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Abstract. This expository paper shows how waiting times of certain queuing
systems can be approximated by Brownian motion. In particular, when cus-
tomers exit a queue at a slightly faster rate than they enter, the waiting time
of the nth customer can be approximated by the supremum of reflected Brow-
nian motion with negative drift. Along the way, we introduce fundamental
concepts of queuing theory and Brownian motion. This paper assumes some
familiarity of stochastic processes.
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1. Introduction

This paper discusses a Brownian Motion approximation of waiting times in sto-
chastic systems known as queues. The paper begins by covering the fundamental
concepts of queuing theory, the mathematical study of waiting lines. After waiting
times and heavy traffic are introduced, we define and construct Brownian motion.
The construction of Brownian motion in this paper will be less thorough than other
texts on the subject. We instead emphasize the components of the construction
most relevant to the final result—the waiting time of customers in a simple queue
can be approximated with Brownian motion.

Throughout the paper, we use the terminology of a convenience store: customers
populate a queue and the amount of time it takes for a customer to exit the system
once at the front of the line is called a service time. This paper focuses on one of the
simplest queuing models, and seeks to answer one simple question: when customers
are being serviced at a rate only slightly faster than customers are arriving, how
long can a customer expect to wait in line before being serviced?

2. Queuing Theory

Consider a queue in which inter-arrival times and service times are exponentially
distributed. Note that a process with exponential inter-arrival times may also be
regarded as a Poisson process where the number of customers arriving in a given
time period follows the Poisson distribution. LetNt denote the number of customers
in line at time t. Let λN and µN be the rates at which customers arrive and are
serviced given that there are N customers in line. For example, if λN = 1 and the
unit of time is seconds, then we expect one arrival per second. If λN = 1/2 then we
expect two arrivals per second. Denote a(t) as the probability that the next arrival
will occur t units of time from now, and s(t) as the probability that the next service
will be complete t units of time from now. The probability distributions are thus
given by

aN (t) = λNe−λN t, sN (t) = µNe−µN t

So if A ∼ aN (t) and S ∼ sN (t) are random variables, then

E [A] =
1

λN
and E [S] =

1

µN

Figure 1 depicts such a queue. Rectangles represent customers waiting in line and
the circle represents customers currently being serviced.

λN µN

Figure 1.
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We can also consider the possible number of customers in a queue as states, so
that the state space consists of the non-negative integers, where λN and µN are the
probabilistic rate of transition between states.

0 1 2 3 4

λ0 λ1 λ2 λ3

µ4µ3µ2µ1

Figure 2.

2.1. Continuous-Time Markov Chains.
A system with a countable state-space and probabilistic transitions between states
suggests the use of Markov chains. However, standard Markov chains of elemen-
tary probability theory operate in a discrete-time setting. In this paper, we con-
sider exponential service and inter-arrival times. As a result, transitions between
states can occur anytime in the continuous timeline of non-negative reals. We
therefore aim to construct a countable-space, continuous-time version of a discrete-
time Markov chain. We first introduce two properties that define continuous-time
Markov chains—the Markov property and time-homogeneity.

Definition 2.1. Consider a stochastic process, {Xt} taking values in a state space
S. {Xt} is said to exhibit the Markov property if for y ∈ S and t ≥ s

P{Xt = y | Xr, 0 ≤ r ≤ s} = P{Xt = y | Xs}

Definition 2.2. A time-homogenous Markov chain is a stochastic process {Xt}t≥0

such that

P{Xt = y | Xs = x} = P{Xt−s = y | X0}

If a process exhibits time-homogeneity, transition probabilities depend only on
the state of the process, not the absolute time.

Definition 2.3. A continuous-time Markov chain is a stochastic process {Xt}t≥0

taking values in a state space S and satisfying

P{Xt+∆t = i | Xt = i} = 1− qii∆t+ o(∆t)

P{Xt+∆t = j | Xt = i} = qij∆t+ o(∆t)

where qij represents the transition rate from i ∈ S to j ∈ S, and

qii ≡
󰁛

j ∕=i

qij

The use of qij as a rate of transition between states requires further explanation.
Each qij is the derivative of pij(t), the probability of starting in state i and ending
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in state j after ∆t units of time have elapsed (here we have assumed differentiability
of pij(t) at ∆t = 0).

qij = lim
∆t→0

=
P{Xt+∆t = j | Xt = i}

∆t

The matrix P(t) is the transition matrix and its (i, j)th element is pij(t):

P(t) =

󰀵

󰀹󰀷
p11(t) p12(t) · · ·
p21(t) p22(t) · · ·

...
...

. . .

󰀶

󰀺󰀸

The matrix Q is called the infinitesimal generator and its (i, j)th element is qij .
Note that if zero time has elapsed, then there is zero probability of transitioning
out of the original state, so pii(0) = 1 and P(0) = I. We can therefore write

Q = P′(0)

and

P(t) = I+Q∆t

Example 2.5 will illustrate a deeper connection between qij and pij(t), but we must
first define what it means for two states to be communicable.

Definition 2.4. Let i and j be two states of a Markov chain. We say that i and j
communicate if there is a positive probability that one state will lead to the other
state given a certain amount of time. In notation, i and j communicate if there
exists time durations r > 0 and s > 0 such that

P{Xt+r = i | Xt = j}, P{Xt+s = j | Xt = i}

A communication class is the collection of all such states that communicate with
one another. The set of communication classes partition the state space into disjoint
sets. If there exists only one communication class, then the Markov chain is said to
be irreducible. In this paper, the state-space of queues comprises the non-negative
integers and is irreducible.

Example 2.5. Let {Xt} be an irreducible, continuous-time Markov chain. Show
that for each i, j and every t > 0

P {Xt = j | X0 = i} > 0

Proof.
Fix i and j. Since {Xt} is irreducible, there exists some time t such that

P {Xt = j|X0 = i} > 0

We want to show that this holds for all t. Consider the sequence of events that
occur between i and j, and denote them as k1, . . . , kn, where k1 occurs immediately
after i and kn occurs immediately before j. It is clear that

qkl,kl+1
> 0 for all l

Or equivalently for some times s < t,

P {Xt = kl+1 | Xs = kl} > 0
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Now pick any time t > 0. Note that there are potentially many paths from i to j,
and k1, . . . , kn represents one such path. Therefore, there is a non-zero probability
that i will go to j by this transition path. In notation,

P {Xt = j | X0 = i} ≥
n−1󰁜

l=1

P
󰁱
X (l+1)t

n
= kl+1|X lt

n
= kl

󰁲
> 0

□

We now extend the result of the example to show how each continuous-time
Markov chain induces a discrete-time Markov chain. Let {Xt}t≥0 be an irreducible,
continuous-time Markov chain. Let S be a countable state-space, and i, j be states
in S. Let t0, t1, t2 be distinct times with t0 < t1 < t2. Define

pij(t0, t2) ≡ P {Xt2 = j | Xt0 = i}
to be the probability of {Xt} being in state j at time t2 given that the process was
in state i at time t0. Then for each transition probability we can write

pij(t0, t2) =
󰁛

j∈S

pij(t0, t1)pjk(t1, t2)

Enumerate the sequence of states in order of occurrence:

n0 = 0

n1 = inf{t : Xt ∕= X0}
n2 = inf{t ≥ n1 : Xt ∕= Xn1}

...

nm = inf{t ≥ nm−1 : Xt ∕= Xnm−1}
then {Xn} ≡ {Xn : n ∈ {n0, n1, . . .}} forms a discrete-time Markov chain out of a
continuous-time Markov chain. This process is known as embedding, and {Xn} is
called an embedded Markov chain. A similar procedure will be used later in Section
3.3 when we construct a random walk, a discrete-time process, out of a Brownian
motion, a continuous-time process. Note that the embedding process causes us to
lose information about the holding times of each state, the amount of time spent in
a state before transitioning to another state. We therefore do not lose any further
information by normalizing the time between states to some constant c > 0,

nm − nm−1 = c for all m ≥ 1

So after normalization, the transition-rate matrix for {Xn} simply becomes P(c)
as defined above.

2.2. Birth-Death Processes.
A birth-death process is a non-negative integer valued, continuous-time Markov
chain. That is, a stochastic process, {Nt}, fulfilling the following two conditions

(1) Nt ∈ {0, 1, 2, 3, . . .}
(2) as s → 0, (Nt+s −Nt) ∈ {0,−1, 1}

The second condition states that for an infinitesimal change in time, the popula-
tion of the system will either increase by one, decrease by one, or remain the same.
A birth-death process is a system where the rate of exit out of and entrance into
the system are known, and the collection of such processes forms a large family of
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stochastic processes. For instance, a Poisson process is one of the simplest birth-
death processes where the “birth” rate is constant and the “death” rate is zero. In
particular, a queuing process is a birth-death process where customer arrivals are
“births” and service completions are “deaths”.

2.3. Queuing Models.

Example 2.6 (M/M/c). In this model, inter-arrival times and service times are
exponentially distributed with rates λ and µ, respectively. In this queue, λ and µ
are constant and independent of the current state. That is, λN = λ and µN = µ for
all N . Service is received on a “first come, first served” basis, and c customers may
be serviced at a time. The simplest case is when c = 1, where only one customer
is serviced at a time. In an M/M/c queue where customers are serviced as soon as
they arrive, regardless of the population of the system, we set c = ∞. The M/M/c
model assumes that no customers leave the system between arrival and completion
of service.

This paper focuses on the M/M/1 queue, but we introduce a few more models
as examples of the breadth of situations that can be analyzed through the lens of
queuing theory.

Example 2.7 (G/G/c). This model is the same as the M/M/c model except
inter-arrival times and service times follow some general (represented by G), not
necessarily exponential, distribution.

Example 2.8 (G/G/c/K). This model is the same as the G/G/c model but with
an upper bound, K, on the number of customers that can occupy the system at a
given time. This type of queue is called a truncated queue.

Example 2.9 (A/B/C/D/E). The above queuing models are identified using
Kendall Notation, a combination of letters and slashes. Each position in the nota-
tion corresponds to a certain queuing characteristic (e.g. inter-arrival time distri-
bution), and the letter specifies the characteristic (e.g. exponentially distributed
inter-arrival times). The following table covers a wide selection of queuing models
that are easily be described using Kendall notation.

Characteristic Symbol Explanation
(A) Inter-arrival time distribution M Exponential
(B) Service time distribution D Deterministic

Ek Erlang type k
G General

(C) # of parallel servers 1, 2, . . . ,∞
(D) Max. system capacity 1, 2, . . . ,∞
(E) Order of service FCFS First come, first served

LCFS Last come, first served
RSS Random selection
PR Priority
GD General

The table above is by no means a definitive list of queuing characteristics. For
instance, inter-arrival and service times may be state-dependent as introduced in
the beginning of this section with rates λN and µN . Queues can also be cyclic in
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the sense that once a customer is serviced, the customer immediately returns to a
position in line to await service once again.

2.4. Properties of Queuing Models.
The first two properties one may ask of a queue are the expected number of cus-
tomers in line and the duration of time a customer must wait before being ser-
viced. Let Nt be the number of customers in a G/G/c queue at time t. If we let
pn = P{Nt = n}, the expected population of the system is

E[Nt] =

∞󰁛

n=0

npn

and the expected population of those in the queue (and not being serviced) is

E[Nt,q] =

∞󰁛

n=0

(n− c)pn

Definition 2.10. The nth waiting time is the amount of time the nth customer
spends waiting in line prior to entering service. We denote waiting time as the

random variable W
(n)
q and the total time a customer is in the system, including

service time, as W (n). The nth customer is the nth overall customer to enter the
system, not the customer in the nth position in line.

We now consider the waiting time of the nth customer to enter a queuing system
where the initial population is zero, that is N0 = 0. Let S(n) be the nth service
time, and let I(n) be the nth inter-arrival time, i.e. the time between the (n− 1)st
customer and the nth customer arriving in the system. Define

U (n) ≡ S(n) − I(n)

to be the time between the nth inter-arrival time and the nth service time.

Theorem 2.11 (Lindley’s Equation). In a single-server queue where customers
are serviced on a first-come first-served basis, the waiting time of the (n + 1)th
customer is recursively given by

W (n+1)
q = max

󰁱
0,W (n)

q + S(n) − I(n)
󰁲

Proof.
Since the initial population of the system is zero, the first customer to arrive will

be serviced immediately, so W
(1)
q = 0. The waiting time for the second customer

will be the time it takes for the first customer to finish being serviced. If the first
customer has already been serviced by the time the second customer arrives, then
the waiting time for the second customer will be zero:

W (2)
q = max

󰁱
0, S(1) − I(1)

󰁲
= max

󰁱
0,W (1)

q + S(1) − I(1)
󰁲

For n ≥ 3 the waiting time of the nth customer is simply the waiting time of the
(n− 1)th customer and the amount of time it takes for the (n− 1)th customer to
be serviced, or zero if the (n− 1)th customer has already been serviced by the time
the nth customer enters the system. □

Lemma 2.12. Under the same conditions as the preceding theorem, W
(n)
q may be

rewritten as

W (n)
q = max

󰁱
U (1) + · · ·+ U (n−1), U (2) + · · ·+ U (n−1), . . . , U (n−1), 0

󰁲
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Proof.

We prove the lemma by iterating over W
(n)
q .

W (n)
q = max

󰁱
W (n−1)

q + U (n−1), 0
󰁲

= max
󰁱
max

󰁱
W (n−2)

q + U (n−2), 0
󰁲
+ U (n−1), 0

󰁲

= max
󰁱
max

󰁱
W (n−2)

q + U (n−2) + U (n−1), U (n−1)
󰁲
, 0
󰁲

= max
󰁱
W (n−2)

q + U (n−2) + U (n−1), U (n−1), 0
󰁲

Continue this process in a recursive manner until we have

W (n)
q = max

󰁱
W (1)

q + U (1) + · · ·+ U (n−1), U (2) + · · ·+ U (n−1), . . . , U (n−1)
󰁲
,

The result of the lemma is now immediate since we have assumed thatW
(1)
q = 0. □

The goal of this paper is to approximate W
(n)
q , the waiting time of the nth

customer. From the preceding lemma, it is clear that the waiting time depends on
the waiting times of all preceding customers in line. More precisely, the waiting
time of the nth customer is the maximum of the partial sums of the decreasing
sequence

󰀋
U (n−i)

󰀌n

i=1
, an i.i.d. sequence of random variables. Section 3 will show

that this decreasing sequence is a random walk, and when n is sufficiently large this
sequence can be approximated by Brownian motion. For such an approximation to
be accurate, however, each U (n−i) must be sufficiently small small. This situation
arises in queues that exhibit heavy traffic.

Definition 2.13. The traffic intensity, ρ, of a given queue is defined as the ratio
of arrival times to service times. So for an M/M/c queue, the traffic intensity is

ρ =
λ

cµ

where λ and µ are the arrival and service rate, respectively, of customers in the
queue. For a single server M/M/1 queue, the traffic intensity is

ρ =
λ

µ

Remark 2.14. When ρ is close to zero, waiting times approach zero as queue length
shortens and new customers are serviced immediately upon arrival. When ρ is
greater than one, waiting times successively increase as the queue population “ex-
plodes” to infinity. The interesting case occurs when ρ is close to—but does not
exceed—one. A system is said to be in heavy traffic when ρ ∈ (1− ε, 1) and ε > 0
is small.

3. Brownian Motion

This section introduces the stochastic process of Brownian motion viewed as the
limit of random walks. In this paper, we confine our study of Brownian motion to
the one-dimensional case.
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3.1. Random Walks.

Definition 3.1. A one-dimensional random walk is a stochastic process constructed
as the sum of i.i.d random variables. That is, if {Xi} is a sequence of i.i.d. random
variables with Xi ∈ R (regarded as steps), then the sum of the first n such random
variables,

Rn =

n󰁛

i=1

Xi

is the n-th value of a random walk. A random walk is said to be symmetric if
Xi ∈ R is symmetrically distributed about zero. A random walk is called simple if
P{Xi = 1}+ P{Xi = −1} = 1.

Example 3.2. Figure 3 depicts a simple random walk simulated using the statisti-
cal computing software R with P{Xi = −1} = P{Xi = 1} = 1

2 , and 15 total steps.
Taking R0 = X0 = 0, the values of Xi and Ri, are

{Xi}15i=1 = {1,−1, 1,−1,−1,−1,−1, 1,−1,−1, 1, 1,−1, 1,−1}
{Ri}15i=1 = {0, 1, 0, 1, 0,−1,−2,−3,−2,−3,−4,−3,−2,−3,−2,−3}

0 5 10 15

−4
−3

−2
−1

0
1

n

S n

Figure 3.

An important property of random walks is that they exhibit independent incre-
ments, meaning that for any selection of positive integers, t1 < t2 < · · · < tn, the
random variables

Rt2 −Rt1 , . . . , Rtn −Rtn−1

are independent. This property immediately follow from the fact that each incre-
ment is the sum of i.i.d random variables.
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3.2. Brownian Motion, Definition.
We now introduce the continuous-time analog to a random walk—Brownian motion.
A one-dimensional standard Brownian motion with variance parameter σ2 is a real-
valued process, {Bt}t≥0, defined in the probability space (Ω,F ,P) that has the
following properties

(I) If t0 < t1 < · · · < tn, then Bt0 , Bt1 −Bt0 , . . . , Btn −Btn−1
are independent.

(II) If s, t ≥ 0, then

P (Bs+t −Bs ∈ A) =

󰁝

A

1√
2πσ2t

exp(−x2/2σ2t)

(III) With probability 1, t 󰀁→ Bt is continuous.

The first two conditions may be concisely reworded as

(I) Independent increments
(II) Increment lengths are normally distributed with mean 0 and variance σ2t:

Bs+t −Bs ∼ N(0,σ2t)

Remark 3.3.
Brownian motion is a collection of stochastic processes. When we say a Brownian
motion or the Brownian motion, we are talking about a particular realization of
Brownian motion in the space of continuous functions, C[0, T ], where T is a stopping
time.

The above definition establishes the necessary conditions for a stochastic process to
be Brownian, but the existence of such a process requires further work. Through
an application of the Kolmogorov extension theorem, existence is proved in [4].
However, such a proof is bereft of intuition for queueing theory and approximating
waiting times. Instead, we take the existence of Brownian motion as given and
show that Brownian motion can be constructed as a limit of random walks—the
result of Donsker’s Theorem. Brownian motion constructed in such a manner is
called the standard Wiener process.

Before constructing Brownian motion, we must first establish what type of con-
vergence we are discussing.

Definition 3.4. A sequence of random variables {Xi}∞i=1 converges almost surely
to a random variable X in the underlying probability space (Ω,F ,P) (denoted

Xn
a.s.−−→ X) if

P
󰁱
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

󰁲
= 1

We aim to show almost sure convergence of a scaled random walk to a Brownian
motion in (C[0, T ], d), the metric space of continuous functions on the interval [0, T ]
with d as the supremum norm:

d(f, g) = sup
t∈[0,T ]

|f(t)− g(t)|

Note that random walks and Brownian motions are stochastic processes while d
measures the distance between two continuous functions. In order to measure the
distance between random walks and Brownian motion we instead consider the paths
taken by these stochastic processes:

t 󰀁→ Rt and t 󰀁→ Bt
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3.3. Brownian Motion, Construction. In this paper, the construction of Brow-
nian motion comprises the following steps:

(1) Construct a simple random walk out of a Brownian motion path using
Skorokhod embedding

(2) Linearly interpolate and scale the embedded random walk, creating a con-
tinuous function from [0, n] 󰀁→ R

(3) Take the uniform limit of this scaled random walk to derive the original
Brownian motion path

The paper presents an alternative formulation to the canonical construction of
Brownian motion which involves defining Brownian motion on the dyadic rationals
and using continuity to extend the definition to the reals. To motivate this particu-
lar construction, we will proceed out of order; we will begin with step (2), backtrack
to step (1), and conclude by stringing together steps (1) through (3) in subsection
3.3.3 (Strong Approximation).

3.3.1. Scaled Random Walks.
Let {Rm} be a random walk where E[Xi] = 0, Var{Xi} = σ2, and

Rm =

m󰁛

i=1

Xi.

Definition 3.5. A scaled random walk with scaling parameter n is a real valued
random process,

󰀋
R(n)

󰀌
, defined on t ≥ 0. For t such that nt is an integer,

R
(n)
t =

1√
nσ2

Rnt

For t such that nt is not an integer, S(n)(t) is defined by linear interpolation:

R
(n)
t =

1√
nσ2

󰀗
R⌊nt⌋ + (nt− ⌊nt⌋)

󰀃
R⌈nt⌉ −R⌊nt⌋

󰀄 󰀘

This method of scaling operates on two aspects of random walks; as n increases,
the time between state transitions decreases and increment lengths decrease. Let
t0 = 0 and tk = inft{kt ∈ Z, nt > nt(k−1)}, then as n → ∞

tk − t(k−1) → 0 and R
(n)
tk

−R
(n)
t(k−1)

→ 0

As a result, R(n)(t) is continuous with probability 1 on t ≥ 0 for all n. The scaling
factor 1√

nσ2
ensures constant variance for a given t:

Var

󰀝
1√
nσ2

Rnt

󰀞
= Var

󰀫
1√
nσ2

nt󰁛

i=1

Xi

󰀬
=

󰀕
1√
nσ2

󰀖2

ntVar{Xi} = t
Var {Xi}

σ2
= t

By observing the limiting behavior of R
(n)
t (i.e. as n → ∞), we establish a con-

struction of Brownian motion.
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3.3.2. Skorokhod Embedding.
To construct Brownian motion out of random walks, we must first construct random
walks out of Brownian motion. Structuring the proof in this matter is not without
reason; there are uncountably many realizations of Brownian motion, so we want to
ensure that the random walks to which we are taking the limit do, in fact, converge
to the Brownian motion of interest. Such a procedure of deriving a random walk
from a Brownian motion is called Skorokhod embedding. The procedure is given in
the following pseudocode:

Set t0 = 0 and n = 0. Let T be a stopping time of Brownian motion {Bt}
so that {Bt} is defined on [0, T ]. Let R0 = 0 be the initial value

of the Skorokhod embedding.

While tn + t ≤ T{
Initialize t = 0.

While |Bt −Btn | ≤ 1 {
Continue Bt until |Bt −Btn | = 1 for the first time.

Set t(n+1) = inf{t : |Bt −Btn | = 1}.
If Bt(n+1)

−Btn = 1, then set X(n+1) = 1.

Otherwise, Bt(n+1)
−Btn = −1, so set X(n+1) = −1.

Let the (n+ 1)th value of the Skorokhod embedding be

R(n+1) = Rn +Xn+1.

Increment to the next step of the inner while loop: n = n+ 1.

}
}

The resulting sequence {Rn}n=1,2,... is the Skorokhod embedding of {Bt}t∈[0,T ].

Theorem 3.6. Let Bt be a standard Brownian motion. Set t0 = 0 and let tn be
the stopping time where |Bt| = 1 for the nth time:

tn ≡ inf{t ≥ 0 : |Bt −Btn | = 1}

If we define Rn ≡ Btn , then Rn is a simple random walk.

Proof.
To prove that B0, Bt1 , Bt2 , . . . is a simple random walk, we merely need to show
that

(1) P{Btn+1
−Btn = 1} = P{Btn+1

−Btn = −1} = 1
2 for all n ∈ N

(2) tn+1 − tn are i.i.d. random variables

The first item follows from the symmetric property of Brownian increments, prop-
erty (II) in the definition of Brownian motion: Bs+t −Bs ∼ N(0,σ2t).

The second item follows from the strong Markov property of Brownian motion,
which states that if τ is a stopping time with respect to {Bt}, then {Bt − Bτ} is
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also a Brownian motion. We do not include a rigorous treatment of stopping times
or a proof of the strong Markov property. □

We now state a theorem that places a probabilistic bound on the difference
between a Brownian motion and its Skorokhod embedding.

Theorem 3.7. Define Θ to be the maximum distance between a Brownian motion
and its Skorokhod embedding:

Θ(B,R;T ) = max
0≤t≤T

{|Bt −Rt|}

Note that Θ is equivalent to the distance between {Bt} and {Rt} in the space of
continuous functions on the time interval [0, T ] equipped with the supremum norm.
There exist c, a ∈ [0,∞) such that for all r ≤ n1/4 and all integers n ≥ 3

P
󰁱
Θ(B,R;T ) ≥ rn1/4

󰁳
log n

󰁲
≤ ce−ar

Proof.
It will suffice to prove the theorem for r ≥ 9c2 where c is the constant such that

P
󰁱
osc(B; δ, T ) > r

󰁳
δ log(1/δ)

󰁲
≤ cT δ(r/c)

2

and
osc(B; δ, T ) = sup {|Bt −Bs| : s, t ∈ D; s, t ∈ [0, T ]; |s− t| ≤ δ}

is the oscillation of Bt restricted to t ∈ D, the dyadic rationals. The proof that
such a c exists can be found in [3], page 68, where it is also shown that for n ∈ N,

Θ(B,S;n) ≤ 1 + osc(B; 1, n) + max{|Bj −Bτj | : j = 1, . . . , n}
Now suppose 9c2 ≤ r ≤ n1/4. If |Bn −Bτn | is large, then either |n− τn| is large

or the oscillation of B is large. Consider the three events:

(1)
󰀋
Θ(B,R;n) ≥ rn1/4

√
log n

󰀌

(2)
󰀋
osc(B; r

√
n, 2n) ≥ (r/3)n1/4

√
log n

󰀌

(3) {max1≤j≤n |τj − j| ≥ r
√
n}

From above, we know that event (1) is contained in the union of events (2) and (3).
As a consequence, we need only prove the result of the theorem for events (2) and
(3). We first tackle event (2).

P
󰁱
osc(B; r

√
n, 2n) > (r/3)n(1/4)

󰁳
log n

󰁲
≤ 3P

󰁱
osc(B; r

√
n, n) > (r/3)n(1/4)

󰁳
log n

󰁲

= 3P
󰁱
osc(B; rn−1/2) > (r/3)n−(1/4)

󰁳
log n

󰁲

≤ 3P
󰀝
osc(B; rn−1/2) > (

√
r/3)

󰁴
rn−1/2 log

󰀃
n1/2/r

󰀄󰀞

If
√
r/3 ≥ c and r ≤ n1/4, we can conclude that there exist c and a such that

P
󰀝
osc(B; rn−1/2) > (

√
r/3)

󰁴
rn−1/2 log(n1/2)

󰀞
≤ ce−ar logn

For event (3), we refer to a proof on page 266 in the appendix of [3] to show that
there exist c, a such that

P
󰀝

max
1≤j≤n

|τj − j| > r
√
n

󰀞
≤ ce−ar2

□
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3.3.3. Strong Approximation.
With preliminaries in order, we now show that Brownian motion can be thought of
as a limit of simple random walks, a construction known as the strong approximation
of Brownian motion. Let {Bt} be a standard Brownian motion with variance

parameter 1 as defined in the probability space (Ω,F ,P), and let {B(n)
t } be the

scaled Brownian motion:

B
(n)
t =

1√
n
Bnt

From {B(n)}, we use the Skorokhod embedding to derive the simple random walk,
{S(n)}. And from {S(n)} we derive the scaled simple random walk, {R(n)}:

R
(n)
t =

1√
n
S
(n)
nt

From Theorem 3.7 we know that there exists c, a ∈ [0,∞) such that for all positive
integers T ,

P
󰀝

max
0≤t≤Tn

󰀏󰀏󰀏S(n)
t −B

(n)
t

󰀏󰀏󰀏 ≥ cr(Tn)1/4
󰁳
log (Tn)

󰀞
≤ ce−ar

multiplying by 1√
n
, this becomes

P
󰀝

max
0≤t≤T

󰀏󰀏󰀏R(n)
t −Bt

󰀏󰀏󰀏 ≥ crT 1/4n−1/4
󰁳
log (Tn)

󰀞
≤ ce−ar

Letting r = c log n where c is sufficiently large for the given T , the inequality
becomes

P
󰀝

max
0≤t≤T

󰀏󰀏󰀏R(n)
t −Bt

󰀏󰀏󰀏 ≥ cn−1/4 log3/2 n

󰀞
≤ c

n2

To proceed, we require the use of the Borel-Cantelli lemma, the result of which is
provided below.

Lemma 3.8 (Borel-Cantelli).
If An is a sequence of events in Ω and

󰁓∞
i=1 P{An} < ∞ then

P{An i.o.} = 0

where {An i.o.} = {lim supn→∞ An} is the event that infinitely many An occur.

If we set

An = max
0≤t≤T

󰀏󰀏󰀏R(n)
t −Bt

󰀏󰀏󰀏 ≥ cn−1/4 log3/2 n

we can then apply the Borel-Cantelli lemma to the above inequality to conclude
that

max
0≤t≤T

󰀏󰀏󰀏R(n)
t −Bt

󰀏󰀏󰀏 ≤ cn−1/4 log3/2 n

with probability one for all n sufficiently large. Since

lim
n→∞

cn−1/4 log3/2 n = 0

we conclude that

R
(n)
t

a.s.−−→ Bt in C[0, T ]
The following theorem condenses the results of this section up to this point.



APPROXIMATING HEAVY TRAFFIC WITH BROWNIAN MOTION 15

Theorem 3.9 (Donsker’s Theorem). Let {Xi} be a sequence of i.i.d random vari-

ables with mean 0 and variance σ2. If R
(n)
t is a scaled random walk as defined

above, then {R(n)
t ⇒ Bt} where Bt is a standard Brownian motion. This result is

also known as the functional central limit theorem.

3.4. Brownian Motion, Variants.
The preceding construction of Brownian motion will prove particularly useful in our
approximation of heavy traffic waiting times. However, this process requires further
modification. Recall that when traffic intensity, ρ, is slightly less than 1, customers
are being serviced at a slightly faster rate then they are entering the queue. Thus,
given enough time, traffic will eventually “clear out” due to faster service times.
However, this particular construction of Brownian motion has increments of mean
zero,

E[Bs+t −Bs] = 0

meaning that the approximate number of customers in line would—on average—
remain unchanged regardless of how long the line is observed. Such a property
is called the martingale property. Instead, we want a process that exhibits the
supermartingale property:

E[Bs+t −Bs] < 0

Definition 3.10. Let Fn be an increasing sequence of σ-fields (Fn is called a
filtration). Let {Xn} be a sequence of random variables with finite mean and
Xn ∈ Fn for all n. Martingales, supermartingales, and submartingales are then
defined as follows for all n

Martingale : E [Xn+1 | Fn] = Xn

Supermartingale : E [Xn+1 | Fn] ≤ Xn

Submartingale : E [Xn+1 | Fn] ≥ Xn

In words, a sequence that we expect to remain the same over time is a martingale,
a sequence we expect to increase is a submartingale, and a sequence we expect to
decrease is a supermartingale. To approximate heavy traffic, we want a Brownian
motion-like process that exhibits the supermartingale property.

Definition 3.11. A Brownian motion with drift parameter α and variance param-
eter σ2, {Bα

t }, is defined by the following properties:

(1) Independent increments
(2) Increment lengths are normally distributed with mean αt and variance σ2t
(3) the path t 󰀁→ Bα

t is continuous

Note that these properties are the same as standard Brownian motion except
increment lengths now have non-zero means. Since we have already shown the
existence of standard Brownian motion, the construction of Brownian motion with
drift is now easy.

Lemma 3.12. Let {Bt} be a standard Brownian motion with variance parameter
σ2, then Bα

t = Bt + αt is Brownian motion with drift parameter α and variance
parameter σ2. Moreover, Bα

t fulfills the supermartingale property when α < 0.
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Proof.
Independence of increments follows directly from independence of increments for
Bt and the fact that αt is a constant for a given t. To prove that Bα

t has stationary
increments, we have to show that the distribution of increments Bα

s+t−Bα
s depends

only the time interval t, and not the absolute time. Recall from the definition of Bt

that Bs+t −Bt are normal random variables with mean 0 and variance t for s > 0.

E
󰀅
Bα

s+t −Bα
s

󰀆
= E

󰀅
Bα

s+t

󰀆
− E [Bα

s ]

= E
󰀅
Bα

s+t + α(s+ t)
󰀆
− E [Bs + αs]

= α(s+ t)− αs

= αt

Var
󰀋
Bα

s+t −Bα
s

󰀌
= Var {Bs+t −Bs + αt}
= Var {Bs+t −Bs}
= σ2t

And since for fixed t, αt is just a constant, we use the property of normal random
variables to conclude that

Bα
s+t −Bα

s ∼ N(αt,σ2t) for all s > 0

Continuity of Bα
t directly follows from continuity of Bt. We have shown that

Bα
t constructed as the sum of standard Brownian motion and drift αt is indeed

Brownian motion with drift.
□

Brownian motion with negative drift provides a better approximation of the
waiting-time of customers in a queue than does standard Brownian motion. How-
ever, the unboundedness of Brownian motion suggests that waiting times could
perhaps be negative. In order to circumvent this issue, we instead use reflected
Brownian motion with drift. Reflected Brownian motion acts much the same as
Brownian motion except on a given boundary off of which the Brownian motion
is—unsurprisingly—reflected. In the one-dimensional case, the boundaries may be
any interval on the reals that provide a lower and upper bound to the Brownian
motion. For our purposes, we only use a single boundary, zero, that gives a lower
bound to Brownian motion. That is, for all t ≥ 0, we want Bα

t ≥ 0.

Definition 3.13. Let Bα
t be a standard Brownian motion with drift parameter α,

and let Mα
t be the running maximum of Bα

t :

Mα
t = sup

0≤s≤t
Bα

s

Then reflected Brownian motion with drift parameter −α and boundary 0 defined
on R+ can be constructed as follows:

Rα,0
t ≡ max{0,Mα

t }−Bα
t

Note that max{0, Sα
t } ≥ 0 and Mα

t ≥ Bα
t , B

α,0
t ≥ 0 for all t. Most importantly,

the local behavior of Bα,0
t is exactly like Brownian motion with drift parameter −α

since max{0, Sα
t } is simply a constant when Bα

t ∕= 0.
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We have now provided sufficient modifications of Brownian motion, and we next
move on—what we will ultimately use to approximate heavy traffic waiting times.
The next example provides us with the distribution of the supremum of a Brownian
motion with negative drift.

Example 3.14.
Let Bt be a Brownian motion with drift α < 0 and variance parameter σ2. Define

Mt = sup
0≤s≤t

Bs

to be the running maximum, then

M∞ ∼ exp

󰀕
2|α|
σ2

󰀖

that is

P{W ≥ w} = e−
−2|α|
σ2 w, w ≥ 0

E [M∞] =
σ2

2|α|

Proof.
for constants a, b > 0 Let T (−a, b) be the first time that B − t hits −a or b:

T (−a, b) = inf{t : Bt = −a or Bt = b}
In [7], it is proved that

P
󰀋
BT (−a,b)=b

󰀌
=

exp(2αa/σ2)− 1

exp(2αa/σ2)− exp(−2αb/σ2)

Since α < 0, exp(2αa/σ2) → 0, we have

lim
a→∞

P{BT (−a,b) = b} = lim
a→∞

exp(2αa/σ2)− 1

exp(2αa/σ2)− exp(−2αb/σ2)
= exp(2αb/σ2)

The left-hand side becomes the probability that the process will reach b somewhere
along its path (i.e. that the maximum of the process exceeds b somewhere along
its path). Therefore, we have

P{W ≥ b} = exp(2αb/σ2) = exp{−2|α|b/σ2}
□

This example shows us that the supremum of a Brownian motion observed “for-
ever” (i.e. on the interval [0,∞)) is exponentially distributed with rate 2|α|/σ2.

4. Heavy Traffic Approximation

We now have all we need to provide a heuristic argument for the approximation
of single-servers queue in heavy traffic using Brownian Motion. For a rigorous,
albeit opaque, treatment of this approximation, see [8], the seminal work on this
subject by Kingman.

Theorem 4.1. The waiting time of the nth customer in an M/M/1 queue can
be approximated by the supremum of reflected Brownian motion with negative drift
and boundary at 0.
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Proof.
Recall that an M/M/1 queue is a process where the number of customer arrivals
follows a poisson process with rate λ and service times are exponentially distributed
with rate µ. From Lindley’s equation in Section 2, we can write the waiting time
for the nth customer as

W (n)
q = max

󰁱
U (1) + · · ·+ U (n−1), U (2) + · · ·+ U (n−1), . . . , U (n−1), 0

󰁲

where U (n) = S(n)− I(n) is the difference between the nth service time and the nth
inter-arrival time. Define the partial sum P

(n)
k to be zero when k = 0 and

P
(n)
k ≡

k󰁛

i=1

U (n−i) for k ≥ 1

We can then rewrite the waiting time of the nth customer as

W (n)
q = max

0≤k≤(n−1)
P

(n)
k

The fact that P
(n)
k is the kth value of a random walk follows immediately from

U (1), . . . , U (n−1) being i.i.d random variables. Let α and σ2 be the expectation
and variance of U (i). We calculate α and σ2 by first noting that S(i) and I(i) are
exponentially distributed with rates µ and λ. Recall that ρ = λ/µ is the traffic
intensity as defined in the first section of this paper.

α = E
󰁫
U (i)

󰁬
= E

󰁫
S(i)

󰁬
− E

󰁫
I(i)

󰁬
=

1

µ
− 1

λ
=

ρ− 1

λ

σ2 = Var
󰁱
U (i)

󰁲
= Var

󰁱
S(i)

󰁲
+Var

󰁱
I(i)

󰁲
=

1

µ2
+

1

λ2

We next compute the expectation and variance of P
(n)
k , using the fact that U (i) are

i.i.d. random variables.

E
󰁫
P

(n)
k

󰁬
=

k󰁛

i=1

E
󰁫
U (n−i)

󰁬
= kα

Var
󰁱
P

(n)
k

󰁲
=

k󰁛

i=1

Var
󰁱
U (n−i)

󰁲
= kσ2

For a finite n, W
(n)
q is therefore the maximum value of a random walk with n steps.

We now show that {Pn
k } can be approximated by Brownian motion with drift

parameter α and variance parameter σ2 when n is sufficiently large. We restate the
properties of such a Brownian motion, {Bt}, below:

(1) B0 = 0
(2) Bt has stationary and independent increments
(3) Bt ∼ N(αt,σ2t)
(4) t 󰀁→ Bt is continuous with probability one

The first property is clear as P
(n)
0 = 0 for all n. The second property follows from

the fact that {U (i)} are i.i.d random variables. The third property is a result of the
central limit theorem for i.i.d. sequences, the result of which is provided below.
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Theorem 4.2. Let {Xi}∞i=1 be a sequence of i.i.d. random variables with E [Xi] = µ
and Var{Xi} = σ2. If Sn = X1 + · · ·Xn then

√
nSn

d
=⇒ N(µ,σ2)

In words, as n → ∞,
√
nSn converges in distribution to a normal random variable

with mean µ and variance σ2.

When k is sufficiently large, the central limit theorem implies that

P∞
k ≡ lim

n→∞
P

(n)
k

is approximately normally distributed with mean kα and variance kσ2. In practice,
taking n → ∞ represents a queue that has been operating continuously with a large
amount of customers.

Property (4) is where we make use of the heavy traffic assumption. Since ρ is

very close to one, |α| is small, so increments of {P (n)
k } are, on average, small. Small

increments ensure that continuity approximately holds. Therefore, P∞
k (approxi-

mately) fulfills properties (1)-(4) above, so the waiting time of the nth customer
can be approximated as the supremum of Brownian motion with negative drift. □

Before concluding with a computation of the expected waiting time, we take note
of the conditions under which the above approximation is accurate.

(1) Service and inter-arrival times are exponentially distributed with known,
constant rates.

(2) ρ = λ/µ is very close to, but does not exceed, one.
(3) Many other customers preceded the nth customer in line, the customer

whose waiting time we wish to approximate. In common usage, the result
of the central limit theorem is used when n ≥ 30.

We conclude with a computation of the expected waiting time for large n. Ex-
ample 3.14 proved that the supremum of Brownian motion with negative drift is

exponentially distributed, so we conclude that W
(n)
q can be approximated by an

exponential distribution with rate 2|α|/σ2 when n is at least greater than 30.

E
󰁫
W (n)

q

󰁬
≈ σ2

2|α| =
1

2

1
µ2 + 1

λ2󰀏󰀏ρ−1
λ

󰀏󰀏
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