
BOTT PERIODICITY AND K-THEORY

ZACHARY HALLADAY

Abstract. The homotopy and K-theoretic forms of Bott Periodicity can be

shown to be equivalent using heavy machinery. However in this paper, we

follow the details of Bott’s simple and concrete homotopy linking the two

di↵erent forms.
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1. Introduction

Bott first made the remarkable observation that the classical groups, that is the

orthogonal, unitary, and symplectic groups, have periodic homotopy groups. More

precisely in his papers [2, 3], Bott showed that

⇡n(U) ⇠= ⇡n+2(U),

⇡n(O) ⇠= ⇡n+4(Sp),

⇡n(Sp) ⇠= ⇡n+4(O).

We will be concerned with the complex case ⇡n(U) ⇠= ⇡n+2(U). This result would

spark the development of K-theory. However, the K-theoretic form of Bott period-

icity takes on a di↵erent form, stating that the homomorphism on reduced K-theory

eK(X) ! eK(⌃
2X),

induced by taking the external tensor product of stable equivalence classes of vector

bundles over X with the canonical line bundle over S2
is an isomorphism. It’s not

immediately clear how this is equivalent to Bott’s original theorem. In fact, the

direct proof of the K-theoretic form of the theorem found in Atiyah’s book [5] uses a

careful analysis of clutching functions to show that this map is an isomorphism and

makes no reference to the identity ⇡n(U) ⇠= ⇡n+2(U). Meanwhile, Bott’s original
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proof of this identity made use of Morse theory and insight into the topology of the

spaces to describe a homotopy equivalence

� : BU ! ⌦
2BU,

where BU is the universal classifying space for U . We may then consider the adjoint

map

�⇤
: BU ^ S2 ! BU.

As we will see, taking the external tensor product of stable equivalence classes of

vector bundles over X with the canonical line bundle over S2
corresponds to a map

↵ : BU ^ S2 ! BU.

It is possible using heavy machinery to show that these two maps must be homo-

topic, but this leaves something to be desired on an explicit level. In his paper [1],

Bott describes an explicit homotopy between these two maps. This establishes a

compatibility between the two forms of Bott periodicity and explicitly shows how

these two versions relate to each other. In this paper, we work out the details of

the explicit homotopy given by Bott [1], as well as develop some of the necessary

theory to make sense of this homotopy. We begin with some basic notation and a

quick review of the necessary material to put the homotopy into context.

2. Preliminaries

Throughout this paper, X,Y and Z will mean compact, connected, CW com-

plexes with basepoints. Let F (X,Y ) be the space of basepoint preserving maps

from X to Y . Then we have the equivalence

F (X,F (Y, Z)) ⇠= F (X ^ Y, Z),

where X ^Y = X ⇥Y/X _Y is the smash product taking X _Y to be X ⇥ {y0}[
{x0} ⇥ Y ⇢ X ⇥ Y with x0 and y0 the basepoints of X and Y respectively. In

particular ⌃
nX = X ^ Sn

and ⌦
nX = F (Sn, X) give us

F (X,⌦nY ) ⇠= F (⌃
nX,Y ).

We can pass this through ⇡0 to obtain the equivalence

[X,⌦nY ] ⇠= [⌃
nX,Y ],

where [X,Y ] represents basepoint preserving homotopy classes of maps from X to

Y . We note that Sn ' ⌃kSn�k
gives us the identity

⇡n(X) ⇠= [Sn, X] ⇠= [Sn�k,⌦kX] ⇠= ⇡n�k(⌦
kX).

We will assume familiarity with vector bundle theory and the classification of

vector bundles. For an introduction to vector bundles we reference Atiyah [5]

or chapter 23 of May [4]. We let Vect(X ) be the set of equivalence classes of

complex vector bundles over X and let Vectn(X ) be the set of equivalence classes

of n-dimensional complex vector bundles over X. Recall that we have a universal

n-plane bundle �n : En ! BU(n), such that we have an isomorphism of pointed

sets

[X+, BU(n)] ⇠= V ectn(X),
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induced by pullbacks of �n. We also have inclusions i : BU(n) ! BU(n + 1) such

that i⇤(�n+1)
⇠= �n�", where " is the trivial line bundle. We then have the universal

bundle BU = colimBU(n). It is shown in May [4] that

U ' ⌦BU.

This gives us the identity

⇡n(U) ⇠= ⇡n(⌦BU) ⇠= ⇡n+1(BU).

Because of this isomorphism, we have the following equivalent homotopic form of

Bott periodicity.

Theorem 2.1. ⇡q(BU) ⇠= ⇡q+2(BU), for q � 1

As shown in May [4] we may construct BU(n) as a colimit of Grassmannians.

Let Gn(Ck
) be the space of n-dimensional complex subspaces of Ck

. We may take

Ek
n = {(A, z) : A 2 Gn(Ck

) and z 2 A}
and let �k

n : E
k
n ! Gn(Ck

) be the projection (A, z) 7! A, called the canonical bundle.

Then the standard inclusion Ck ,! Ck+1
gives us inclusions Gn(Ck

) ,! Gn(Ck+1
)

and Ek
n ,! Ek+1

n . We define BU(n) = colimGn(Ck
) = Gn(C1

) and En = E1
n .

To get the desired inclusions in : BU(n) ! BU(n+1), we may fix an isomorphism

C1 � C ⇠= C1
which then induces a homeomorphism between Gk(C1 � C) and

Gk(C1
). We then define in : Gn(C1

) ! Gn+1(C1 � C) by taking A 7! A � C,
which gives our desired inclusion.

Definition 2.2. We define EU(X) to be the set of equivalence classes of Vect(X)
under the relation that ⇠ ⇠ ⌘ if ⇠ � "n ⇠= ⌘ � "m, for some n and m, where "n is
the n-dimensional trivial bundle. We let [⇠]s denote the equivalence class of ⇠ in
EU(X) and call it the stable equivalence class of ⇠.

We observe that if we take the inclusions Vectn(X ) ,! Vectn+1 (X ) obtained

by mapping ⇠ 7! ⇠ � ", then, since X is connected, EU(X) = colimVectn(X ) =

colim[X+,BU (n)]. Since we are assuming X is compact, we have that

EU(X) = colim[X+, BU(n)] = [X+, colimBU(n)] = [X+, BU ].

We wish to consider nondegenerately based spaces. To do this, we can consider

the map f : S0 ! X+ which sends the base point of S0
to the disjoint basepoint of

X+ and the other point of S0
to the desired basepoint of X. We then note that the

homotopy cofiber Cf = X [f CS0
is just homotopy equivalent to X. Taking maps

into BU , the cofiber sequence S0 ! X+ ! X ! ⌃S0
induces an exact sequence

[S1, BU ] ! [X,BU ] ! [X+, BU ] ! [S0, BU ],

which gives us the isomorphism

[X,BU ] ⇠= [X+, BU ],

since BU is simply connected. This follows from BU ' ⌦U and the fact that

U is path-connected. Throughout the rest of this paper whenever we consider

homotopies of maps into Z we will always be working with simply connected spaces

Z. So we will have the equivalence

[X,Z] ⇠= [X+, Z].

Thus we will not worry whether our homotopies fix basepoints or not as a class in

[X+, Z] corresponds to a unique class in [X,Z].



4 ZACHARY HALLADAY

As will become clear later in the paper, we will be especially concerned with the

Grassmannians of the form

�n = Gn(C2n
).

For n  k, we may take inclusions �n ,! �k by first taking an inclusion C2n ,! C2k

and then fixing a (k�n)-dimensional plane P in the remaining 2k�2n coordinates

and taking A 7! A� P for every A 2 �n. Any two of these inclusions i1, i2 : �n ,!
�k di↵er by an automorphism of �k induced by a change of basis in C2k

. Let

T 2 GL2k(C) be the corresponding linear isomorphism. Then because GL2k(C)
is path-connected, we may choose a path between the identify transformation and

T in GL2k(C) which then induces a homotopy between i1 and i2. This gives us a

unique inclusion up to homotopy. We see that up to homotopy, BU ' hocolim�n

is the homotopy colimit.

2.1. K-Theory. Changing focus slightly, we note that Vect(X ) forms a commu-

tative monoid with respect to Whitney sums. Given any commutative monoid A,

we can form an abelian group K(A) called the Grothendieck group of A, with the

universal property that there exists a semigroup homomorphism f : A ! K(A)

such that if G is any group with a semigroup homomorphism g : A ! G, then there

is a unique group homomorphism h : K(A) ! G such that h � f = g.

A
f //

g

✏✏

K(A)

h
||

G

This guarantees us that K(A) must be unique and essentially says that K(A) is the

smallest group containing A. If A is a semiring then multiplication in A induces

multiplication in K(A), which gives it a ring structure. The tensor product turns

Vect(X ) into a semiring.

Definition 2.3. The K-Theory of X, written K(X), is the Grothendieck ring

K(Vect(X)). We call elements of K(X) virtual bundles over X.

For ⇠ 2 Vect(X), we let [⇠] denote the element of K(X) represented by ⇠. We

can represent general elements of K(X) by formal di↵erences, [⇠]� [⌘], where ⇠, ⌘ 2
Vect(X), with the relation that [⇠1]� [⌘1] = [⇠2]� [⌘2] i↵ ⇠1�⌘2� "n ⇠= ⇠2�⌘1� "n,
for some n. Addition is then given by

[⇠1]� [⌘1] + [⇠2]� [⌘2] = [⇠1 � ⇠2]� [⌘1 � ⌘2],

and multiplication is given by

([⇠1]� [⌘1])([⇠2]� [⌘2]) = [⇠1 ⌦ ⇠2] + [⌘1 ⌦ ⌘2]� [⇠1 ⌦ ⌘2]� [⇠2 ⌦ ⌘1].

Given [⇠]� [⌘] 2 K(X), there is some ⌘0 2 Vect(X) such that ⌘ � ⌘0 ⇠= "n for some

trivial bundle "n. Then [⇠]� [⌘] = [⇠� ⌘0]� [⌘� ⌘0] = [⇠0]� ["n], where ⇠0 ⇠= ⇠� ⌘0.
From this we see that every virtual bundle can be written in the form [⇠]� ["n].

A map f : X ! Y induces via pullback a semiring homomorphism f⇤
: V ect(Y ) !

V ect(X) by taking ⇠ 7! f⇤⇠ which then induces a ring homomorphism f⇤
: K(Y ) !

K(X) by taking [⇠]� [⌘] 7! [f⇤⇠]� [f⇤⌘].
We may consider the induced homomorphism from the inclusion of the basepoint

i : {x0} ,! X given by i⇤ : K(X) ! K(x0). This map corresponds to the dimension

map d : K(X) ! Z since any vector bundle over a point must be trivial and is
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thus characterized by its dimension. We then define eK(X) to be ker(d) and thus

eK(X) is an ideal of K(X) and therefore a ring without identify. This short exact

sequence splits giving us the equivalence K(X) ⇠= eK(X) ⇥ Z. We call eK(X) the

reduced K-theory of X.

Proposition 2.4. EU(X) ⇠= eK(X)

Proof. Take [⇠]s $ [⇠]� ["n], where n = dim(⇠). ⇤
2.2. Kunneth-Type Formula. For any X and Y we have an external product,

µ : K(X)⌦K(Y ) ! K(X⇥Y ) given by µ(a⌦b) = p⇤1(a)p
⇤
2(b) where p1 : X⇥Y ! X

and p2 : X ⇥ Y ! Y are the projections. We will write a ⇤ b in place of µ(a⌦ b).

Theorem 2.5 (Unreduced Bott Periodicity). The external product map

µ : K(X)⌦K(S2
) ! K(X ⇥ S2

),

is an isomorphism.

A priori, it’s not clear how this is equivalent to the homotopy theoretic form

of Bott periodicity. Before we can show how these are related, we first wish to

relate this to a map on reduced K-theory. To do this, we note that since K(�) is

a representable functor and since X and Y are CW complexes, we have a splitting

short exact sequence as mentioned in May [4]

0 ! eK(X ^ Y ) ! eK(X ⇥ Y ) ! eK(X _ Y ) ! 0,

which comes from the cofiber sequence

X _ Y ! X ⇥ Y ! X ^ Y.

We also have an isomorphism

eK(X _ Y ) ⇠= eK(X)� eK(Y )

since X and Y are retracts of X ⇥ Y . This gives us

eK(X ⇥ Y ) ⇠= eK(X ^ Y )� eK(X)� eK(Y ).

We see that if a 2 eK(X) and b 2 eK(Y ), then a ⇤ b 2 K(X ⇥ Y ) such that a ⇤ b is

0 over X _ Y . This gives us that a ⇤ b 2 eK(X ⇥ Y ) and corresponds to a unique

element of eK(X ^ Y ). From this we obtain a map µ : eK(X)⌦ eK(Y ) ! eK(X ^ Y ),

which we also denote by a ⇤ b.

Theorem 2.6 (Reduced Bott Periodicity). The map µ : eK(X)⌦ eK(S2
) ! eK(⌃

2X)

is an isomorphism.

Proof. This map on reduced K-theory is essentially just the restriction of the map

on K-theory given by

K(X)⌦K(Y )

µ

✏✏

eK(X)⌦ eK(Y )� eK(X)� eK(Y )� Z

µ

✏✏
eK(X ^ Y ) eK(X ^ Y )� eK(X)� eK(Y )� Z.

Because of this, it is equivalent to prove the isomorphism in either the reduced or

unreduced case. ⇤
We note that eK(S2

) ⇠= ⇡2(BU) ⇠= Z. We may think of S2
as CP1

.
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Theorem 2.7. The equivalence class of the canonical line bundle, b = [�2
1 ] � ["],

generates eK(S2
).

Theorem 2.8 (Bott Periodicity). The map eK(X) ! eK(X) ⌦ eK(S2
) ! eK(⌃

2X)

given by

a 7! a⌦ b 7! a ⇤ b,
is an isomorphism.

Proof. Since the first map is always an isomorphism, this map being an isomorphism

is equivalent to the second map being an isomorphism which is just Theorem 2.6.

⇤

Throughout the rest of this paper we will be working with the reduced case.

Using our identification of EU(X) with eK(X) we wish to define ⇤ on vector bundles

in such a way that it is well defined on equivalence classes in EU(X) and agrees

with how we defined ⇤ in eK(X) under our identification. If [⇠]s, [⌘]s 2 EU(X), then

let n = dim(⇠) and let m = dim(⌘). We can consider the external tensor product

⇠ ⌦ ⌘ as a vector bundle over X ⇥ Y , but this is not well defined on equivalence

classes. Using the reduced external product we see that

([⇠]� ["n]) ⇤ ([⌘]� ["m]) = [⇠ ⌦ ⌘]� [⇠ ⌦ "m]� ["n ⌦ ⌘] + ["n ⌦ "m]

= [⇠ ⌦ ⌘] + [⇠? ⌦ "m] + ["n ⌦ ⌘?] + ["n ⌦ "m]

� [⇠ ⌦ "m � ⇠? ⌦ "m]� ["n ⌦ ⌘ � "n ⌦ ⌘?]

= [⇠ ⌦ ⌘] + [⇠? ⌦ "m] + ["n ⌦ ⌘?]� ["k],

where ⇠? 2 �[⇠]. From this we see that the desired product under our identification

is

⇠ ⇤ ⌘ = ⇠ ⌦ ⌘ � ⇠? ⌦ "m � "n ⌦ ⌘?.

Since the map eK(X)⌦ eK(Y ) ! eK(X ⇥ Y ) gives a unique map eK(X)⌦ eK(Y ) !
eK(X^Y ), the map we’ve just defined gives us a map EU(X)⌦EU(Y ) ! EU(X⇥Y )

which induces a map EU(X)⌦ EU(Y ) ! EU(X ^ Y ). It is this explicit product on

vector bundles that we will be working with in the last section.

3. Bott Periodicity

If we assume the K-theoretic form of Bott periodicity, then in particular the case

when X is a sphere gives us the equivalence

⇡n(BU) = [Sn, BU ] ⇠= eK(Sn
) ⇠= eK(Sn+2

) ⇠= [Sn+2, BU ] = ⇡n+2(BU).

So the homotopy theoretic form of complex Bott periodicity

⇡n(U) = ⇡n+2(U),

follows immediately from the K-theoretic form of Bott periodicity. Bott’s original

proof used Morse theory to describe a homotopy equivalence

� : BU ! ⌦
2BU.

This immediately induces an isomorphism

eK(X) ⇠= [X,BU ] ⇠= [X,⌦2BU ] ⇠= [X ^ S2, BU ] ⇠= eK(X ^ S2
).
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However, we have no immediate guarantee that this isomorphism is in any way

related to the tensor product of bundles. The tensor product of stable equivalence

classes of vector bundles gives us a map

⌦ : BU ^BU ! BU.

The generator of K̃(S2
) also corresponds to a map

b : S2 ! BU.

We may then consider the composition

↵ : BU ^ S2 id^b // BU ^BU
⌦ // BU,

Which induces the reduced external tensor product. It turns out that this map ↵
is actually homotopic to �⇤

: BU ^ S2 ! BU , the adjoint of �. This is what we

prove in the final section of this paper.

The external product on reduced K-theory with the canonical line bundle of S2

then takes the form

eK(X) ⇠= [X,BU ]
�^id // [X ^ S2, BU ^ S2

]
↵�� // [X ^ S2, BU ] ⇠= eK(⌃

2X).

By showing that ↵ and �⇤
are homotopic we show that the external tensor product

of stable vector bundles over X with the canonical line bundle of S2
and the map

on K-theory coming from � are actually the same by the following commutative

diagram

eK(X) ⇠= [X,BU ]

���
,,

�^id // [X ^ S2, BU ^ S2
]

↵��

�⇤��
// [X ^ S2, BU ] ⇠= eK(⌃

2X)

⇤

[X,⌦2BU ].

The K-theoretic form of periodicity then follows immediately from Bott’s work

which showed that � is a homotopy equivalence. We will spend the rest of the

paper establishing the homotopy.

3.1. The Finite Step. To show that these maps are homotopic, we will construct

explicit maps on finite Grassmannians which pass to the colimit to give the desired

maps ↵ and �.
Implicitly in the work of Bott [2, 3] a map

f : �n ! ⌦U(2n)

is given for each n. The primary work of Bott’s proof is showing that this map

induces an isomorphism on homotopy groups as n ! 1.

By identifying �n with U(2n)/U(n)⇥U(n), We can describe a map coming from

the suspension in the long exact sequence of homotopy groups induced by the fiber

sequence

U(n) ! U(2n)/U(n) ! U(2n)/U(n)⇥ U(n),

of the form

� : U(n) ! ⌦�n.

Then since U(2n)/U(n) is 2n-connected, the map � becomes an isomorphism on

homotopy groups as n ! 1.
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We then consider the composition to get the map

� = ⌦� � f : �n ! ⌦
2
�2n,

which by the work of Bott induces isomorphisms on homotopy groups as n ! 1.

We then consider its adjoint

�⇤
: �n ^ S2 ! �2n.

By the classification of vector bundles, we know that the equivalence class [�2n
n ⇤�2

1 ]s

is given as the pullback via some map

↵ : �n ^ S2 ! �m,

for some m. We will see that ↵ commutes with inclusions �n ,! �k up to homotopy

since ↵� i1 and i2 �↵ di↵er by an automorphism of �k induced by a change of basis.

This then induces a map on the homotopy colimit ↵ : BU ^ S2 ! BU , which is

unique up to homotopy and represents the tensor product of stable vector bundles

with the canonical line bundle over S2
. If we then take an inclusion �2n ,! �m, we

may show that ↵ : �n ^ S2 ! �m and �⇤
: �n ^ S2 ! �m are actually homotopic

and thus when we pass these maps to the homotopy colimit they represent the same

homotopy class.

3.2. Explicit Maps. We will work in �4n for our homotopies. Because the se-

quence

0 ! [�n ^ �1,�4n] ! [�n ⇥ �1,�4n] ! [�n _ �1,�4n] ! 0,

is exact we know that the homotopy classes of [�n ^ �1,�4n] are exactly those

homotopy classes of [�n ⇥ �1,�4n] which are nullhomotopic over �n _ �1. This

allows us to work with maps �n ⇥ �1 ! �4n.

Let A0 2 �n and L0 2 �1 be the basepoints of the spaces. And let A?
represent

the orthogonal compliment of A inside of C2n
and L?

be the orthogonal compliment

of L inside of C2
. We can use the identification

C8n
= (C2n ⌦ C2

)� (C2n ⌦ C2
)

to define our map ↵ : �n ⇥ �1 ! �4n explicitly by

↵(A,L) = (A⌦ L�A? ⌦ L0)� (A0 ⌦ L? �A0 ⌦ L0),

where the direct sums inside the parentheses take place inside the two C2n ⌦ C
terms respectively and the direct sum outside the parentheses takes place in the

direct sum of the two terms. In the formula for ↵, the first three terms correspond

to the reduced tensor product �2n
n ⇤ �2

1 and the last term corresponds to a trivial

bundle so we see that

[↵⇤
(�8n

4n)]s = [�2n
n ⇤ �2

1 ]s.

Bott’s work [1, 2, 3] gives us a map f : �n ! ⌦U(2n) defined by sending each

n-plane A 2 �n to a loop of unitary transformations where at each time 0  ✓  2⇡
the transformation f(A)(✓) is defined by taking

f(A)(✓)z =

8
>>><

>>>:

ei✓z, z 2 A and 0  ✓  ⇡,

e�i✓z, z 2 A?
and 0  ✓  ⇡,

ei✓z, z 2 A0 and ⇡  ✓  2⇡,

e�i✓z, z 2 A?
0 and ⇡  ✓  2⇡.
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Thinking of C2n
as Cn⌦C2

we can give � : U(n) ! ⌦�n explicitly by first defining

�(a)(�) = Span{z ⌦ e1 cos�+ a(z )⌦ e2 sin� : z 2 Cn}.
for 0  �  ⇡/2, where {e1, e2} is a basis for C2

. This gives us a map into the space

of paths in �n with fixed basepoints C2n ⌦ e1 and C2n ⌦ e2. We can then identify

this space with the space ⌦�n of loops in �n with basepoint Cn ⌦ e1 in such a way

that we have a homotopy equivalence between these two spaces. For instance we

may take

�(a)(�) = Span{z ⌦ e1 cos�� e2 sin� : z 2 Cn}.
for ⇡/2  �  ⇡.

3.3. The Desired Homotopy.

Theorem 3.1. The maps ↵ and �⇤ are homotopic.

Proof. We will start by identifying �1 = CP1
with S2

in the following way. Let I2

be the rectangle defined by 0  ✓  2⇡ and 0  �  ⇡. We can then describe a

map ⇢ : I2 ! �1 by defining

⇢(✓,�) = Span{e1 cos�/2 + e2 e
i✓
sin�/2}.

We note that ⇢(0,�) = ⇢(2⇡,�). We also observe that both ⇢(✓, 0) and ⇢(✓,⇡)
are independent of ✓. This then defines a map ⇢ : S2 ! �1 and gives us a way

of identifying �1 with S2
, where we think of S2

as the quotient of I2 obtained by

identifying (0,�) ⇠ (2⇡,�) and collapsing (✓, 0) and (✓,⇡) to two separate points.

Let L̄ be the image of L under the complex conjugate map. We see the set of lines

L such that L = L̄ is given by the equator ✓ = ⇡. (We are assuming that {e1, e2}
is a real basis for C2

.) This divides �1 into two hemispheres, D+
and D�

, which

we may choose so that D+
corresponds to ✓ < ⇡ and D�

corresponds to ✓ > ⇡.
We first wish to find

�⇤
: �n ⇥ �1 ! �2n.

We have that

�⇤
(A, ✓,�) = �(f(A)(✓))(�),

by definition. And since for � � ⇡/2 we have that � is constant in terms of ✓ we

may homotope �⇤
to be the map

(A, ✓,�) 7! �(f(A)(✓))(�/2).

This was the result of our identification earlier. We now wish to compute this

homotopic map which we will still call �⇤
.

For ✓ < ⇡, we may decompose C2n
= A�A?

. Then we have that

�⇤
(A, (✓,�)) = Span{z ⌦ e1 cos�/2 + f (A)(✓)(z )⌦ e2 sin�/2 : z 2 Cn}.

Splitting this up over A�A?
, we get

�⇤
(A, (✓,�)) = Span{z ⌦ e1 cos�/2 + ei✓z ⌦ e2 sin�/2 : z 2 A}

� Span{z ⌦ e1 cos�/2 + e�i✓z ⌦ e2 sin�/2 : z 2 A?}.
And this is just

�⇤
(A,L) = A⌦ L�A? ⌦ L̄

When ✓ > ⇡, we may do a similar thing only using the decomposition C2n
= A0�A?

0

to get

�⇤
(A,L) = A0 ⌦ L�A?

0 ⌦ L̄.
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Putting all this together we have that

�⇤
(A,L) =

(
A⌦ L�A? ⌦ L̄, when L 2 D+

,

A0 ⌦ L�A?
0 ⌦ L̄, when L 2 D�

.

We can take an inclusion �2n ,! �4n to get

�⇤
(A,L) =

(
(A⌦ L�A? ⌦ L̄)�A0 ⌦ C2, when L 2 D+

,

(A0 ⌦ L�A?
0 ⌦ L̄)�A0 ⌦ C2, when L 2 D�

.

We now make the observation that

A0 ⌦ C2
= A0 ⌦ (L� L?

) = A0 ⌦ L�A0 ⌦ L?,

for all L 2 �1. Then we may find a path h : I ! �1 from A0 to A?
0 , which gives us

a homotopy H : �n ⇥ �1 ⇥ I ! �4n between �⇤
and the map given by

(A,L) 7!
(
(A⌦ L�A? ⌦ L̄)� (A?

0 ⌦ L�A0 ⌦ L?
), when L 2 D+

,

(A0 ⌦ L�A?
0 ⌦ L̄)� (A?

0 ⌦ L�A0 ⌦ L?
), when L 2 D�

.

This homotopy can be explicitly given by

H(A,L, t) =

(
(A⌦ L�A? ⌦ L̄)� (h(t)⌦ L�A0 ⌦ L?

), when L 2 D+
,

(A0 ⌦ L�A?
0 ⌦ L̄)� (h(t)⌦ L�A0 ⌦ L?

), when L 2 D�
.

For the next step we wish to find a homotopy between this map and the map

(A,L) 7!
(
(A⌦ L�A? ⌦ L̄)� (A?

0 ⌦ L�A0 ⌦ L?
), when L 2 D+

,

(A0 ⌦ L�A?
0 ⌦ L)� (A?

0 ⌦ L̄�A0 ⌦ L?
), when L 2 D�

,

obtained by switching the two middle terms on the bottom hemisphere and leaving

the map unchanged on the top hemisphere. We will do this via a homotopy which

is fixed on �n⇥D+
and which on �n⇥D�

acts as a rotation, allowing us to switch

the middle two terms.

To explicitly describe this rotation we start with the decomposition

C8n ⇠= (C2n � C2n
)� (C2n � C2n

)

= (A0 ⌦ C2 �A?
0 ⌦ C2

)� (A?
0 ⌦ C2 �A0 ⌦ C2

)

We may choose an orthonormal basis {s1, . . . , s2n, u1, . . . , u2n, v1, . . . , v2n, w1, . . . , w2n}
for C8n

such that {r1, . . . , r2n} is an orthonormal basis for the first C2n
term if r = s,

the second C2n
term if r = u, the third C2n

term if r = v, and the fourth C2n
term if

r = w. Then for 0  t  1 we may define a linear isometry Tt : C8n ! C8n
by fixing

si and wi for each i and taking ui 7! cos(t)ui� sin(t)vi and vi 7! sin(t)ui+cos(t)vi.
This gives us a map Pt : �4n ! �4n by rotating any subspace as induced by Tt. We

note that for L 2 @D�
, since L = L̄, the plane

(A0 ⌦ L�A?
0 ⌦ L)� (A?

0 ⌦ L̄�A0 ⌦ L?
)

is fixed by Pt. This then induces the desired homotopy Ht : �n ⇥ �1 ! �4n given

by

Ht(A,L) =

(
(A⌦ L�A? ⌦ L̄)� (A?

0 ⌦ L�A0 ⌦ L?
), when L 2 D+

,

Pt((A0 ⌦ L�A?
0 ⌦ L̄)� (A?

0 ⌦ L�A0 ⌦ L?
)), when L 2 D�

.

After performing this rotation we note that

A0 ⌦ L�A?
0 ⌦ L = C2n ⌦ L = A⌦ L�A? ⌦ L,
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for any A 2 �n. So our map is now in the form

(A,L) 7! (A⌦ L�A? ⌦ �(L))� (A?
0 ⌦ (L)�A0 ⌦ L?

),

where �, : �1 ! �1 are given by

�(L) =

(
L̄, L 2 D+,

L L 2 D�,

and

 (L) =

(
L, L 2 D+,

L̄, L 2 D�.

The first map � sends both hemispheres into D�
and  sends both hemispheres

into D+
. Thus they are both nullhomotopic. This gives us a homotopy to the map

(A,L) 7!(A⌦ L�A? ⌦ L0)� (A?
0 ⌦ L0 �A0 ⌦ L?

)

= (A⌦ L�A? ⌦ L0)� (A0 ⌦ L? �A?
0 ⌦ L0).

We may then take a path I ! �n from A?
0 to A0 to get a homotopy to

(A,L) 7! (A⌦ L�A? ⌦ L0)� (A0 ⌦ L? �A0 ⌦ L0),

which is just ↵, thus completing the proof.

⇤
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