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Abstract. The Jacobian Conjecture is a criterion that relates the invertibility
of polynomial mappings of C to a condition on their Jacobian matrix. It arises

naturally and is simple to state in elementary terms, but attempted proofs

of it have required advanced techniques in algebraic geometry and topology,
and it remains unproven for dimensions greater than one. This paper surveys

the current state of the conjecture, and offers possible methods of proof and
construction.
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1. Introduction

A common challenge arising in many areas of mathematics is to determine when
a function obeying certain properties is invertible, and whether the inverse func-
tion obeys similar properties as the original. For example, we might ask when a
continuous function has a continuous inverse, or when a group homomorphism has
an inverse which is also a group homomorphism. In some cases this question has
a clean answer: for example, given any smooth function between manifolds which
has an inverse, we are guaranteed that the inverse is also smooth. However, there
exist certain continuous functions between topological spaces which have an inverse
function, but that inverse is not continuous.

Viewed in this respect, the Jacobian Conjecture can be seen as an attempt to an-
swer this question for functions which are described by polynomial equations. This
is particularly important in the field of algebraic geometry, where such polynomial
functions are intrinsically linked to morphisms of varieties. This paper seeks to
state the history of the Jacobian Conjecture, to present the conjecture and many
of the known results about it in a form accessible to those without a background in
algebraic geometry, and finally to outline a possible approach to proving the con-
jecture as well as a constructive method of finding the inverse of a given polynomial
mapping.
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2. The Conjecture, Definitions, and Motivation

The Jacobian Conjecture gives a condition for when a function from Cn to Cn

which restricts to a polynomial function in each coordinate has an inverse which is
also given by polynomials. We will give a careful definition of this idea below.

Conjecture 2.1 (The Jacobian Conjecture over C). Let F be a polynomial mapping
of Cn. Then F is a polynomial automorphism if and only if the Jacobian of F is
constant and nonzero.

If the Conjecture is true, it provides a simple way to check whether a given
polynomial mapping has an inverse. In the remainder of this section, I will define
the terms used in the Conjecture and provide some motivation behind why we
might expect it to be true.

Definition 2.2. Let Cn represent the usual complex vector space in n variables.
We define the coordinates or coordinate functions xi : Cn → C for each i = 1..n to
be the natural projection maps. That is, for z = (z1, . . . , zn) ∈ Cn,

xi(z) = zi for 1 ≤ i ≤ n.

The function xi is called the “ith coordinate of Cn”.

Definition 2.3. Given a function F : Cn → Cn, for each i from 1 to n we define
the ith component of F to be the function Fi : Cn → C defined as the composition
of F with the ith coordinate xi.

Fi := xi ◦ F
We often write F = (F1, . . . , Fn), corresponding to the fact that for any z ∈ Cn,

F (z) = (F1(z), . . . , Fn(z)).

Remark 2.4. A function F : Cn → Cn is completely determined by its component
functions. Therefore we can study the properties of the function F by studying all
of its components.

Definitions 2.5. Let G : Cn → C. We call G a polynomial function if there exists
a complex polynomial g in n variables such that for each z = (z1, . . . , zn) ∈ Cn,

G(z) = g(z1, . . . , zn).

If F : Cn → Cn is a function such that each component Fi of F is a polynomial
function, we call F a polynomial mapping of Cn (or just a polynomial mapping, if
n is understood).

Definition 2.6. Let F : Cn → Cn be a polynomial mapping. We say that F is
a polynomial automorphism if there exists a polynomial mapping G : Cn → Cn

obeying
F ◦G = G ◦ F = IdCn .

When is a polynomial mapping F a polynomial automorphism? In order to
come up with an answer to this question, we might begin by determining what
properties such a polynomial automorphism must have. For instance, we note
that a polynomial mapping is a particular example of a smooth function from
Cn → Cn. Smooth functions have derivatives, and by the Chain Rule, we know
how these derivatives behave with respect to composition. The following definitions
and proposition make this precise.
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Definitions 2.7. Let F : Cn → Cn be a smooth function, z ∈ Cn. Then the total
derivative of F at z (or Jacobian matrix of F at z), denoted (DF )z, is the n × n
matrix defined by

(DFz)i,j =
∂Fi

∂xj
(z).

The Jacobian of F at z is defined to be the determinant of this matrix:

J(F )(z) := det((DF )z).

Remark 2.8. If F is a polynomial mapping, then each component Fi of F is a
polynomial function. Therefore, we know from calculus that the partial derivative
of a polynomial function is also a polynomial function, so each ∂Fi/∂xj is also a
polynomial function in z. Furthermore, det(A) is a polynomial in the entries of the
matrix A, and the composition of polynomials is a polynomial. Therefore, we note
that for F a polynomial mapping, J(F ) is a polynomial function in z.

Proposition 2.9. Let F be a polynomial automorphism. Then J(F )(z) is a con-
stant nonzero function of z.

Proof. Since F is a polynomial automorphism, we know there exists a polynomial
mapping G : Cn → Cn which satisfies

G ◦ F = IdCn .

Therefore, note

1 = J(IdCn)(z) = J(G ◦ F )(z) = J(G)(F (z)) · J(F )(z)

by the Chain Rule. Therefore, J(F ) is given by a polynomial which has a mul-
tiplicative inverse. Therefore, the degree of J(F ) must be 0, so J(F ) must be a
constant nonzero polynomial. �

This proposition shows that for a polynomial mapping F to be a polynomial
automorphism, a necessary condition is for J(F ) to be constant. The Jacobian
Conjecture asserts that this is also a sufficient condition.
Finally, we should note the following definition.

Definition 2.10. A function of topological spaces f : X → Y is called proper if
for any K ⊂ Y which is compact, f−1(K) is compact.

Remark 2.11. Recall that a subset of Cn is compact if and only if it is closed and
bounded.

As later sections will show, whether or not a polynomial mapping is proper has
a great significance on whether it is a polynomial automorphism.

3. A Short History of the Jacobian Conjecture

The Jacobian Conjecture is attributed to O. H. Keller, who first posed it in
1939 [4]. He considered polynomial mappings with integer coefficients and showed
that the conjecture was true given that the mapping F was birational. A number
of extensions to the conjecture have been proposed, and many conditions on a
polynomial mapping with constant Jacobian have been shown to be equivalent to
invertibility. Many of these are summarized well in Theorem (2.1) of [2]; however,
we will review those which are most relevant here.
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Theorem 3.1 (Bass, Connell, Wright [2]). Let F be a polynomial mapping of Cn

with constant nonzero Jacobian. Then the following statements are equivalent:

(1) F is invertible and F−1 is a polynomial mapping.
(2) F is injective.
(3) F is proper.

These reductions address some concerns we may have. For instance, it shows
that if F is invertible, its inverse will automatically be a polynomial mapping. It
also gives conditions for proving that F is invertible which are hopefully easier to
prove.

In the years since the conjecture was posed, there have been two common ap-
proaches to reducing it. We will briefly look at each approach and discuss its merits
and challenges. The first approach, which I will refer to as Reduction of Dimension,
attempts to solve the conjecture for small values of n, that is, looking at polynomial
mappings of C2 and C3. The case n = 1 is trivial, as it can be immediately seen
that polynomial mappings of C are exactly the polynomial functions, and it is well
known that the invertible polynomial functions on C are exactly those of degree 1,
which are also exactly those whose determinants are a nonzero scalar. However, this
approach becomes much more difficult at higher dimensions. The case n = 2 has
been documented by a great many authors, but remains unproven. Furthermore, as
n increases, a computational approach becomes very difficult, because the Jacobian
of a function is fundamentally a determinant, and determinants grow factorially
more difficult to compute as n grows large.

A second approach of restricting the degrees of the coordinate functions has
found more success. I will refer to this method as Reduction of Degree. Note that
each Fi is a polynomial function, so it has a polynomial degree. Let d denote the
largest of the degrees of F1, . . . , Fn. It was first noticed by Wang [6] and later by
Oda [5] that the Conjecture could be proven for d = 2.

Theorem 3.2 (S. Wang [6]). Let F be a polynomial mapping of Cn with deg(Fi) ≤ 2
for each 1 ≤ i ≤ n, and J(F ) a nonzero constant. Then F is injective.

By Theorem 3.1, we see that F is then invertible with polynomial inverse. An
elementary proof of this theorem is reproduced in both [3] and [2]. While this
theorem covers only a small number of polynomial mappings, in fact it is close to
proving everything that we need, thanks to the main result of [2].

Theorem 3.3 (Bass, Connell, Wright [2], paraphrased). Suppose that the Jacobian
Conjecture is true for any polynomial mapping of degree less than or equal to 3.
Then the Jacobian Conjecture is true.

Thus we have that the Jacobian Conjecture is true for polynomial mappings of
degree at most 2, and we need only show that it is also true for mappings of degree
at most 3 to prove that it is true for every mapping. Despite this, no proof for
mappings of degree 3 has been found, so the conjecture remains unproven.

One can also ask whether the conjecture holds over other fields. Proposition 2.9
certainly is true for polynomial mappings with other coefficients, since the argument
used holds over any field (since all concerned functions are given by polynomials,
we can use the polynomial definition of derivative to avoid difficulty over other
fields). This proposition gives the intuition for the Jacobian Conjecture, so it is
reasonable to wonder whether its converse could hold in other fields. It turns out
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that we can say something about characteristic 0 fields, but for fields with nonzero
characteristic, the conjecture is false as stated, and it is not clear what amendments
may be needed to fix it.

Let k be any field of characteristic 0. By defining a “polynomial mapping” and
Jacobian analogously to Definitions 2.5 and 2.7, we can ask whether the Jacobian
Conjecture holds over k. We might wonder whether it matters if the field is alge-
braically closed, or even if it matters if k is a field at all (for example, what if k
were an integral domain, such as the integers Z)? According to a theorem of Bass,
Connell, and Wright, it turns out that the answer entirely depends on whether the
conjecture holds over C.

Theorem 3.4 (Bass, Connell, Wright [2]). Let k be an integral domain of charac-
teristic 0. If the Jacobian Conjecture holds for polynomial mappings over C, then
it also holds for polynomial mappings over k.

Remark 3.5. This theorem is why we have otherwise restricted our attention to
polynomials over C.

When we refer to the Jacobian Conjecture over other domains, we specifically
mean that a polynomial mapping with nonzero, constant Jacobian must have a
polynomial inverse. Over C, a polynomial mapping has a nonzero constant Jaco-
bian if and only if its Jacobian is always nonzero. This is a consequence of the
Fundamental Theorem of Algebra, and so is true for any algebraically closed field.
However, over other domains such as the real numbers R, a polynomial can have
no zeros and yet not be constant. A polynomial mapping of R with such a nonvan-
ishing, nonconstant Jacobian is not expected to have an inverse, or its inverse will
not be a polynomial mapping.

Warning 3.6. Let F : R→ R be a polynomial mapping defined by

F (x) =
1

3
x3 + x.

Note J(F ) is nonvanishing and nonconstant since

J(F )(x) = x2 + 1 > 0.

F is invertible, however F−1 is certainly not a polynomial.

We may also ask whether the conjecture may hold over fields with nonzero char-
acteristic. However, the following counterexample holds for n = 1.

Warning 3.7. Let k be a field of characteristic p with p 6= 0. Consider the polyno-
mial mapping F : k → k defined by

F (x) = xp + x.

Note
J(F )(x) = pxp−1 + 1 = 1 since k has characteristic p.

However F is not invertible in general.

4. Properness of a Polynomial Map

As mentioned in the previous section in Theorem 3.1, one possible method to
prove the Jacobian Conjecture is to prove that any polynomial mapping F with
constant nonzero Jacobian is a proper map. We begin this approach with the
following proposition.
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Proposition 4.1. Let F be a polynomial mapping with constant nonzero Jacobian.
Then for each y ∈ Cn, F−1(y) is finite.

Proof. By assumption, we know that (DF )x has constant nonzero determinant, so
in particular (DF )x is invertible for all x ∈ Cn. Therefore, F is a submersion. One
definition of a manifold states that a manifold of dimension d is locally the preim-
age of a point under a smooth submersion from Cn to Cn−d. Since F : Cn → Cn

defines such a submersion, we know that the preimage of any point y under F will
be a complex manifold of dimension 0. Therefore, F−1(y) is always discrete.

To further prove that F−1(y) is finite, we use a result of algebraic geometry. With-
out loss of generality, let y = 0, since each of our assumptions is invariant under
translation. Then, note that x ∈ F−1(0) if and only if for each component function
Fi, Fi(x) = 0. Therefore,

F−1(0) = Z(F1, . . . , Fn)

where Z denotes the common zero locus of a set of polynomials, i.e. the set of
points where all of the polynomials vanish. By algebraic geometry, we know that
Z(F1, . . . , Fn) can be written as a finite union of “irreducible” closed sets, each of
which has a well defined dimension not greater than its dimension as a complex
manifold. Since the manifold dimension of Z(F1, . . . , Fn) is zero, each irreducible
component must also have dimension zero, which implies that each is a single point.
Thus Z(F1, . . . , Fn) is a finite union of points, and thus is a finite set. �

Thus, we know that each preimage is finite, so the map F must be finite-to-one.
If the map F is proper, then since F is nonsingular at each point, we would conclude
that F has a continuous degree, defined by

(4.2) deg(F,y) =
∑

x∈F−1(y)

sgn(J(F )(x)) = |F−1(y)|.

Furthermore, this degree would be locally constant, and thus (since Cn is connected)
globally constant. Therefore, we would conclude that every preimage would have
exactly the same size. However, I prove that the converse is also true, which offers
a possible route to proving the conjecture overall.

Theorem 4.3. If F is a polynomial mapping with nonzero constant Jacobian, such
that for each y ∈ im(F ), |F−1(y)| = r for some fixed r ∈ N, then F is proper onto
its image. That is, F : Cn → im(F ) is a proper map.

The usefulness of this result is shown by the following result by [1].

Theorem 4.4 (Byrnes and Lindquist [1], Main Result). If F : X → Y is a regular
(i.e. polynomial) map with constant nonzero Jacobian, then F is biregular (i.e.
has a polynomial inverse) if and only if F : X → im(F ) is proper.

Proof of Theorem 4.3. Let K be a compact subset of im(F ). We will show that
F−1(K) is compact. We will do this by showing that any sequence in F−1(K)
admits a convergent subsequence. First, note that if F−1(K) = ∅, we are done.
Now, take a sequence {xn} on F−1(K). Let {yn} = F{xn}. {yn} is a sequence on
K, so since K is compact, we can pass to a convergent subsequence of {yn} which
converges to an element y∞ ∈ K. Since y∞ ∈ K ⊂ im(F ), by assumption we have

F−1(y∞) = {p1, . . . , pr} ⊂ F−1(K).
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Note also that (DF )pi is invertible for each i from 1 to r, so by the inverse function
theorem, there are open neighborhoods Ui of pi and Vi of y∞ such that F : Ui → Vi

is a diffeomorphism, with inverse maps Gi : Vi → Ui. First, restrict each Ui so that
the collection is pairwise disjoint, and restrict the Vi’s accordingly. By taking

V :=

r⋂
i=1

Vi, U ′i := Gi(V )

we restrict to the case where each local diffeomorphism has the same image. Now,
V is an open neighborhood of y∞, and {yn} → y∞, so therefore we may pass to a
convergent subsequence lying entirely inside V . Now, for each n ∈ N, yn ∈ V , so
for each i = 1..r, we have

F (Gi(yn)) = yn =⇒ Gi(yn) ∈ F−1(yn).

Furthermore since the Ui’s are pairwise disjoint, the Gi(yn) are distinct elements,
so we have enumerated r distinct elements of F−1(yn). However, by assumption,
F−1(yn) has only r elements, so therefore the points Gi(yn) account for all of the
preimages of yn. By construction, xn is also a preimage of yn, so it follows that

For every n ∈ N there exists in such that xn = Gin(yn).

Note that there are infinitely many xn’s but only finitely many i’s, so at least one
j in 1, . . . , r must be repeated infinitely many times. Passing to the subsequence
of points corresponding to this index j, where each xn is precisely Gj(yn), we see
that since {yn} → y∞ and Gj is a differentiable, and thus continuous, function, it
must be the case that

{xn} = Gj{yn} → Gj(y∞) = pj

and thus we have constructed a convergent subsequence of our original sequence.
Therefore F−1(K) is compact. �

5. Computing Polynomial Inverses

Suppose we know that the Jacobian Conjecture holds. How can we effectively
find the inverse map G? One possible answer to this question comes from a closer
look at the method by which we proved Proposition 2.9. In the proof we noted
that if F was a polynomial automorphism with inverse G, then J(G) ◦F and J(F )
were inverse polynomials. In fact, noting that J is the determinant of the total
derivative, we can see the even stronger condition

(DF )z(DG)F (z) = In = (DG)z(DF )G(z)

holds by the chain rule, since G ◦ F = F ◦G = Id. Therefore, considering DFz as
a matrix with coefficients that are polynomials in z, we have

(DG)z = (DF )−1G(z).

This is a system of partial differential equations in the components of G. We
know that G = F−1 satisfies this equation. Furthermore, the inverse of a square
matrix is unique, so this relation uniquely characterizes the partial derivatives of
the components of G. Suppose some function H : Cn → Cn satisfies the above
system. It need not be the case that H = F−1, however I claim that from H we
can easily derive G. Note that for such an H,
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In = (D Id)z = (DF )H(z)(DH)z = D(F ◦H)z

=⇒ D(Id−F ◦H)z = 0

=⇒ F ◦H = Id +c

for some constant c ∈ Cn. Therefore, F ◦H represents translation by some fixed
c. This is an invertible transformation, and precomposing by its inverse yields the
following identity:

(F ◦H)(z− c) = z− c + c = z.

Therefore, H(z− c) = F−1(z), so F−1 is easily found from H. Note that c is just
F (H(0)).

Therefore, we have the following proposition, which summarizes the discussion
above.

Proposition 5.1. Suppose the Jacobian Conjecture is true. Then if F is a polyno-
mial map such that J(F ) is a nonzero constant, then computing F−1 is equivalent
to finding a solution to the system of partial differential equations

(DG)z = (DF )−1G(z).

Expressed another way, the system is given by

∂Gi

∂xj
=

(−1)i+j

J(F )
det((DF )j,iG )

for each i, j ranging from 1 to n. ((DF )j,iG denotes the j, ith minor of (DF )G, which
is essentially the submatrix of (DF )G obtained by omitting row j and column i).

Remark 5.2. From this presentation, it is not immediately obvious that such a
system would always have solutions, or that those solutions would be polynomials.
However, the Jacobian Conjecture asserts that there is a polynomial solution to
these equations (namely F−1) and that furthermore, from our discussion above,
any solution H must be the composition of a polynomial with a translation, which
is again a polynomial. Therefore, if there exists some F a polynomial map with
constant nonzero Jacobian, such that the above system has a solution defined every-
where which is not a polynomial mapping, then the Jacobian Conjecture would be
proven false. So this approach could provide a method for finding a counterexample,
should such a counterexample exist.
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