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Abstract. This paper develops the ordinal numbers and transfinite induc-

tion, then demonstrates some interesting applications of transfinite induction.

One such application is the proof that there is a set in R2 that intersects every
line in exactly two places. We also prove that R3 can be covered by a disjoint

union of circles of radius 1. Finally, we introduce the Kirby-Paris Hydra game

and prove that every Hydra eventually dies, which is equivalent to proving
that Peano arithmetic is incomplete.
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1. Introduction

We assume the reader is familiar with the principle of mathematical induction.
Having learned mathematical induction, it is natural to question the limitations
of it; why must induction be restricted to the natural numbers? If induction can
be expanded beyond the natural numbers, does this allow us to explore interesting
and useful mathematical ideas?

Transfinite induction is the extension of mathematical induction to ordinal num-
bers. While proofs via mathematical induction are often a tedious exercise in alge-
bra, the statements of the theorems we will prove are far from intuitive. Transfinite
induction is particularly useful in the area of analytic geometry, since it allows us
to prove results which are nearly impossible to picture – this will be demonstrated
in the first two proofs of this paper. Also unexpected is the statement that every
Hydra eventually dies. Although this finding may seem an unnecessary piece of
mathematical trivia, its proof is quite significant for Peano arithmetic.

At the end of the 19th century, Giuseppe Peano formulated Peano arithmetic as
a set of axioms for the natural numbers [4]. While the axioms are obvious, they
are not sufficient to prove every true statement about the natural numbers – this
is called incompleteness. One such statement is that all Kirby-Paris Hydras die in
finitely many steps [6].
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These fascinating theorems constitute only a few applications of transfinite in-
duction; some other theorems that can be proved via transfinite induction are [3]:

• R2 cannot be covered by a disjoint union of circles.

• Suppose we call a subset S ⊂ R2 a “circle” if there exists a point s, called
the center, such that every half-line beginning from s intersects S in a single
point. Then R2 can be covered with countably many circles.

• There is a partition of the plane into countably many pieces such that the
distance between any two points in the same piece is irrational.

2. Preliminaries

Here are some standard definitions and propositions that will be useful for the
theorems to be proven in later sections.

Definition 2.1. A relation [2] between two sets is a collection of ordered pairs
containing one object from each set. Inductively, we say that an n-ary relation R
over a set X is a relation between Xn−1 and X.

We sometimes write R(x1, ..., xn) for (x1, ..., xn) ∈ R, and if R is binary, we may
write xRy for (x, y) ∈ R.
<,≤, and ∈ are all examples of relations.

Definition 2.2. A set X is strictly well ordered [2] by the binary relation R if the
following hold:

i. For all x, y ∈ X, either xRy or yRx;
ii. Every nonempty subset Y of X has a least element (i.e., an element y ∈ Y

such that yRz for all z ∈ Y );
iii. x ∈ X implies not xRx, and the relation R ∪ {(x, x) : x ∈ X} satisfies (i)

and (ii).

Definition 2.3. An ordinal [2] is a set α such that
⋃
α ⊂ α and α is strictly well

ordered by the ∈ relation.

The notation
⋃
α is somewhat ambiguous; we simply mean that for an element

x, x ∈
⋃
α if and only if there exists an element β such that β ∈ α and x ∈ β.

We can intuitively think of an ordinal as a type of well ordering, but the trick of
treating it as a set whose elements are sets makes for simpler notation.

Definition 2.4. The successor of an ordinal α [2] is the ordinal α+ 1 = α
⋃
{α},

which is the least ordinal greater than α.

For example, the ordinal 0 is defined to be the empty set ∅, so the ordinal 1 is
the set {0} and the ordinal 2 is the set {0, {0}} = {0, 1}. The successor ordinal n
is the set {0, 1, ...n− 1}.

Definition 2.5. An ordinal α is said to be a limit ordinal [2] if and only if it is
not a successor ordinal.

Note that by this definition, 0 is a limit ordinal, and we define ω to be the
smallest limit ordinal other than 0.

Now we will develop some basic properties of ordinals.

Proposition 2.6. Every element of an ordinal is an ordinal [2].
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Proof. Let α be an ordinal and x ∈ α.
If y ∈ x then y ∈

⋃
α. Since

⋃
α ⊂ α, y ∈ α which means that all elements of

x are also elements of α. Hence x ⊂ α and since α is strictly well ordered by ∈, it
follows that x is strictly well ordered by ∈.

We will now show that
⋃
x ⊂ x. In other words, if z ∈ y, y ∈ x then z ∈ x.

Let z ∈ y, y ∈ x. Since
⋃
α ⊂ α, we have y ∈ α and hence z ∈ α. Now, since α

is strictly well ordered by the ∈ relation, z ∈ x.
Then by definition, x is an ordinal. �

Proposition 2.7. If α, β are ordinals, then α ⊂ β if and only if α ∈ β or α = β [2].

Proof. Note that if α = β then it is clear that α ⊂ β, and if α is not a subset of β
then not all the elements of α are also elements of β, so there is no way for α to
equal β.

Therefore, we must prove that if α 6= β, then α ⊂ β if and only if α ∈ β.
First suppose that α ∈ β and α 6= β. If γ ∈ α then γ ∈

⋃
β, and since

⋃
β ⊂ β,

we have α ⊂ β (this is the same argument we used at the beginning of proposition
2.6).

Now suppose α ⊂ β and α 6= β. Let γ be the least element of the nonempty set
β \ α. To show that α ∈ β we will show that α = γ.

If δ ∈ γ, then δ ∈ β and since γ is the least element of β \ α, δ ∈ α. Therefore
all elements of γ are also elements of α, so γ ⊂ α.

Now since δ ∈ α and α ⊂ β, δ ∈ β. β is strictly well ordered by ∈, so we have
either γ ∈ δ, γ = δ, or δ ∈ γ. We know that δ ∈ α and γ ∈ β \ α, so γ /∈ α.
Therefore, we can conclude that γ 6= δ and γ /∈ δ. Hence δ ∈ γ, which shows that
α ⊂ γ.

Recall that γ ⊂ α, so α must be equal to γ. Since γ ∈ β, α ∈ β. �

Proposition 2.8. All the natural numbers are ordinals [2].

Proof. Consider the set of of all the natural numbers.
For every element in this set, every smaller element is also in the set, which

means it is strictly well ordered by the ∈ relation. Moreover, it is easy to see that
an element x is in the set of natural numbers if and only if x is in some subset of
the natural numbers.

Then by definition, the set of natural numbers is an ordinal (it is in fact the
smallest infinite ordinal ω). Hence by proposition 2.6, every natural number is an
ordinal. �

The following proposition will be needed later.

Proposition 2.9. There is no infinite decreasing sequence of ordinals [3].

Proof. Suppose for contradiction that we have an infinite sequence of ordinals {α}
such that α0 > α1 > α2 > ...

By our definition of ordinals, this means that αi+1 ∈ αi. Since α1 ∈ α0, α2 ∈ α1,
and so on, it is clear that α0 is an ordinal that contains the ordinals α1, α2, ... .
Consider the sequence {α1, α2, ...} where α1 > α2 > ... . Since this sequence is
infinite, it can have no least element.

Therefore, α0 has no least element, which means it is not an ordinal, a contra-
diction. �
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Definition 2.10. Let α and β be ordinal numbers. Then ordinal multiplication is
defined so that:

i. α ∗ 0 = 0;
ii. If β is a successor ordinal then α∗ (successor of β) = α ∗ β + α;
iii. If β is a limit ordinal then α ∗ β is the least ordinal greater than any ordinal

in the set {α ∗ γ : γ < β}.
Note that multiplication is not commutative but is associative.

Definition 2.11. Let α and β be ordinal numbers. Then ordinal exponentiation [3]
is defined so that:

i. If β = 0 then αβ = 1;
ii. If β is a successor ordinal, then αβ+1 = αβ ∗ α;
iii. If β is a limit ordinal, then α = 0 implies αβ = 0. If α 6= 0 then αβ is the

least ordinal greater than every ordinal in the set {αγ : γ < β}.
Note that any ordinal αcan be written uniquely as ωβ1 + ωβ2 + ωβk , where k is

a natural number and β1 ≥ β2 ≥ ... ≥ βk ≥ 0 are ordinals.

Definition 2.12. (Transfinite Induction) [2]. Let P (α) be a property of ordinals.
Suppose that for all ordinals β, if P (γ) holds for γ < β, then P (β) holds. Then we
have P (α) for all ordinals α.

Proof. Suppose for contradiction that for all ordinals β, if P (γ) holds for γ < β,
then P (β) holds, but there is some ordinal α for which P (α) does not hold.

Let X = {γ ≤ α : P (γ) fails}. X is not empty because α is in X. Therefore, X
has a least element which we will call β. Then any γ < β is not in X, or in other
words P (γ) holds. But by hypothesis, if P (γ) holds for γ < β, then P (β) holds.
Contradiction. �

Definition 2.13. A function f whose domain is an ordinal α is called an α-termed
sequence [2].

Definition 2.14. An enumeration [2] of a set X is a sequence whose range is X.

Definition 2.15. The cardinality [2] of a set X, denoted |X| is the least ordinal α
such that X is enumerated by an α-termed sequence.

Intuitively, we can think of the cardinality of X as the size of X, or the number
of elements in X.

Definition 2.16. An ordinal α is said to be a cardinal [2] if α = |α|.

The ξ-th infinite cardinal is denoted ℵξ. For example, ℵ0 is the cardinality of ω,
the first limit ordinal, or equivalently the set of all natural numbers.
ℵ1 is the second smallest infinite cardinal number, which is the cardinality of the

set of real numbers. In fact, it can be shown that |R| = ℵ1 = 2ℵ0 .

Definition 2.17. A map f is said to be injective [3] if f(a) = f(b) implies a = b.

Definition 2.18. A map f from A to B is said to be surjective [3] if for every
element b ∈ B there exists some a ∈ A such that f(a) = b.

Definition 2.19. A map f is bijective [3] if it is both injective and surjective. Sets
A and B have the same cardinality if and only if there is a bijection from A to B.

Definition 2.20. A set A is countable [3] if and only if there is a bijection from A
to a subset of the natural numbers. In symbols, |A| ≤ |N|.
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Definition 2.21. (Peano arithmetic) [8].
Axiom 1. 0 is a natural number.
Axiom 2. If α is a natural number, then the successor of α is also a natural

number.
Axiom 3. 0 is not the successor of a natural number.
Axiom 4. For all natural numbers α and β, α = β if and only if the successor of

α is equal to the successor of β.
Axiom 5. (Induction axiom.) If a set S of natural numbers contains 0 and also

the successor of every number in S, then every natural number is in S.

Finally, we introduce some basic concepts used in logic.

Definition 2.22. A set of axioms is consistent [2] if there is no statement such
that both the statement and its negation are true according to the axioms. In other
words, the set of axioms does not contain any contradictions.

Definition 2.23. A set of axioms is complete [2] if for any statement, either the
statement or its negation can be proved from the axioms.

3. Two point sets exist

A two point set is a subset of the plane which intersects every line in exactly two
points. There are many interesting things to prove about the symmetries of two
point sets [1], but here we simply prove that such sets exist.

Theorem 3.1. There exists a set A ⊂ R2 which intersects every line in exactly
two points.

Proof. Let {Lα} be a labeling of all the lines in R2 using ordinals α. We will use
transfinite induction on α to construct a sequence {Aα} of subsets of R2 such that
for every α, the following three properties hold:

i. Aα has at most two points;
ii.

⋃
β≤α

Aβ does not have any three points collinear;

iii.
⋃
β≤α

Aβ contains exactly two points of Lβ .

Then the set A =
⋃
Aα of all ordinals α will have the required property.

Base case. α = 0. L0 is our first line in R2, so we choose A0 ⊂ L0 to have exactly
two points. Then properties (i)-(iii) are satisfied.
Successor case. Suppose for successor ordinal α the sequence {Aβ}β≤α satis-
fies properties (i)-(iii). We will prove that then these properties are satisfied by
{Aβ}β≤α+1 as well.

Let B =
⋃
β≤α

Aβ and note that B
⋃
Aα+1 =

⋃
β≤α+1

Aβ , the set we are interested

in. Let C be the set of all lines containing two points from B.
Since property (ii) holds for {Aβ}β≤α and Lα+1 is a straight line, the set B

⋂
Lα+1

has at most two points.
If B

⋂
Lα+1has exactly two points, then we choose Aα+1 = ∅, which satisfies

properties (i)-(iii).
If B

⋂
Lα+1 has less than two points, then Lα+1 intersects every line from C in

at most one point, i.e., for all lines L ∈ C, |Lα+1

⋂
L| ≤ 1. Clearly we want to

choose Aα+1 to be a subset of Lα+1\
⋃
C in order to satisfy properties (ii) and
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(iii), however there is a danger that Lα+1\
⋃
C = ∅. We will show this is not the

case:
Consider the line along the x-axis in the Cartesian coordinate system – the real

number line, which we will denote by the set X. Note that its elements are all the
real numbers, so the number of elements in X is exactly the cardinality of the reals;
|X| = |R| = 2ℵ0 . Now, every line in R2 is simply a transformation of X, which
implies that |Lα+1| = 2ℵ0 .
Consider a fixed point (a, b) and the line y = ax+ b. Since both this point and line
are uniquely determined by this notation, it is clear that there is a bijective map
between (a, b) and y = ax + b. Therefore, there must be exactly as many lines as
there are points in R2, i.e. the set of all lines has cardinality 2ℵ0 .
C is by definition the set of all lines containing two points from B, which we know
does not yet include all the lines in R2. Hence |C| < 2ℵ0 .
Recalling that for all lines L ∈ C, |Lα+1

⋂
L| ≤ 1, we have

|
⋃
L∈C

(Lα+1

⋂
L)| = |Lα+1

⋂
(
⋃
C)| < 2ℵ0

which means Lα+1 \
⋃
C is not empty.

Therefore, choose Aα+1 ⊂ Lα+1\
⋃
C to have one element if B

⋂
Lα+1 has one

element, and to have two elements if B
⋂
Lα+1 = ∅. It is clear that either choice

of Aα+1 satisfies properties (i)-(iii).
Limit case. Suppose α is a limit ordinal and for all β < α, {Aγ}γ≤β satisfies prop-
erties (i)-(iii). We will prove that then these properties are satisfied by {Aγ}γ≤α,
using a similar argument to the successor case.

Consider the set (
⋃
β<α

Aβ)
⋂
Lα, which has at most two points since {Aγ}γ≤β

satisfies property (ii).
If (

⋃
β<α

Aβ)
⋂
Lα has exactly two points, we choose Aα = ∅.

If (
⋃
β<α

Aβ)
⋂
Lαhas less than two points, then Lα intersects at most once with every

line from the set, D, of all lines containing two points from
⋃
β<α

Aβ . We write, for

all lines L ∈ D, |Lα
⋂
L| ≤ 1.

Again, we must check that Lα\
⋃
D is not empty:

By the same reasoning as above, |Lα| = 2ℵ0 and |D| < 2ℵ0 . Hence

|
⋃
L∈D

(Lα
⋂
L)| = |Lα

⋂
(
⋃
D)| < 2ℵ0

which means Lα\
⋃
D is not empty. Therefore, choose Aα ∈ Lα\

⋃
D to have one el-

ement if (
⋃
β<α

Aβ)
⋂
Lα has one element, and to have two elements if (

⋃
β<α

(Aβ)
⋂
Lα

is empty.
Taking A =

⋃
Aα for all ordinals α, we have constructed a set that intersects

every line in exactly two points. �

4. Covering R3

In the introduction, we mentioned that one interesting proof via transfinite in-
duction is that it is not possible to cover R2 with a disjoint union of circles. This
makes the following theorem all the more unexpected, for it is hard to imagine
covering R3 without first covering R2.
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Theorem 4.1. R3 can be covered by a disjoint union of circles of radius 1.

Proof. Let {pα} be a labeling of all the points in R3 by ordinals α. We want to
construct a collection, A, of subsets of R3 such that each C ∈ A is a circle of radius
1, different elements of A are disjoint, and A covers R3. We will use transfinite
induction on α to construct A as {Cα}, requiring that for every α,

i. pα ∈
⋃
β≤α

Cβ ;

ii. Cα
⋂

(
⋃
β<α

Cβ) = ∅.

Then A =
⋃
Cα will have the required property.

Base case. α = 0. p0 is our first point in R3, so we choose C0 to be a circle of
radius 1 in R3 such that p0 ∈ C0. Then properties (i) and (ii) are satisfied.
Successor case. Suppose for successor ordinal α the sequence {Cβ}β≤α satisfies
properties (i) and (ii). We will prove that then these properties are satisfied by
{Cβ}β≤α+1 as well.

If pα+1 /∈
⋃

β<α+1

Cβ , we will define p = pα+1. Otherwise, we choose an arbitrary

point p ∈ R3\
⋃

β<α+1

Cβ . It is possible to choose such a point because α + 1 is a

successor ordinal, so we clearly have not constructed enough circles yet to cover R3;
in other words, R3 \

⋃
β<α+1

Cβ is not empty.

Now we will choose Cα+1 so that it contains p and satisfies property (ii). Consider
a plane, P , in R3 which contains p and does not contain any of the circles Cβ for
β < α+ 1. There is a danger that such a plane does not always exist, but we will
prove that this is not so:

A plane in R3 is uniquely determined by three points – since p is already fixed,
we see that there must be exactly 2ℵ0 many planes passing through p. However,
there are at most |α+1| many planes which contain circles from {Cβ}β<α+1, where
|α+ 1| < 2ℵ0 . Hence P exists.

Note that by our construction of P , it can intersect each Cβ in at most two
points. Therefore the set

B = P
⋂

(
⋃

β<α+1

Cβ) =
⋃

β<α+1

(P
⋂
Cβ)

is the union of β < 2ℵ0 many finite sets, so |B| < 2ℵ0 .
Fix a line L in P which contains p. Call A0 the set of all circles in P which

contain p and are tangent to L. Then different circles in A0 can only intersect at p.
Hence there is a circle Cα+1 ∈ A0 which is disjoint from B, and{Cβ}β≤α+1 satisfies
properties (i) and (ii).
Limit case. Suppose α is a limit ordinal and for all β < α, {Cγ}γ≤β satisfies prop-
erties (i)-(iii). We will prove that then these properties are satisfied by {Cγ}γ≤α,
using a similar argument to the successor case.

If pα /∈
⋃
β<α

Cβ , define p = pα. Otherwise, choose p ∈ R3\
⋃
β<α

Cβ . It is clear that

it is possible to choose such a point if we consider the set

L
⋂

(
⋃
β<α

Cβ) =
⋃
β<α

(L
⋂
Cβ)
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where L is any straight line in R3. This set is the union of β many finite sets
L
⋂
Cβ , where β < 2ℵ0 . Hence

⋃
β<α

(L
⋂
Cβ) has cardinality less than 2ℵ0 , which

means R3 \
⋃
β<α

Cβ cannot be empty.

Consider a plane, P in R3 which contains p and does not contain any of the
circles Cβ for β < α. It is possible to construct such a plane because there are 2ℵ0

many planes passing through p, but there are at most |α| < 2ℵ0 many planes which
contain circles from {Cβ}β<α.

Note that by our construction of P , it can intersect each Cβ in at most two
points. Therefore the set

B = P
⋂

(
⋃
β<α

Cβ) =
⋃
β<α

(P
⋂
Cβ)

is the union of β < 2ℵ0 many finite sets, so |B| < 2ℵ0 .
Fix a line L in P which contains p. Call A0 the set of all circles in P which

contain p and are tangent to L. Then different circles in A0 can only intersect at
p. Hence there is a circle Cα ∈ A0 which is disjoint from B, so {Cβ}β≤α satisfies
properties (i) and (ii).

Taking A =
⋃
Cα, for all ordinals α, we have covered R3 with a disjoint union

of circles of radius 1. �

5. The Hydra Game

The Kirby-Paris Hydra game takes its name from the Greek myth – the Hydra
is a monster with multiple heads that either grow straight out of its body or are
connected to the body by necks. Every time we chop off a head growing directly
out of the body, that head dies. However, if we chop off a head connected to a
neck, the Hydra grows more heads, according to any set of rules we wish.

We will represent the Hydra as a rooted tree, i.e., the root is the body of the
Hydra, the leaves are its heads, and the nodes are the necks. This is one possible
Hydra [5]:

We start with the simple rule that when we chop off a head connected to a neck,
we descend a node and from there, grow two subtrees identical to the subtree that
was attacked.

Suppose we decide to cut off the head shown in red.
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Then according to our rules, this is the resultant Hydra:

Instead of playing with the rule that when we chop off a head connected to a
neck, the Hydra grows two subtrees identical to the subtree that was attacked, we
could also play that the Hydra grows three new copies of the attacked subtree, or
even n new copies at the nth step of the game; any rules are valid as long as the
Hydra never grows infinitely many heads at once.

Theorem 5.1. All Hydras eventually die, regardless of what rules we play with.

Remark. In 1982, Kirby and Paris proved that any proof technique which
proves that every Hydra eventually dies must be strong enough to prove that Peano
arithmetic is consistent [6]. Godel’s first Incompleteness Theorem, which we will not
prove, states that all consistent axiomatic formulations of number theory include
propositions that can neither be proved nor disproved by those axioms, i.e. any
consistent system is incomplete [7]. Hence Peano arithmetic is incomplete.

Proof. First we will prove that all Hydras eventually die when we adopt the rule
that when we chop off a head connected to a neck, the Hydra grows two subtrees
identical to the subtree that was attacked. Then we will extend this to prove that
it does not matter how many subtrees grow back, as long as the number is finite.
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Let {Hα} be a labeling of Hydras by ordinals α such that each Hα has one more
head than Hα−1. We will use transfinite induction on α, with the hypothesis that
for every α, Hα can be killed in finitely many steps.
Base case. α = 0. H0 is our first Hydra; a rooted tree with a single head. Then
we cut off the head, which kills that head and hence the whole Hydra has been
killed in one step.
Successor case. Suppose for successor ordinal α, Hα eventually dies. We will
prove that then Hα+1 also eventually dies.
Hα+1 has one more head than Hα. Suppose this head grows directly out of the

Hydra’s body. Then it clearly only takes one more step to kill Hα+1 than Hα, so
Hα+1 must die in finitely many steps.

Suppose this head does not grow directly out of the body. We begin by chopping
off that head, which will produce two more copies of the subtree that was attacked
– we will denote this subtree by S. Note that S ⊂ Hα. Since Hα dies in finitely
many steps, certainly S must die in finitely many steps. This implies that three
copies of S must also die in finitely many steps, hence Hα+1 dies in finitely many
steps.
Limit case. Suppose α is limit ordinal and for all β < α, Hβ eventually dies. We
will prove that then Hα also eventually dies.

We will assign an ordinal to Hα like this:
i. Heads are assigned the ordinal 0;
ii. Suppose a node x has sub-Hydras H1, ...Hk growing from it. We will assign

each sub-Hydra its ordinal recursively, and order the ordinals in descending order
so that α1 ≥ α2 ≥ ... ≥ αk. Let the ordinal assigned to x be ωα1 + ...+ ωαk .

This is how we would label the Hydra from the example above:

Then it is clear that every move decreases the ordinal assigned to Hα. Since
there is no infinite decreasing sequence of ordinals by proposition 2.9, every Hα

must die in finitely many steps.
If we play with any other set of rules, the base case and limit case will be exactly

the same as above. We would argue the successor case in a similar way, since at
any step, the number of subtrees the Hydra grows must be finite. Therefore, all
Hydras eventually die. �
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