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Abstract. We introduce the theory of covering spaces, with emphasis on

explaining the Galois correspondence of covering spaces and the deck trans-

formation group. We focus especially on the topological properties of Cayley
graphs and the information these can give us about their corresponding groups.

At the end of the paper, we apply our results in topology to prove a difficult

theorem on free groups.
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1. Covering Spaces

The aim of this paper is to introduce the theory of covering spaces in algebraic
topology and demonstrate a few of its applications to group theory using graphs.
The exposition assumes that the reader is already familiar with basic topological
terms, and roughly follows Chapter 1 of Allen Hatcher’s Algebraic Topology.

We begin by introducing the covering space, which will be the main focus of this
paper.

Definition 1.1. A covering space of X is a space X̃ (also called the covering

space) equipped with a continuous, surjective map p : X̃ → X (called the covering
map) which is a local homeomorphism. Specifically, for every point x ∈ X there
is some open neighborhood U of x such that p−1(U) is the union of disjoint open

subsets Vλ of X̃, such that the restriction p|Vλ
for each Vλ is a homeomorphism

onto U .

Informally, every neighborhood of a point in a covering space must ”look like”
a neighborhood in the space it covers, and every point in the space being covered
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must have a neighborhood that ”looks like” some neighborhood of the covering
space.

We also have terminology that allows us to more easily refer to the properties of
the covering space.

Definition 1.2. An open set U ⊂ X is said to be evenly covered by the covering

space p : X̃ → X if p−1(U) is the union of disjoint open subsets of X̃ mapped

homeomorphically onto U by p. These disjoint open subsets of X̃ are called the

sheets of X̃ over U .

By the definition of a covering space, every point x ∈ X has some evenly covered

neighborhood U . We will often refer to p : Ũ → U and p−1 : U → Ũ , the

homeomorphisms we obtain by restricting the domain of p to a single sheet Ũ of X̃
over U .

After digesting these definitions, one might wonder what covering spaces can
possibly tell us about the spaces they cover. We will begin to explore this rela-
tionship by considering a few examples of covering spaces which will prove useful
throughout this paper.

First, consider the unit circle S1. Locally, the space S1 near a point x must

look the same as its covering space X̃ near a point y ∈ p−1({x}). Essentially, the

space X̃ should look like a line near y, since an open neighborhood containing x is
homeomorphic to the open unit interval. Actually, S1 can be a covering space of
itself using covering maps other than the identity. For example, if we treat S1 as
the unit circle in the complex plane, then the map p : S1 → S1 given by p(z) = z6

satisfies all the conditions of a covering space. The sheets of U = S1 \ {1} are six
disjoint open arcs of angle π

3 in the covering space S1, and p−1({1}) contains the

six endpoints of these arcs. Another covering space of S1 is R using the covering
map p : R → S1 given by p(t) = cos(2πt) + i sin(2πt). This covering space can be
viewed as an infinite helix of radius 1, being projected onto the unit circle.

... ...

Figure 1. Covering spaces of S1, with covering maps p(z) = z,
p(z) = z6, and p(t) = cos(2πt) + i sin(2πt). The points in bold are
elements of the fiber of 1.

While we used geometric language to describe the previous spaces, they can also
be thought of as graphs. Specifically, the topological definition of a graph which
we will use is:

Definition 1.3. A graph is a topological space formed from a discrete set X0 and
copies of the closed unit interval Iλ as follows: we take the disjoint union of X0

and the intervals, and then for every Iλ in this space, we identify its endpoints with
points in X0. The resulting space is the graph X, with vertex set X0 and edges
corresponding to the intervals Iλ. A subset U of a graph X with edges {eλ} is open
if and only if for each eλ, U ∩ eλ is open in eλ.
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Note that this definition gives a space consistent with our general interpretation
of a graph, and we may frequently use terminology from graph theory to refer to
graphs in topology. One important note is that a graph is connected in the graph
theory sense if and only if it is connected in the topological sense. Also, a connected
graph is path-connected.

Under this definition, the unit circle can be seen as the graph of one vertex
and one edge. The covering map given by p(z) = z6 no longer maps a space to
itself, but instead maps the cycle on six vertices to the cycle on one vertex. The
infinite helix of R becomes the infinite linear graph. The fact that these spaces
can all be described as graphs will allow future results to characterize them much
more strongly than a generic space. Topologically, graphs are important in two
regards: they are simple spaces whose structure is easily understood, and they
can be constructed to give geometric or topological representation of the algebraic
structure of a group. Along these latter lines:

Definition 1.4. The Cayley graph Γ of a group G generated a set S is the graph
with vertices corresponding to the elements of G, and a directed edge from g1 ∈ G
to g2 ∈ G if and only if g1s = g2 for some s ∈ S.

Directed edges are not topologically different from ordinary edges, but it is help-
ful to be able to refer to this concept in constructions. In particular, note that this
definition forbids a graph from having a bidirectional edge; instead, it would have
two oppositely directed edges joining the same two vertices.

We have already seen two Cayley graphs: the cycle on six vertices is the Cayley
graph of Z/6Z generated by 1, and the infinite linear graph is the Cayley graph of
Z generated by 1.

0

12

3

4 5

... ...-2 -1 0 1 2

Figure 2. The Cayley graphs of Z/6Z and Z, both for generating
set {1}.

It is worth noting that a group does not necessarily have a unique Cayley graph:
the Cayley graph of a group depends on the choice of generators. In the cases we
consider, our choice of generating set will be clear from context. Every group G
has at least one Cayley graph, given by letting every element of the group be a
generator; this is the complete graph on |G| vertices.

We will discuss a few more covering spaces in terms of Cayley graphs, but first,
we review a special kind of group that will appear frequently in this paper.

Definition 1.5. The free group FS is the group generated by the elements of S
(or by |S| elements), such that two products of generators are equal if and only if
the group axioms require them to be equal.
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That is, a free group is generated by some set of elements such that no product
of generators is the identity, except the trivial case where each generator in the
product meets its own inverse. We often describe the elements of the free group
as words; for example, the free group on two generators F2 has elements like ab,
b3a−2b, and ababab. In this model, the group law of the free group is concatenation
of words. We can assume that the elements of a free group are fully reduced; e.g.
aba2a−1b should be written instead as abab.

The next examples will be covers of S1 ∨ S1, where ∨, called the wedge sum, is
the union of spaces joined together at a point. We note that S1 ∨ S1 can also be
regarded as a graph with one vertex and two edges.

Figure 3. The wedge sum of two circles, along with the two basic
kinds of open neighborhoods of a point in S1 ∨ S1.

Near any point, S1 ∨ S1 resembles either a line or two intersecting lines, and
its covering space must be similar. A space which meets this requirement is the
lattice graph Γ on Z × Z. If we let p be the map which takes each vertex of Γ to
the basepoint of S1 ∨ S1, each vertical edge to one circle, and each horizontal edge
to the other circle, then it is not hard to show that p is a covering map. Of course,
Γ can also be seen as the Cayley graph of the group Z× Z generated by (1, 0) and
(0, 1).

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 4. The Cayley graph of Z × Z along with an example
labeling for generators (1, 0) and (0, 1).

A similar covering space is constructed from a base vertex by constructing edges
emanating in four directions, placing vertices at 2

3 the length of each edge from the
base vertex, and then repeating the process for each of these vertices. The infinite
graph Γ resulting from this process, shown in Figure 5, is also a covering space of
S1 ∨ S1 with very similar covering map: we define p : Γ→ S1 ∨ S1 to be the map
taking each vertex of Γ to the basepoint of S1 ∨ S1, each vertical edge to the one
circle of S1 ∨ S1, and each horizontal edge to the other circle.

This space is the Cayley graph of F2 corresponding to generators a, b; associating
right edges with a and upward edges with b gives a bijection between vertices and
elements of F2, and the construction of the graph guarantees that it contains no
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cycles, so no two elements of the free group are identified and it has an empty
relations set. The property that a graph contains no cycles, and more generally
that a covering space contains no nontrivial loops, marks a very special kind of
covering space. Compare the Cayley graph of Z as another example of a space with
this property, called simply-connectedness, which we will explore later.

1

b

b−1

a

ab

ab−1

a2

a2b

a2b−1

Figure 5. The Cayley graph of F2, along with an example labeling
for generators a and b.

A common theme in these examples has been understanding how the sheets of
a covering space are connected. One result we will eventually prove is that the
nature of this property uniquely defines a covering space up to a certain kind of
isomorphism. However, first we need to establish a formal way to explore this
property.

2. The Fundamental Group

Recall that a path is a continuous function mapping the unit interval I into a
space X, and a loop is a path f with f(0) = f(1). Our key insight will be that if f is

a path connecting two points in the covering space X̃ such that p(f(0)) = p(f(1)),
then p ◦ f must be a loop in X. Therefore, the loops of a space are related to how
the sheets of its covering spaces are connected.

In particular, using path homotopy, we can partition the loops with basepoint
x0 into equivalence classes. We can also define the composition of loops γ, η given
by γ · η to be the loop which traverses γ first, then η. A basic theorem of topology
gives that the equivalence classes of loops with multiplication rule [γ] · [η] = [γ · η]
forms a group.

Definition 2.1. The fundamental group of a spaceX with basepoint x0, denoted
π1(X,x0), consists of the equivalence classes of loops in X with basepoint x0, with
the group law given by composition of loops, as described above.

The subscript 1 indicates that this is the first of many homotopy groups that can
be associated to the space X; however, we will have no need to consider any higher
subscripts in this paper. Also, from now on we may use the notation (X,x0) to
refer to a space equipped with a given basepoint. Note that we will always require

that p(x̃0) = x0 for a covering space p : (X̃, x̃0)→ (X,x0).
For an example, consider the plane R2. For any two loops f, g in this space

sharing a basepoint x0, we can use the homotopy h(t, s) = (1−s)f(t)+sg(t) to send
each point f(t) along the segment joining it to g(t), continuously deforming f into
g. This construction tells us that all loops are homotopic in R2, so π1(R2, x0) = {0}.

On the other hand, we may fail to have homotopy between loops when our space
has certain kinds of holes. For example, now consider the plane with a removed
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point, R2 \ {p}. If f is a loop which goes around p and g is a loop which does not
go around p, then no homotopy takes f to g, because either f will not be a loop
when the homotopy passes it over p, or the homotopy will fail to be continuous.
One way to imagine this is that the hole in the plane is a peg, and the loop f is a
circle of string lying in the plane and wrapped around the peg. We cannot possibly
stretch or shift the string so that it is no longer wrapped around the peg, all while
keeping the string in the plane.

In short, the fundamental group tells us about the holes in a space, since these
are what prevent two paths or loops from being homotopic. To close this section,
we list a few results about the fundamental group which are not too difficult and
will prove useful in subsequent discussions.

Proposition 2.2. A continuous map f : (Y, y0) → (X,x0) induces a homomor-
phism f∗ : π1(Y, y0)→ π1(X,x0).

Specifically, for any loop in Y based at y0, its composition with f is a loop in
X based at x0, and composition with f maps a product of loops to the composi-
tion of their images. Thus, f∗ maps π1(Y, y0) into a subgroup of π1(X,x0). The

most important induced homomorphism for our purposes will be p∗ : π1(X̃, x̃0)→
π1(X,x0), the homomorphism induced by a covering map p : X̃ → x̃0.

Proposition 2.3. Let X be path-connected, and x1, x2 ∈ X. Then π1(X,x1) '
π1(X,x2).

As such, we will occasionally refer to the fundamental group as π1(X) when the
choice of basepoint is not relevant to the discussion at hand.

Proposition 2.4. If two spaces are homotopy equivalent, then they have isomorphic
fundamental groups.

Exact proofs of the previous remarks can be found in [1].

3. Lifts

Now that we have the covering space and the fundamental group, we can begin
to prove the key relation between the two which makes covering spaces so useful
to study. Our first task along these lines will be to introduce lifts, which give
us another powerful way to relate the base space to its covering space using the
covering map.

Definition 3.1. A lift of a map f : Y → X to the covering space X̃ with covering

map p : X̃ → X is a continuous function f̃ : Y → X̃ such that p ◦ f̃ = f .

As the figure shows, the lift of a loop is not necessarily a loop. Exactly the

loops in X contained by classes in p∗(π1(X̃, x̃0)) lift to loops in X̃ beginning at x̃0.
Lifts have a number of useful properties, including that a lift always exists given a

condition on the fundamental groups of Y and X̃ and that a lift is uniquely defined
by the value it takes at a single point. In the above example, we could have lifted
our loop to a path beginning at any of the six points in the fiber of (1, 0).

The following result is a construction to show that any homotopy ft can be
lifted given a lift of f0. Having this construction will allow us to quickly show the
existence of other kinds of lifts. The key idea of the proof is that we can lift the
homotopy on an open neighborhood around each point in its domain with finitely
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Figure 6. A loop going once around S1, counterclockwise, and its
lift beginning at (1, 0) under the covering map p : S1 → S1 with
p(z) = z6.

many steps. Then, by showing that two lifts of the homotopy at a point must
agree, we can paste these lifts together to obtain a lift of the entire homotopy. The
complete details of this proof will not prove important, so the reader need only
understand the results to safely proceed to the next section.

Theorem 3.2. Given a covering space p : X̃ → X, a homotopy F : Y ×I → X, and

a map F̃ : Y ×{0} → X̃ lifting F |Y ×{0}, there exists a unique lift F̃ : Y × I → X̃

of F which restricts to the given F̃ on its domain.

Proof. For any y0 ∈ Y and t ∈ I, the point F (y0, t) has an evenly covered open
neighborhood Vt in X, and the continuity of F guarantees that F−1(Vt) is an open
neighborhood. Fixing y0 and varying t, we can write each F−1(Vt) as Nt× (at, bt),
where Nt is an open neighborhood of y0 in Y and (at, bt) is an open neighborhood
of t in I. Since {y0} × I is compact, finitely many of the Nt × (at, bt) cover it.
Let N be the open neighborhood which is the intersection of the finitely many Nt,
and let {t0, t1 . . . , tm} be a partition of I taken from the finitely many at and bt.
Then for each i, N × (ti, ti+1) ⊂ Nt × (at, bt) for some t, so F (N × (ti, ti+1)) ⊂ Vt.
Therefore, F (N × (ti, ti+1)) is contained in an evenly covered open neighborhood,
which for convenience we will label Ui.

Suppose inductively that F̃ has been defined on N×[0, ti]. Since Ui is evenly cov-

ered, there is some open Ũi ⊂ X̃ containing F̃ (y0, ti) which is mapped homeomor-

phically by p onto Ui. Let N1×{ti} = (F̃ |N×{ti})−1(Ũi) ⊂ N×{ti}, and note that

N1 is also an open neighborhood of y0, with the property that F (N1 × {ti}) ⊂ Ũi.
Then, define F̃ on N1× [ti, ti+1] to be p−1 ◦F where p−1 : Ui → Ũi is the inverse of

the covering map restricted to Ũi, where it is bijective. Since our partition is finite,
the induction obtains some open neighborhood Nf ⊂ · · · ⊂ N1 ⊂ N of y0 so that

F̃ is defined on Nf × I. Furthermore, F̃ is a lift of F , since F = p ◦ F̃ on every

Nf × [ti, ti+1] and F̃ is pasted continuously at each ti.
Now, we wish to show the uniqueness of this lift at any point in Y . To do so,

consider the case where the set Y from the statement is a point, and where we can

consider F to be a function on I. Suppose two lifts of F satisfy F̃ (0) = F̃ ′(0),
and let {t0, . . . , tm} be a partition of I such that each F ([ti, ti+1]) is contained
in an evenly covered neighborhood Ui. We proceed by induction, assuming that

F̃ = F̃ ′ on [0, ti]. Then the continuity of both lifts means that they preserve the
connectedness of [ti, ti+1]. In particular, each lift can only map into one of the

Ũi, since these are disjoint open sets, and their union is disconnected. But since
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F̃ (ti) = F̃ ′(ti), they map into the same Ũi, and since p is injective when restricted

to Ũi, we have that pF̃ = pF̃ ′ = F implies F̃ = F̃ ′ on [ti, ti+1]. By induction, the
lift of F restricted to a point in Y is unique.

Thus, we have shown that we can lift F on some open neighborhood N around
each y0 ∈ Y , and now we have that if two such neighborhoods intersect, their
respective lifts must agree when restricted to any point in the intersection. It

follows that we obtain a lift F̃ : Y × I → X̃ from pasting together these lifts, which
is continuous since it is continuous on each N × I and unique since it is unique
when restricted to any point in Y . �

Now given a function, its lift, and a function homotopic to the first, we can find
a lift of this last function homotopic to the lift of the first. One very useful corollary

of this result is that if the loop γ in X lifts to a loop γ̃ with basepoint x̃0 in X̃, then

every loop in the equivalence class [γ] lifts to a loop with basepoint x̃0 in X̃. This
allows us to prove a stronger result regarding relationship between the fundamental
groups of a space and its covering space.

Theorem 3.3. Given a space (X,x0) and a covering space p : (X̃, x̃0)→ (X,x0),

the induced homomorphism p∗ : π1(X̃, x̃0) → π1(X,x0) is injective. The elements

of p∗(π1(X̃, x̃0)) are exactly the equivalence classes of loops in X with basepoint x0
which lift to loops in X̃ with basepoint x̃0.

Proof. The kernel of p∗ consists of loops f̃0 such that f0 = pf̃0 is homotopic to the

trivial loop. We can lift such a homotopy to X̃, and find that f̃0 is homotopic to

a lift of the trivial loop, which is clearly trivial in X̃. Thus, only the trivial loop
maps to the trivial loop, and p∗ is injective.

In one direction, a class containing a loop γ in X which lifts to a loop γ̃ in X̃

is clearly a member of p∗(π1(X̃, x̃0)), since p ◦ γ̃ explicitly gives the corresponding

element of the group. On the other hand, any element of p∗(π1(X̃, x̃0)) is a class

of loops in X which contains at least one loop which is the image of a loop in X̃
under p, and thus has a lift to a loop. Therefore, for any other loop in the same
class there is a homotopy which takes that loop to the loop with a lift, and the lift

of the homotopy shows that this loop must also have a lift to a loop in X̃. �

We can also use our construction of the homotopy lift to prove the existence of
general lifts, given certain conditions on the domain of the function we are lifting.
The key idea of these conditions is that the easiest way to define a lift of a function
is by lifting paths in X with a designated basepoint. Our theorem on homotopy
lifts guarantee that the lift of a path exists and is unique. However, we need to
know that two paths with the same endpoint in Y , mapped by f to two paths with

the same endpoint in X, will lift to two paths with the same endpoint in X̃, and
this is exactly equivalent to asking that a loop in X which is the image of a loop

in Y also be the image of a loop in X̃.

Theorem 3.4 (The Lifting Criterion). Let Y be path-connected and locally path-

connected, with basepoint y0. Let p : (X̃, x̃0) → (X,x0) be a covering space. A lift

f̃ : (Y, y0)→ (X̃, x̃0) of a continuous map f : (Y, y0)→ (X,x0) exists if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)) where f∗ : π1(Y, y0) → π1(X,x0) is the fundamental
group homomorphism induced by f .
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Proof. Suppose p(f̃) = f . If [γ] ∈ π(Y, y0) satisfies [f ◦ γ] ∈ π1(X,x0), then

[p◦f̃◦γ] ∈ π1(X,x0). Recalling how f∗ and p∗ are defined, we obtain f∗(π1(Y, y0)) ⊂
p∗(π1(X̃, x̃0)).

If f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)), then we construct f̃ in the following way: let
y ∈ Y and let γ be a path from y0 to y; then f ◦ γ is the image of this path in

X, and there exists a unique lift f̃γ of this path starting at x̃0. We then define

f̃(y) = f̃γ(1).
We can show that the function is well-defined by considering two paths γ and

γ′ in Y from y0 to y. The two paths form a loop in Y which f maps to a loop in

X, and since f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)), this loop is the image of a loop in X̃

under p. Therefore, the lifts of our two paths have the same endpoint in X̃, since
the lifts form a loop.

Finally, we prove that f̃ is continuous. Let U ⊂ X be an evenly covered open

neighborhood of f(y) for some y ∈ Y , such that Ũ is a sheet of X̃ mapped homeo-
morphically by p onto U . Using the continuity of f and the local path-connectedness
of Y , there exists a path-connected open neighborhood V of y with f(V ) ⊂ U .
Given a fixed path γ from y0 to y and any path η in V from y to a point in V , we

obtain the path fγ · fη in X, which lifts to a path with endpoint in Ũ . Since we

let η(1) be arbitrary in V , it follows that f̃(V ) ⊂ Ũ , and f̃ is continuous. �

The other major property of lifts we want to show is that a lift is unique up
to choice of basepoint. To do so, we show that two lifts agree on an open set and
disagree on an open set, so connectedness gives that two lifts agree everywhere or
nowhere.

Theorem 3.5 (The Unique Lifting Property). If two lifts f̃1, f̃2 : Y → X̃ of

f : Y → X agree at one point of Y and Y is connected, then f̃1 = f̃2.

Proof. Let y ∈ Y , and let U ⊂ X be an evenly covered open neighborhood of f(y).

Then p−1(U) is the union of disjoint sheets of X̃, so we must have f̃1(y) ∈ Ũ1 and

f̃2(y) ∈ Ũ2 for two such sheets Ũ1 and Ũ2. Since both lifts are continuous, the

preimages of Ũ1 and Ũ2 respectively are open in Y and share the point y, so we can

find an open neighborhood N mapped by f̃1 into Ũ1 and mapped by f̃2 into Ũ2. If

f̃1(y) 6= f̃2(y), then Ũ1 6= Ũ2, and hence they are disjoint. It follows that f̃1 6= f̃2
throughout N , which implies that the set of points where f̃1 = f̃2 is the complement
of a union of open sets; i.e. a closed set. On the other hand, if f̃1(y) = f̃2(y), then

Ũ1 = Ũ2. Since p ◦ f̃1 = p ◦ f̃2, it follows that f̃1 = f̃2 on N since p is injective on

Ũ1 = Ũ2. This implies that the set of points where f̃1 = f̃2 is a union of open sets,
and thus open. Since Y is connected, the only open and closed sets in Y are ∅ and
Y , but by hypothesis f̃1 and f̃2 agree at one point, so they agree on all of Y . �

4. The Universal Covering Space

At this point, we have proven a number of useful technical results regarding lifts,
and now we can finally return and use these to develop covering spaces. The first
step will be to construct a covering space with a number of special properties, called
the universal covering space. The first step will be a pair of new definitions.

Definition 4.1. A space X is simply-connected if it is path-connected and has
a trivial fundamental group. A space X is semi-locally simply-connected if
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every point x ∈ X has an open neighborhood U such that the homomorphism
π1(U, x)→ π1(X,x) induced by the inclusion U into X is trivial.

We will show in this section that every path-connected, locally path-connected,
and semi-locally simply-connected space has a simply-connected covering space,
which is unique up to isomorphism. This covering space is known as the universal
covering space. The universal covering space will allow us to easily construct and
classify all covering spaces of its base space.

Informally, simply-connectedness is a relatively rare property which more or less
entails that a space have no holes in its interior. Semi-local simply-connectedness
is a common property which only requires that a space have no arbitrarily small
holes. Semi-local simply-connectedness does not necessarily imply that π1(U, x) is
trivial, which would be equivalent to X being locally simply-connected. Rather,
whatever equivalence classes of loops may make up the fundamental group of U ,
these are all homotopic to the trivial loop when considered in the larger space X.

It is not hard to show that semi-local simply-connectedness is necessary for the

existence of the universal cover. Suppose X̃ is a simply-connected cover of X, and
U ⊂ X is open. Then there exists an evenly covered V ⊂ U , and we can choose

a sheet Ṽ ⊂ X̃ of V . Any loop in V lifts to a loop in Ṽ , which the covering map

takes to a loop in X. However, X̃ is simply-connected and contains no nontrivial
loops, so the lift of the loop must be trivial, and the loop will be trivial in X.

Theorem 4.2. A path-connected, locally path-connected, semi-locally simply-connected
space X with basepoint x0 has a simply-connected covering space given by:

X̃ = {[γ] | γ is a path in X starting at x0}
p : X̃ → X where p([γ]) = γ(1)

Proof. Let X̃ and p be as defined in the statement. If we take U to be the collection
of path-connected open sets U in X with π1(U) → π1(X) trivial, then any open
path-connected subset V of such a U has π1(V )→ π1(X) also trivial, giving V ∈ U .
For any open subset S of X, we then can describe S as the union of sets in U , since
X is locally path-connected and semi-locally simply-connected. Thus U is a basis
of the topology on X. For each U ∈ U and each path γ in X with γ(0) = x0 and

γ(1) ∈ U , we define a corresponding subset of X̃:

U[γ] = {[γ · η] | η is a path in U with η(0) = γ(1)}

It is somewhat lengthy but not difficult to show that the collection of U[γ] form the

basis of a topology on X̃.
We now consider the restriction of the covering map to p : U[γ] → U . We can see

that the set U[γ] is mapped surjectively by p onto U , since U is path-connected. We
can also see that p : U[γ] → U is injective since U is semi-locally simply-connected,
so that all paths between two points in U are homotopic in X. It follows that p is a
bijection, which takes an open set V[γ′] ⊂ U[γ] to the open set V ⊂ U , so it follows
that p restricted to U[γ] is a homeomorphism. For any path γ′, if U[γ] ∩ U[γ′] 6= ∅,
then it follows from the path-connectedness of X that U[γ] = U[γ′]. Therefore,

p−1(U) is a union of disjoint open sets mapped homeomorphically by p onto U ,
and p is a covering map.

Let [γ] ∈ X̃, and define γt to be the path γ on [0, t] and the constant path γ(t)

on [t, 1]. The continuous map given by f(t) = [γt] is thus a path in X̃ from [x0] to
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[γ], and a lift of γ since p(f(t)) = γt(1) = γ(t). It follows that X̃ is path connected,
since this procedure can be performed for any path. For any loop γ in X which

lifts by this method to a loop in X̃, we must have the endpoints of the lift be equal,
or [x0] = [γ]. But then only loops equivalent to the trivial loop lift to loops, so

p∗(π1(X̃)) = 0, and X̃ is simply-connected. �

The most important takeaway from the construction of the universal cover is
that given two paths with common endpoints which are not homotopic, we can lift
these paths to paths beginning at the same point in the universal cover and ending
in different places. Consider the example of the Cayley graph X on Z×Z, for which

the Cayley graph X̃ of F2 is a simply-connected covering space.

Figure 7. Two paths in the Cayley graph of Z × Z which are
not homotopic lift to paths with different endpoints in the Cayley
graph of F2. Those endpoints can be associated with the homotopy
class of the respective path.

Any path in X from (0, 0) to another vertex is homotopic to a unique path
consisting of a sequence of edges, where no edge is followed immediately by itself.
This gives a straightforward bijection between such paths and the elements of F2,
written as reduced words (let a be right, b be up, and the inverses similarly). Thus,
each path corresponds to a point in the Cayley graph of F2 and also lifts to a path
from the origin of the graph to that point.

With access to the universal cover, it becomes possible to construct and classify
all other covering spaces in terms of the universal cover.

Theorem 4.3 (The Galois Correspondence for Covering Spaces). Let X be a space

with a simply-connected covering space X̃. Let H be a subgroup of π1(X,x0). There
exists a covering space p : XH → X with p∗(π1(XH , xH)) = H that is unique up to
isomorphism. Thus, there is a bijection between subgroups of π1(X,x0) and covering
spaces of X.

Proof. We define [γ] ∼ [γ′] for paths γ, γ′ in X if γ(1) = γ′(1) and [γ · γ′] ∈ H.
The group properties of H guarantee that ∼ is an equivalence relation. Now, we

consider the quotient space XH = X̃/ ∼. For any γ and γ′ starting at the basepoint
of XH and any other path η with η(0) = γ(1) = γ′(1), we have [γ] ∼ [γ′] if and only
if [γ · γ′] = [γ · η · η · γ′] ∈ H, which in turn is equivalent to [γ · η] ∼ [γ′ · η]. Thus,
any point in a path connected neighborhood of γ(1) in X has preimages in path

connected neighborhoods of [γ] and [γ′] in X̃ which are identified in XH as a single
point in the neighborhood of [γ] ∼ [γ′]. This property means that the quotient
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map is a local homeomorphism, since it is continuous, takes open neighborhoods to
open neighborhoods, and is locally invertible. Thus, the map p : XH → X given by

p([γ]) = γ(1) inherited from X̃ is also a local homeomorphism, and thus a covering
map.

An element of the fundamental group ofXH is the image of a path in X̃ beginning
at its basepoint [c] with endpoint [γ] ∼ [c], where c is the constant path in X at x0.
But [γ] ∼ [c] implies that γ(0) = γ(1) = x0 and [γ · c] = [γ] ∈ H. Conversely, every
loop γ in X with [γ] ∈ H can be lifted to a path γ̃ ending at [γ] in XH , which will

invariably be a loop since [γ · c] = [γ] ∈ H. Therefore, p∗(π1(X̃, x̃0)) = H.
Suppose covering spaces (X1, x1) and (X2, x2) with covering maps p1, p2 both

have fundamental group H. Then the lifting criterion implies the existence of a lift
f : X1 → X2 and a lift g : X2 → X1 which each maps basepoint to basepoint. Thus
the composition g ◦ f maps x1 to x1 and is a lift, since p1 ◦ g ◦ f = p2 ◦ f = p1, so
the unique lift property gives that g ◦ f = idX1 . Symmetric reasoning gives that
f ◦ g = idX2

. Thus, f is a homeomorphism between X1 and X2 which preserves
the covering map since p1 = p2 ◦ f , so f is an isomorphism and the two covering
spaces are isomorphic. �

This bijection between covering spaces and subgroups of the fundamental group
of X is called the Galois Correspondence. We can strengthen this bijection by
placing partial orderings on both sets. The convenient choice for groups is to use
subgroup inclusion. For covering spaces, we say one covering space is less than the

other if it is a covering space of the other; that is, for p1 : X̃1 → X and p2 : X̃2 → X,

if there exists a covering map p : X̃1 → X̃2 such that p1 = p2p, then p1 < p2. The
remarkable property of this correspondence is that it preserves the partial ordering:
if H1 ⊂ H2 ⊂ π1(X,x0) are subgroups, then XH1 covers XH2 , which covers X. An
immediate corollary is that the universal covering space covers every other covering
space, using exactly the quotient maps from the proof of the theorem.

5. The Deck Transformation Group

There is one final tool to understand covering spaces in terms of the fundamental
group of the covered space. We previously discussed the notion of an isomorphism

between covering spaces p1 : X̃1 → X and p2 : X̃2 → X as a homeomorphism f :

X̃1 → X̃2 such that p1 = p2f . This naturally leads to a definition of automorphism
for a covering space, and thus a group of automorphisms of a given covering space.
We call these automorphisms deck transformations.

Definition 5.1. A deck transformation is an isomorphism from a covering space
to itself. We will use the notation Aut(p) to refer to the group of deck transfor-

mations of the covering space p : X̃ → X with group law given by composition of
maps.

An important note here is that a deck transformation can also be seen as a lift
of the covering map p. As a result of the unique lifting property, it follows that any
deck transformation is given by its value at a single point. We will often characterize
deck transformations by their action on the fiber of x0; a deck transformation
bijectively maps this set to itself, so we obtain a homomorphism from Aut(p) to
the permutation group of the fiber.
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A particularly interesting question then is whether the deck transformations of
a covering space can map any member of the fiber of x0 to any other member.

Definition 5.2. A regular or normal covering space satisfies that for any x ∈ X
and any x̃1, x̃2 ∈ p−1(x), there exists a deck transformation taking x̃1 to x̃2.

As one might expect from the name, a covering space is regular or normal if
and only if it corresponds to a normal subgroup of π1(X,x0). The proof of this
fact will use the idea that a loop at x0 also determines a permutation of the fiber
of x0, since we can lift it to each point in the fiber and take the endpoints of the
lifts as the image of the permutation. We can also use this idea to construct an

isomorphism between the group of deck transformations of X̃ and the quotient

group N(p∗(π1(X̃, x̃0)))/p∗(π1(X̃, x̃0)).

Theorem 5.3. Let H = p∗(π1(X̃, x̃0)) for a covering space p : (X̃, x̃0)→ (X,x0).
Aut(p) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of H

in π1(X,x0). The covering space p : (X̃, x̃0) → (X,x0) is regular if and only if H
is a normal subgroup of π1(X,x0).

Proof. First, we consider the effect of a change of basepoint from x̃0 ∈ p−1(x0) to

x̃1 ∈ p−1(x0) on the fundamental group of X̃. Let γ̃ be a path from x̃0 to x̃1, and
note that the image of γ̃ under p is a loop γ with basepoint x0. Then for any loop η̃ in

X̃ about x̃0, we have that γ̃η̃γ̃ is a loop about x̃1, and thus [γηγ] ∈ p∗(π1(X̃, x̃1)).

More generally, if H0 = p∗(π1(X̃, x̃0)) and H1 = p∗(π1(X̃, x̃1)), then this gives
that γH0γ

−1 ⊂ H1, where we now use notation more traditional of conjugation.
Symmetric reasoning gives that γ−1H1γ ⊂ H0, and conjugating both sides by γ
yields that H1 ⊂ γH0γ

−1, so γH0γ
−1 = H1.

We can view a deck transformation as a lift of p, and since an isomorphism has
an inverse that is also an isomorphism, the lifting criterion gives that a deck trans-

formation (X̃, x̃0) → (X̃, x̃1) exists if and only if p∗(π1(X̃, x̃0)) = p∗(π1(X̃, x̃1)).
By the previous result, however, these two groups are conjugate, so they are equal
if and only if the loop γ which lifts to a path from x̃0 to x̃1 is an element of the

normalizer of H = p∗(π1(X̃, x̃0)).
Let φ : N(H) → Aut(p) take the loop [γ] which lifts to a path γ̃ from x̃0 to

x̃1 to the deck transformation τ which takes x̃0 to x̃1. The previous paragraph
makes clear that τ exists given such a γ, and that this mapping is surjective since
every deck transformation maps x̃0 to some other point in :p−1(x0), giving a path

in X̃ which maps to some loop in X which is in the normalizer of H. Furthermore,
since a deck transformation is itself a lift of p and we have fixed its value at x̃0,
the unique lift property guarantees the uniqueness of τ , and thus shows that φ is
well-defined.

Let γ, γ′ be loops in N(H) which lift to paths γ̃ and γ̃′. If τ is the deck trans-
formation which takes x̃0 to γ̃(1) and τ ′ is the deck transformation which takes x̃0
to γ̃′(1), then γ̃ · τ(γ̃′) is a lift of the path γ · γ′, ending at τ(γ̃′(1)) = τ(τ ′(x̃0)).
Therefore, by the unique lifting property, we have that φ([γ])φ([γ′]) = φ([γγ′]), so
φ is a group homomorphism. Also, φ([γ]) = id if and only if γ lifts to a loop at
x̃0, which is equivalent to [γ] ∈ H, so φ has kernel H. Since we have shown that
φ is a surjective group homomorhpism with kernel H, it follows that the quotient
N(H)/H is mapped isomorphically by φ onto Aut(p).
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If H is a normal subgroup of π1(X,x0), then it is invariant under conjugation
by any loop, so each deck transformation taking x̃0 to another point in p−1(x0)
exists. Composition of these deck transformations and their inverses leads to a

deck transformation from x̃1 to x̃2 for any x̃1, x̃2 ∈ p−1(x), so X̃ is a regular

covering space. On the other hand, if X̃ is regular, then the same reasoning with

the lifting criterion implies that X̃ has the same fundamental group under p∗ at
each basepoint in p−1(x0). But this means that conjugation by any loop in X fixes
H, so it follows that H is normal. �

Note that the preceding proof identifies a loop which lifts to a path from x̃0 to
x̃1 with the deck transformation that takes x̃0 to x̃1. In general, however, the loop
and the deck transformation need not have the same action on the fiber of x0.

As a counterexample, consider the Cayley graph X̃ of F2 generated by a, b as

a covering space of S1 ∨ S1. Since X̃ contains no nontrivial loops, it is simply-
connected, and hence the universal cover of S1 ∨ S1. Recall that the covering map
of this graph sent every vertex to the basepoint of S1 ∨ S1, every vertical edge
(every edge labeled b) to one circle, and every horizontal edge (every edge labeled
a) to the other. Thus, we can define a loop γ in S1 ∨ S1 which goes once around
the circle corresponding to a. The action of γ on any vertex g will take it to ga,
since γ lifts to the segment connecting g to its adjacent right vertex. But if we
consider the vertex gb, which is located directly above g, we notice that the deck
transformation associated with the action of γ on g must take gb to gab, which is
directly above ga, in order to be continuous, rather than gba, which is not joined
by an edge to ga. Thus, the deck transformation corresponding to γ depends on

our choice of basepoint in X̃ and may have a different action on the fiber of x0 from
γ.

There is also a way to generalize some of these ideas in defining a way for
any group G to act on the space X. Essentially, let Homeo(X) be the group
of homeomorphisms from X to itself (not to be confused with isomorphisms which
preserve the covering map), and let φ : G→ Homeo(X) be a group homomorphism.
We then define the action of g ∈ G on x ∈ X to equal φ(g)(x), the homeomorphism
assigned to g evaluated at x, which we will hence refer to as g(x). Thus, we have
a way to consider G as giving a set of maps from X to itself, which we can further
constrain to obtain valuable results.

Definition 5.4. A covering space action is a group action of the group G on
the space X such that for every x ∈ X there is some open neighborhood U of x
such that if g1, g2 ∈ G and g1 6= g2, then g1(U) ∩ g2(U) = ∅.

Note that many sources instead use the phrase properly discontinuous action to
refer to this type of action. ”Covering space action” is not entirely standard, but
is the choice of [1], which we will follow for this exposition.

The deck transformation group of a covering space has a natural action where
each element already is the homeomorphism we assign to its action. We can then
take U to be a sheet on which the covering map is injective, at which point any
distinct deck transformations map U to disjoint sheets.

We also have the ability to define a quotient map in terms of a group action on
a space. We define the orbit of x to be the set {g(x) | g ∈ G} = Gx. One can verify
that a point being in the orbit of another point is an equivalence relation using the
group axioms, and it follows that the orbit space X/G consisting of the orbits of
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the points in X is a well-defined quotient space of X. We can prove several results
about the orbit space of a covering space action.

Theorem 5.5. The quotient map p : X → X/G of a covering space action is
a normal covering space. If X is path-connected, then this covering space satis-
fies Aut(p) = G. If X is path-connected and locally path-connected, then G '
π1(X/G)/p∗(π1(X)).

Proof. For a particular open neighborhood U of x ∈ X, g(U) is open for each g ∈ G
by homeomorphism and disjoint between any two elements of G, and it follows by
quotient space topology that p(U) is open and that p is a homeomorphism when
restricted to g(U). Furthermore, because the sheets of U are exactly the sets g(U)
for g ∈ G, it follows that each g ∈ G is a deck transformation taking one sheet to
another and preserving the covering map. Then we can take g1(U) to g2(U) by the
deck transformation g2g

−1
1 , so p is normal.

From this last discussion, G is isomorphic to a subgroup of Aut(p). If X is also
path-connected, then the unique lifting property guarantees that a deck transforma-
tion taking x to x1 ∈ p−1(p(x)) = G(x) is uniquely determined, and this bijection
gives that G is isomorphic to Aut(p) as a whole.

By Theorem 5.3, Aut(p) is isomorphic to the quotient of the normalizer of
p∗(π1(X)) by p∗(π1(X)). But since X is a normal covering space, it follows by
5.3 that this is simply π1(X/G)/p∗(π1(X)). �

Note that if X is also simply-connected, then the 3rd statement reduces to
G = π1(X/G). This gives us a powerful way to compute the fundamental group
of a space, if we can identify a covering space action on its universal cover. For
example:

Theorem 5.6. Let X be the Cayley graph of a group G with respect to generating
set S. Then G has a covering space action on X such that X/G is the wedge sum
of |S| circles.

Proof. Let g ∈ G. We define g : X → X to take the vertex v ∈ G to gv, and the
edge between v1 and v2 homeomorphically to the edge between gv1 and gv2. An
edge exists between v1 and v2 if and only if v1 = v2s for some generator s, in which
case gv1 = gv2s, so this map is well-defined. Furthermore, it is surjective, since for
every g1 ∈ G, g−1g1 is a vertex of X. It is injective, since gv1 = gv2 if and only if
v1 = v2, and thus edges map one-to-one. It follows that g bijective and continuous,
with continuous inverse g−1, and thus it is a homeomorphism.

Let a be a vertex of X, and U be an open neighborhood of a containing no
other vertices. For any distinct g1, g2 ∈ G, g1a 6= g2a, so g1U ∩ g2U = ∅. Let
e be the edge excluding vertices joining a, b ∈ X for a generator s with as = b.
Then g1(e) ∩ g2(e) 6= ∅ only if we have equal endpoints; that is, g1a = g2a and
g1b = g2b, or g1a = g2b and g1b = g2a. We have shown that the first case is not
possible if g1 6= g2. The second case also fails, because g1 maps e to a directed
edge from g1a to g1b = (g1a)s, while g2 maps e to a directed edge from g2a to
g2b = (g2a)s, or equivalently from g1b to g1a = (g1b)s. From our Cayley graph
definition, oppositely directed edges between two vertices are distinguished, so these
two edges are disjoint. Therefore, the images of e under the actions of g1 and g2
are disjoint, and the action we have defined is a covering space action.

For any a, b ∈ G, the element ba−1 takes the vertex a to the vertex b, so it
follows that all vertices in X are identified in X/G. The image of an edge labeled
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by generator s is also labeled by generator s, since if b = as, then gb = (ga)s.
Since ga can be any vertex, all edges corresponding to s are identified, and no
edges corresponding to one generator map to those for another. Therefore, X/G
is a graph on one vertex, with an edge starting and ending at that vertex for
each generator in S. A homeomorphism takes this space to the wedge sum of |S|
circles. �

Corollary 5.7. The fundamental group of a wedge sum of circles is a free group
generated by elements corresponding to the circles.

Let X be a wedge sum of circles, F be the free group on generators corresponding

to the circles, and X̃ be the Cayley graph of F . Then F has a covering space

action on X̃, so the quotient map p : X̃ → X̃/F is a regular covering space,

and F ' π1(X̃/F )/p∗(X̃). However, the Cayley graph of a free group is simply-
connected, since every element has a unique representation as a reduced product of
generators and thus there is only one homotopy class of paths joining two points in

the graph. It follows that p∗(X̃) is trivial, and F ' π1(X̃/F ). From the previous

result, X̃/F will be a wedge sum of circles corresponding to the generators of F ,

and thus in bijection with the circles of X. Therefore, X = X̃/F , and π1(X) = F .

6. The Fundamental Group of a Cayley Graph

We now have many resources for computing fundamental groups, using covering
spaces, deck transformation groups, and covering space actions. In this section, we
will prove a general method for computing the fundamental group of a graph, and
use this method to explore the relationship between a group and the fundamental
group of its Cayley graph.

We will need another definition before our first result.

Definition 6.1. A tree is a graph in which every two vertices are joined by exactly
one path. A spanning tree T of X is a subgraph of X which is a tree and which
contains all vertices of X.

It follows that a tree T is connected, that π1(T, t0) = {0}, and that T is con-
tractible.

We next show the existence of a spanning tree for any connected graph. For
finite graphs, we can directly construct the tree by induction: Starting with a
vertex, draw edges to all vertices which can be reached from the current subgraph
and which are not yet elements of the subgraph. After each step, we have a tree
with more vertices, and since the graph is finite and connected, we eventually no
longer can reach more vertices, at which point we must have a spanning tree. For
infinite graphs, the proof requires the axiom of choice, as follows:

Theorem 6.2. A connected graph X contains a spanning tree.

Proof. Let X be a connected graph, and let {Tλ | λ ∈ I} be a collection of trees in
X that is totally-ordered by proper subgraph inclusion.

Then any edge of
⋃
λ∈I Tλ is contained in some Tλ0 . In particular, subgraph

inclusion means that for any loop in the union, there is a tree Tλ0 which contains
every edge of the loop, and thus the loop itself, so Tλ0

is not a tree. Contradiction,
and the union contains no loops.
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Similarly, if the union is disconnected, then there are two vertices in the union
which are not joined by a path, and there is some tree Tλ1 which contains both
vertices, so Tλ1 is not connected and not a tree. Contradiction, and the union is
connected.

Thus,
⋃
λ∈I Tλ is connected with no loops, so it is a tree, and it contains every

tree in the collection {Tλ | λ ∈ I}. Since every collection of trees totally ordered
by subgraph inclusion has an upper bound, it follows by Zorn’s Lemma that the
set of all trees of X has a maximal element T . Since X is connected, if T does not
contain every vertex of X, we can find an edge from a vertex in T to a vertex in
X \ T , which yields a larger tree which contains T . Therefore, it follows that T
contains every vertex of X, and so T is a spanning tree. �

We now have the existence of a contractible subset T of any graph X, such that
the quotient X/T identifies all vertices of X. The key idea of the next theorem will
be to use the corresponding quotient map to study the fundamental group of X.
This study, however, requires the fact that X and X/T are homotopy equivalent.

Proposition 6.3. Given a graph X and any spanning tree T ⊂ X, the spaces X
and X/T are homotopy equivalent.

The proof of this statement follows from a more general theorem in [1]. To avoid
unnecessary digression, we provide a partial summary here.

Since T is a tree and thus contractible, there is a homotopy gt : T → T such
that g0 is the identity on T and g1 maps T to a point. We can prove that it is
possible to extend this homotopy to a homotopy ft : X → X such that ft restricts
to gt on T and f0 is the identity of X. Intuitively, as this homotopy contracts the
edges of T , it also stretches the edges of X \ T , until T vanishes to a point x0 and
f1(X \ T ) = X \ {x0}. Let q : X → X/T be the quotient map, which like f1 maps
T to a point, and we can show along those intuitive lines that f1 induces a map
p : X/T → X such that p ◦ q = f1. Here, f1 is homotopic to f0, the identity on X,
giving one direction of homotopy equivalence. For any t, the map q ◦ ft sends T to
a point; from this, we can prove that there exists an alternative factoring of this
map given by ht ◦q for some homotopy ht : X/T → X/T . Similar to before, we can
show that q ◦ p = h1 which is homotopic to h0, the identity on X/T . Therefore, X
and X/T are homotopy equivalent.

We will assume this result to prove the next theorem.

Theorem 6.4. The fundamental group of a graph is a free group. Specifically,
if the graph X has spanning tree T , then this free group is generated by elements
corresponding to the edges of X \ T .

Proof. Since X and X/T are homotopy equivalent by the proposition, they have
isomorphic fundamental groups. Since T spansX, the spaceX/T consists of a single
vertex and edges which begin and end at that vertex corresponding to the edges of
X \ T . This space is homeomorphic to the wedge sum of circles S1 corresponding
to the edges of X \ T , which has a free fundamental group generated by elements
corresponding to each circle. �

This result is very powerful, allowing us to compute the fundamental group of
a graph just by knowing how many vertices and edges it has. Another application
is that we can finally explore the fundamental group of a Cayley graph, and see
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how it relates to its respective group. The proof of the next theorem will be very
illustrative in this regard.

Theorem 6.5. Every group G is isomorphic to the quotient of a free group by a
normal subgroup.

Proof. Let X be a Cayley graph of G. We have already shown that G has a
covering space action on X, such that X/G is a wedge sum of circles with free
fundamental group. Then by Theorem 5.5, the quotient map p : X → X/G is a
normal covering space of X/G and G ' π1(X/G)/p∗(π1(X)). By Theorem 5.3, we
have that p∗(π1(X)) is a normal subgroup of π1(X/G). �

This theorem is not particularly strong; it is equivalent to the claim that every
group has a group presentation. However, the proof demonstrates the key topolog-
ical relations between a group G on generating set S and its Cayley graph X. From
Lemma 5.6, the space X/G consists of a single vertex and edges corresponding to
each element of S, so π1(X/G) = FS . On the other hand, a loop in X based at the
identity deforms to a sequence of edges, such that the product of their generator
labels is the identity. We also know from how edges in X map to edges in X/G
that p∗ : π1(X) → π1(X/G) will take a sequence of edges to the word formed
by the edges’ generator labels. In other words, p∗(π1(X)) is a subgroup of FS
containing exactly the words that correspond to products of elements of S which
evaluate to 1 in G. Therefore, FS/p∗(π1(X)) = G, and G has a presentation given
by < S | p∗(π1(X)) >. We can even obtain a smaller, possibly finite relations set
by simply listing the images of the generators of π1(X), computed using Theorem
6.4.

For an example of this idea in action, consider the dihedral group of order 8,
D8. With geometry, we can show that this group is generated by a rotation r and
a reflection s in such a way as to give the following Cayley graph X:

x0

Figure 8. The Cayley graph X of D8 with edges colored blue for
r and brown for s. Also shown: a spanning tree of X and one of
the generating loops of π1(X).

From the spanning tree in the diagram, Theorem 6.4 gives that π1(X) = F9,
the free group on generators corresponding to each edge not in the tree. However,
we also have that π1(X/D8) = F2, so the covering map gives us a homomorphism
p∗ : F9 → F2 which maps loops in X to words of r and s. For example, the
generator loop in the diagram above based at x0 would be mapped to r2s−1r2s.
If R is the set of generator loops of π1(X), those loops homotopic to the union of
the spanning tree and a single edge not on the tree, then p∗(π1(X)) is a normal
subgroup of F2 generated by p∗(R), such that D8 ' F2/p∗(π1(X)). Therefore, the
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Cayley graph X on S = {r, s} gives us the group presentation < S | p∗(R) > of
D8.

7. The Nielsen-Schreier Theorem

The final result of this paper will use graphs to understand the subgroup struc-
ture of free groups. To accomplish this, we require one final lemma to characterize
the covering spaces of a graph.

Theorem 7.1. Every covering space of a graph is a graph whose edges and vertices
are respective lifts of the edges and vertices of the base graph.

Proof. Let X be a graph and p : X̃ → X be a covering space of X. By the definition
of a graph, we can write X as X0

⊔
λ Iλ, where each Iλ is a copy of the unit interval

joining vertices taken from the discrete set X0. If we take p−1(X0) to be a set
of vertices, then we can treat the edges Iλ as paths I → X and lift each edge to

unique paths Iλ → X̃ corresponding to each point in the preimage of that path’s

starting point. Every point in X̃ must map to a point on an edge or vertex of X,

so our lifts of these objects surject onto X̃. Since p is a local homeomorphism, X̃

must also locally have the same topology as X, so it follows that X̃ is a graph, with
edges and vertices given by the lifts of those of X. �

The next theorem was originally proven by Jakob Nielsen in 1921 using strictly
group theoretic techniques. With the previous two results as well as our work in
covering spaces, the proof becomes greatly simplified.

Theorem 7.2 (The Nielsen-Schreier Theorem). Every subgroup of a free group is
free.

Proof. Let G be a free group, and H be a subgroup of G. Then we can construct
a wedge sum of circles corresponding to the generators of G to obtain a graph Γ
with π1(Γ) = G. Using the Galois correspondence, for our subgroup H there exists

a covering space p : Γ̃ → Γ such that p∗(π1(Γ̃)) = H, and since p∗ is an injective

homomorphism it follows that π1(Γ̃) is isomorphic to H. Since the covering space
of a graph is a graph and the fundamental group of a graph is free, it follows that

the fundamental group of Γ̃ is free. Therefore, H is free. �

Thus, applying topology to graphs reveals a fairly surprising result about free
groups. The limitations on how much a covering space can diverge from its base
space are closely related to the limitations on how much a subgroup can diverge
from a free group.

After seeing this theorem, the obvious corollary is to apply it to directly compute
the subgroups of a free group. This proves to be fairly easy with the tools we have
developed, leading to the result below.

Corollary 7.3. Every free group of rank at least 2 contains a subgroup of countable
rank.

Proof. Consider the Cayley graph X of Z × Z generated by (1, 0) and (0, 1). As
in our previous examples, X is a covering space of S1 ∨ S1, with a covering map
p : X → S1∨S1. We can construct a spanning tree of X from the union of a vertical
line and every horizontal line, leaving countably many edges not included in the
tree, so that π1(X) is isomorphic to the free group on countable generators. But
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we know that p∗ is an injective homomorphism, so the free generators of π1(X)
are mapped to the free generators of p∗(π1(X)), and F2 contains a subgroup of
countable rank. Any free group of greater rank contains a subgroup isomorphic to
F2 by restricting to two generators, and the claim follows. �

Since the free group of countable rank contains every free group of finite rank as
a subgroup via restriction to finitely many generators, it follows that a free group of
rank at least 2 contains every free group of at most countable rank as a subgroup.
This exactly characterizes the subgroups of such a free group, since the set of words
from countable generators is itself countable.

For readers curious about the construction in Corollary 7.3, we can characterize
the countable rank subgroup of F2 in terms of the generating loops of π1(X). With
the spanning tree of one vertical line and every horizontal line, our generating loops
consist of some integer number of steps along the vertical line, some nonzero number
of steps along the horizontal line, a step up along the vertical edge not included in
the tree, and then the return to the origin along the horizontal and vertical lines
in the tree. The result gives us a subgroup of F2 generated by {bnamba−mb−n−1 |
m,n ∈ Z and m 6= 0}.
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