφ is ergodic;
(3) µφ is Bernoulli if f |Ωs is topologically mixing.

Proof. Let R be a Markov partition for Ωs with diameter at most ε (as in the
lemma). Let A be the transition matrix for R and π be the factor map, π : ΣA →
Ωs.

We can find a function φ∗ on Ωs by composing φ with π, φ∗ = φ ◦ π. We would
like to show that φ∗ ∈ FA. Recall that φ∗ ∈ FA if it is continuous and varkφ ≤ bαk
for some positive constant b and α ∈ (0, 1).

Consider x, y ∈ ΣA and suppose that xk = yk for k ∈ [−N,N ]. Then we can
conclude that fkπ(x), fkπ(y) are in Rxk = Ryk for k ∈ [−N,N ]. In other words,
with respect to the partition, the points π(x) and π(y) are identical for fk where
k ∈ [−N,N ]. We also chose R such that each rectangle has diameter less than ε,
so

d(fkπ(x), fkπ(y)) < ε for k ∈ [−N,N ]

thus by our Lemma, we have d(π(x), π(y)) < αN . Since φ is Holder continuous we
have

|φ(π(x))− φ(π(y))| = |φ∗(x)− φ∗(y)| ≤ a(αN )φ = a(αθ)N .

Thus φ∗ ∈ FA.
Now suppose f |Ωs is mixing. We proved in the previous section that this implies

that σ |ΣA is mixing. Consequently we have a Gibbs measure µφ∗ . Recall that we
know that µφ∗ is ergodic.

Now recall that uniqueness of encoding for points in Ωs only failed on points that
at some point in time landed on the boundary of our partition. This makes intuitive
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sense, since when we land on a boundary we have two choices of which partition the
point is in. We would like to show that this non-uniqueness is irrelevant in measure
theory because the set of points with non-unique encoding has measure zero.

So let Ds = π−1(δsR) and Du = π−1(δuR). These are closed subsets of ΣA
(because they are the preimage of closed sets), and each is a strict subset of ΣA.
Furthermore we know that σDs ⊂ Ds and σ−1Du ⊂ Du . Since µφ∗ is σ-invariant,
we see that µφ∗(σnDs) = µφ∗(Ds); Since σn+1Ds ⊂ σnDs we have that

σnDs = ∩nk=1σ
kDs

so

µφ∗

⋂
n≥0

σnDs

 = µφ∗(Ds).

We can then see that
⋂
n≥0 σ

nDs is invariant under σ, so by the ergodicity of
µφ∗ it either has measure zero or one. But it’s complement is open, and therefore
has positive measure, so

µφ∗

⋂
n≥0

σnDs

 = µφ∗(Ds) = 0.

We can see similarly that µφ∗(Du) = 0.
Now define the measure µφ on Ωs where

µφ(E) = µφ∗(π−1E).

We want to show that µφ is f -invariant. Well,

µφ(f−1E) = µφ∗(π−1(f−1(E)))

= µφ∗((f ◦ π)−1(E))

= µφ∗((π ◦ σ)−1(E))

= µφ∗(σ−1(π−1(E)))

= µφ∗(π−1(E)) = µφ(E).

We also see that σ and f are conjugate automorphisms because π is one-to-one
except on a null-set

⋃
n∈Z σ

n(Ds ∪Du) (i.e. with respect to integration these two
things are equivalent under conjugation).

So hµφ(f) = hµφ∗ (σ) because entropy is preserved under conjugation.
Then we know that

hµφ(f) +

∫
φ dµφ ≤ Pf (φ)

by the variational principle for pressure.
However,

hµφ(f) +

∫
φ dµφ = hµ∗

φ
(σ) +

∫
φ dµφ∗

= Pσ(φ∗) ≥ Pf (φ).

The last inequality is from Proposition 2.13 from Bowen [1].
Thus Pσ(φ∗) = Pf (φ) and µφ is an equilibrium state for φ.
We leave uniqueness and generalization to Bowen [1]. �
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4.1. Physical Measures. In the previous section we outlined how we construct
unique equilibrium states for basic sets. However, basic sets do not concern the
entire Manifold M , and we would like very much to describe dynamics on a set
beyond our basic sets. As is seen in examples, the non-wandering set often has
Lebesgue measure zero. However, if we can show that in some way our measure
“extends” to an open set beyond the basic sets, then we will have a physical measure
on our space M .

Since M is Riemannian locally we have a volume measure m on M . We will
assume that f : M → M is a C2 Axiom A diffeomorphism and Ωs is basic set for
f .

For x ∈ Ωs let φ(u)(x) = − log λ(x) where λ(x) is the Jacobian of the linear map

Df : Eux → Eufx.

It is shown in Bowen that φ(u) is Hölder continuous. We denote the corresponding
equilibrium state for φ(u) as µ+.

An attracting basic set is a set Ωs such that W s(Ωs) has positive Lebesgue
measure (or is an open set).

We arrive at the following final theorem. We know M =
⋃r
k=1W

s(Ωk).

Theorem 4.2. Let Ωs be a C2 attractor. For m-almost all x ∈W s(Ωs) one has

lim
n→∞

1

n

n−1∑
k=0

g(fkx) =

∫
g dµ+

for all continuous g : M → R.

Therefore we see that the measure µ+ on attractors yields a physical measure
from which we can derive statistical properties about our Axiom A diffeomorphism.
We call this µ+ the SRB measure on Ωs.

5. Further Reading

As stated in the abstract, this survey is centered around Bowen’s text, [1]. In
order to keep this survey relatively brief, I excluded an extensive discussion of
the Thermodynamic Formalism described in Chapter 2 of [1]. For an extensive
exposition of Markov Partitions, see [2]. For intuition on the transfer operators and
the Ruelle Perron Frobenius operator, I recommend Vaughn Climenhaga’s notes [8].
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