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ABSTRACT. The following paper aims to create an integration between dif-
ferential equations and economics by proving the existence and uniqueness
of solutions in ordinary differential equations, then taking what we’ve proved
and apply it to standard economic models. First, an overview of ordinary
differential equations will be given through definitions, a basic example, and
its applications in various fields of study. Next, using the theorems of Ascoli-
Arzel, Peano, and Banach Fixed Point Theorem, we will construct the proof
for the existence and uniqueness of solutions in differential equations. After-
wards, we will apply the proof to the Harrod-Domar Model of the effect of
investment on economic productivity and aggregate demand.
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1. INTRODUCTION AND BACKGROUND

First studied and documented in the 17th century by Issac Newton and Got-
tfried Leibniz, the subject of differential equations is a rich topic in mathematics,
with applications to diverse fields such as physics, biology, and even social sciences
like economics. With its versatility and compatabilitiy, differential equations grant
one predictive power to use in modeling motions and systems whose evolution over
time can be described. A differential equation is simply an equation which con-
tains derivatives of a function. The two types of differential equations are ordinary
differential equations and partial differential equations. The former type - and the
focus of this paper - contains derivatives for one or more dependent variables with
respect to one independent variable. Examples of ordinary differential equations:

dy
dr U(l/)
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or
dy

% = U(.’E, y)

The latter type involves a special type of derivative called the partial derivative,
where the derivative of one dependent variable is taken with respect to each other
variable. Example of a partial differential equation:
Ju ou
x% + ya—y =u

From these examples, one can begin to see how differential equations are utilized
in other fields (think velocity, acceleration, and jerk used in tandem to locate an
object’s position in the study of physics).
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Moving back to our focus in this paper, we study the theory of differential equa-
tions and their applications to economics. to make precise the definition of our
object of study, we make the following definition:

Definition 1.1. An ordinary differential equation expresses, at each point of an
interval that is the domain of some function u, a relationship between a function
u(z) and its derivatives u(*)(z). The order of the maximum derivative is called the
order of the equation.

We also provide an example to complement this definition:
Z—f = cx(t)
where c¢ is a constant; it is often treated as a parameter.
Now we can try to find a solution for the equation above. Using derivatives from
calculus, we can determine that the solution is z(t) = ke(“®). We can also check the
solution. Let u(t) be any solution and then compute the derivative of u(t)e(="):

d
at"
From this equation, we’ve found that u(t)e(~%) is constant, therefore u(t)e(~") =
k, where k is any real number. We have found the general solution for our basic
differential equation, meaning that is it the only - or unique - solution.

(t)e=) = cu(t)e=) — cu(t)e=H =0
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The existence and uniqueness of a solution for a differential equation is useful in
our purpose of finding applications. By finding a unique solution, questions raised in
physics, biology, and economics can all be answered with significance. Furthermore,
equilibria solutions can also be determined, which we will go into detail about later.

The existence and uniqueness of solutions to some ordinary differential equations
is the consequence of the following theorem:

Theorem 1.2 (Existence and Uniqueness Theorem). Suppose that X is an open
subset of R,,+1, and suppose that f is a continuous function from X to R,, that
satisfies a Lipschitz condition with respect to y. Then, for each point (xg,yo) in
X, the equation u(z) = yo + [° f(t,u(t))dt has a solution on some open interval
containing Ty, and any two solutions are equivalent on their common domain.

Next we will go through the definitions and theorems necessary to construct our
proof.

2. DEFINITIONS AND THEOREMS

In order to construct our proofs, we must first introduce some definitions that are
useful for us in understanding how functions behave. Introducing the space C(I):
Let A be a compact set in a metric space S. Let C(A;R) denote the set whose
elements are the continuous functions from A to R. Similarly, C(A;C) denotes the
set whose elements are the continuous functions from A to C.

Now, let I =[x € R:a < x <b|. Then:

Let us introduce the concept of completeness:

Definition 2.1. A space C'(I)is called complete if every Cauchy sequence of points
in C(I) has a limit that is also in C([).

Next we define a norm:

Definition 2.2. If I is a bounded closed interval [a, b], then C(I) denotes the space
of continuous real-valued functions defined on I , with norm

|ulsup = suplu(z)|
xzel

Convergence in norm is the same as uniform convergence.

Theorem 2.3. For any compact set A, the spaces C(A;R) and C(A;C) are com-
plete.

Proof. Let f, be a Cauchy sequence in C(4;C). For each p € A, the sequence
fn(p) is a Cauchy sequence of complex numbers:

[fn(p) = fm (D) < |fo = finl = d(frs fin)

For any € > 0, there exists an N so large that n, m > N implies d(fn, fm) < €.
Therefore we may define f(p) = lim f,(p). For each p and each m, we have:
n—oo

[f(p) = fm(P)| = M| fu(p) = fim(p)| <€

if m > N, then d(f, fn) < e if m > N. To complete the proof, we must show
that f is continuous. For any € > 0, choose a large N same as before. The
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function fy is uniformly continuous, so there is 6 > 0 such that dS(p,q) < ¢
implies | fn(p) — fn(q)| < €. Suppose that dS(p,q) < §. Then we can show:

1f(p) = f(@ < 1f(p) = fn) + [fn(p) = fn (@) + | fn(a) — fa)l S e+ete=3e
Therefore f is continuous as required. The proof is the same for C(A;R). (]

Now we make some definitions which distinguish a special class of functions in

C(I):

Definition 2.4. A collection F of functions in C'(I) is is said to be equicontinuous
if for each € > 0 there is ¢ > 0 such that, for every v € F, |u(z) — u(y)| < € if
x,y €1, |z —y| <4.

The § does not depend on the function u. This is significant because sequences of
functions with increasing slope values are ruled out, thus allowing us to bound any
sequence of functions. Lastly, the concept of the Lipschitz condition is important
and is addressed:

Definition 2.5. A function f(z,y) defined for certain values of z € R, and y € R,
and having values in R; is said to satisfy a Lipschitz condition (the values z, y, and
the function f(x,y) can be in any space) with respect to y if there exists a constant
K such that

|f(@,y) = f(z,y)]| < Kly — |
whenever the left side is defined. The constant K is called a Lipschitz constant.

Keep these definitions and theorems in mind; they will be important soon. Now
that we have our definition and theorem groundwork in place, we can move on to
hooking the big fish: proving the existence and uniqueness of solutions of differential
equations.

3. PROOFS FOR THEOREMS

The first theorem that is important in our path to proving the existence and
uniqueness of solutions in differential equations is the Ascoli-Arzel Theorem. This
theorem allows us to observe how a space such as C'(I) can be used as a way to
confine an infinite set of functions, which is important in allowing a equilibrium
point or solution to be found.

Theorem 3.1 (Ascoli-Arzel). If F' is a bounded, equicontinuous set of functions
in C(I), then every sequence in F' contains a subsequence that converges in norm
to an element of C(I).

Proof. Let (ug) with 1 < k < co be a sequence in F. Next partition the interval
I into 2™ (n is a positive integer) equal subintervals, and do the same for interval
[-M, M], where M is a bound for F. From this we get that the large rectangle
IX[—M, M] has 4™ subrectangles. If u belongs to F', then its graph is a subset
of the large rectangle IX[—M, M]. Let the n-pattern of u be a union of the 4™
subrectangles that are interesected by the graph of u, and proceed by choosing
patterns ie. the first pattern, n = 1 (displayed below) shows that there are nine
possible patterns and at least one of them is a the pattern of u for k& — oo. Choose
such a pattern P;. Then choose a pattern P, that is a 2-pattern (n = 2) of uy, for
k — oo, which itself is among various other 2-patterns that are subsets of P;.
Hence, we get the sequence of patterns:
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P, D> P, D Ps...
where P, is the n-pattern of uy,, .

Now, using the equicontinuity assumption in the statement of the proof, we know
that for any given € > 0 there exists an IV large such that for any w € F' varies at
most by € with intervals of length 2=~|I|. Choose N such that 2=V M < ¢, and we
get, for n,m > N:

|sup S o€
Therefore the subsequence uy, converges in norm to a function u in C(I). g

|k, — u

m

With our first main theorem out of the way, we now move onto the Theorem of
Peano, which helps us solidify the existence of a solution.

Theorem 3.2 (Peano). Suppose that Q is an open subset of R? and suppose that
f is a continuous real-valued function on Q. For each point (xo,yo) in §2, there is
a continuously differentiable function u, defined in an open interval containing xg,
such that u(x) = f(z,u(z)) and u(zo) = yo.

Proof. Since €2 is open and f is continuous, we can choose positive constants K and
0 such that if | — 20| <6 and |y — yo| < K6, then (z,y) € Q and |f(z,y)| < K.

Let I = [xg — 6,20 + 0] and let F be the subset of C(I) that consists of the
functions uy. Partition I into 2% equal subintervals and take the unique continuous
function whose graph goes through (zg,yo), which has a constant slope on each
subinterval. The slope on a subinterval is the value of f at the right endpoint of
this portion of the graph if the subinterval is left of xg, and at the left endpoint if the
subinterval is to the right. Because of |z — 29| < § and |y — yo| < K4, these graphs
stay in the open subet €2 and the family of functions is bounded and the limitation
on slopes implies that it is equicontinuous, so some subsequence converges uniformly
to a function u € C'(I). Now each uy is piecewise, continuously differentiable and
its derivative at a given point converges uniformly to the value of f at that point
of the graph as k increases, because of continuity of f and the choice of the uy .
Therefore, for z in I,

xo xo
w(@) = lim ug, (¢) = lim [yo + / . (t))dt] — g0+ / £t u(t))de
n—roo n—roo T T
which is equivalent to u(zg) = yo as required.
|

The equation u(z) = yo+ [° f(t,u(t))dt is called a Picard iterate and is used to
pinpoint a solution after making an initial attempt to find one by slowly iterating
functions towards the most accurate solution, and it is important to our main proof.
Lastly, we will approach our proof through fixed points through the Banach Fixed
Point Theorem, which is useful in confirming the uniqueness of our solutions in the
main proof.

Theorem 3.3 (Banach Fixed Point Theorem). If X is a nonempty, complete met-
ric space with metric d and if the function S from X to itself is a strict contraction,
meaning that for some positive constant p < 1, and any x and y in S,

dS(z), S(y)d(z,y),
Then S has a unique fized point in X .
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Proof. Choose a point 1 € X and define a sequence as x;1+1 = S(xg). The equation
from our theorem statement, dS(z), S(y)d(z,y), implies that

(@i, Tpp1) < pd(zpir, ax) < pPd(ay, o) < .o < pFd(g, 21)
Therefore

d(xk—i—m; £L'k+1) S d(xk-&-ma xk+m1) + d(xk—&-mly xk+m2) + ...

k
+d(Thi2, Thy1) < [PPTT2 4 pMTE 44 pFld(2g, 2) < pTd(xz,iM)

From this we get that (xj)72, is a Cauchy sequence in X, so it converges to a
point « € X. Let S be continuous so that

d(z,S(x)) = kli_}r{)lod(xk, S(xg)) = kli)n;od(:ck,xkﬂ) =0

If 2’ is a fixed point, then
d(z,2") = d(S(x),S(z")) < pd(z,z")
Therefore d(z,z’) = 0 and x = 2’ as required. O

3.1. Existence and Uniqueness Theorem. As written in the introduction be-
fore, the proof, also know as the proof of Picard-Lindelf is as given:

Theorem 3.4 (Existence and Uniqueness Theorem). Suppose that X is an open
subset of R,,+1, and suppose that f is a continuous function from X to R,, that
satisfies a Lipschitz condition with respect to y. Then, for each point (xo,yo) in
X, the equation u(z) = yo + [° f(t,u(t))dt has a solution on some open interval
containing xo, and any two solutions are equivalent on their common domain.

Proof. Given a point (xg,yo) € 2, choose € > 0 and r > 0 small enough such that
{(z,y) |z —mol <€ ly—yo| <7} CQ

Let
N = sup |f(z,y0)l

|z—zo|<e

Let K be a Lipschitz constant for f and let J = [xg — 0,20 + 4], where
0 = min{e,r/2N,1/2K}
Let ugyo be the first Picard iterate, and let S be the mapping defined by
[Ste) =0+ [ wof(t,ult)de
Then let X C C(I) be the closed ball
X={uelC):|u—uo|sup <7}

By our choice of §, we get

S(us) ~ woluwy = sup_| [ Flt,0de < NG <
o

|z—z0|<6

N3

If w and v belong to X, then S(u) and S(v) are defined, and using the Lipschitz
condition inequality
|f($,y/) - f(may)l < K|y - yl‘
shows that )
1S(w) = S()lsup < Kdlu = vlsup < Flu = 0lsup
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Finally, we can take v = ug in from our inequality above and use the inequality
T
|S(u0) - u0|sup < 5

to conclude that S maps X to itself. Thus, by the Banach Fixed Point Theorem
proves that the solutions found from the Picard iterates are unique as required. [J

4. APPLICATION TO THE HARROD-DOMAR MODEL

With the mathematics in place, we can now go on to applying our findings. The
Harrod-Domar model is a model relating the change in the rate of investments per
year, which we can denote as I(t), with the growth of the economy, represented by
the rate of income flow per year, which we can denote as Y (¢). The Harrod-Domar
model, under the theory of Keynesian economics, was first hypothesized by Roy F.
Harrod and Evsey Domar in the 1940s, and used to explain economic growth. The
relationship between the the rate of investments per year and the rate of income
flow per year is expressed as a ratio:

The constant s is the constant fraction of total output in the economy that is
saved to be used for capital stock; the savings are considered the investment. This
equation suggests that the growth of the economy is determined by the rate by
which investments are made over a predetermined constant that states how much
of the investment goes toward growth of the economy. Put simply, the equation
states how much of investment leads to growing the economy. There is the necessary
assumption that the entire economy is treated as a single good, which eliminates
the need to account for relative prices, substitution and income effects, as well as
the factors that contribute to the capital of the economy. Thus, the relationship
between investments and economics growth can be captured by just two variables;
otherwise, several other variables may be needed.

Now, in order to examine the rate of maximum capacity of production - or how
much the economy is capable of producing at its maximum potential at a given
point in time - we need to use another equation. The capacity of production can
be displayed by the ratio:

_ k@)
- K@)

The function k(t) represents the maximum capacity output flow and K (¢) rep-
resents the capital stock present in the economy, both of which are used in a ratio
to represent p, which is unoriginally called the constant capacity-capital ratio. This
equation implies that the economy with capital stock K (¢) can produce an annual
output flow of k(t). Next, by taking the derivative of our second equation with
respect to t (usually representing years in macroeconomics):

K'(t) = pK'(t)

And, if one were to possess some knowledge in economics and mathematics
(which is everyone after they’ve read this paper), we realize that K(t) is equivalent
to I(t), as the rate of investments is equivalent to the rate of capital stock present in
the economy, as the investment contributes to the capital present in the economy:

pK'(t) = pI
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Lastly, in the model, we define equilibrium as the situation where at a specific
rate of investments, the maximum capacity outflow is reached. So, if the invest-
ments, I(t), allows the income flow, Y(t), to reach a maximum, the value of the
maximum capacity outflow , k(t), is also obtained. Thus, by taking the derivative,
we have the equation:

Y'(t) = K'(t)

With all these qualitative equations in place, we can construct a differential
equation using the rate of investments per year (). With equations of Y'(¢) = IT(")

and pk'(t) = pI substituted into Y'(¢) = k'(t), we get:

I'(t) = spl(t)

The equation above now looks more mathematically familiar (an ordinary differ-
ential equations perhaps?) and also significant, as now all our qualitative statements
from the model grant us now with a mathematical and economic conclusion. So let
us apply what we’ve proved before.

The purpose of the Harrod-Domar model is to determine the best rate of invest-
ments to ensure the highest rate of growth in the economy. The differential equation
I'(t) = spI(t) mathematically is not difficult to understand as it is familiar in form
to our example given in the introduction of the paper. Thus, the solution of the
differential equation is:

I(t) = 1(0)elPs?)

Where I(0) is the initial value, or rather initial investment in this context. Now we
can more rigorously delve into and verify our solution.

If we consider the investments per year I(t) to be be an open subset of all the
possible investment amounts per year (this can serve as an analogous example of
R,,4+1 from our theorem, we can consider the different rates of investment I’(t) to
be a continuous function within the possible investment rates with respect to t,
which in our case is year, that provides us the optimal rate of investment for max-
imum economic growth. The different rates of investment can satisfy the Lipschitz
condition

[F(8 () = f (&, 1(0)] < K|(I(t) = I'(2)]

as the left side will always be defined in the non-abstract world, and the right side
is always present as due to the nature of economics, where resoures are scarce, so a
Lipschitz constant K can be extrapolated from data present in the economy. Thus,
using Picard iterates, the individual solutions of the model can be proven to exist
and be unique.

From our solution(s), we can conclude mathematically that the function I(t)
increases at a rate of e(*?%) given the initial value I(t), and we can conclude eco-
nomically using our mathematics that, given an intial investment, we can model
the greatest rate of growth of the economy. Even more so from our equations we
can extrapolate and find what amount of capital stock K(¢) and rate of income
flow Y (t) are required to obtain our solution. By substituting I(t) = I(0)e(**") into
K'(t) = I(t), we get:

K'(t) = 1(0)et*P?)
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which we can then integrate, using the initial stock present and the initial invest-
ment rate, K(0) and I(0) respectively, to get:

K(t) = I(Op)sept + K(0) — 1(0)
Furthermore, using Y (¢) = pK(t), we can get:
I(0)erst
Y(t) = —— +p(K(0) - 1(0))

These two equations, along with the first, I(t) = I(0)e(**?), can then be graphed to
give a pictorial representation of the solution in the model.

LKY

5. CONCLUSION AND AFTERWORD

At this point, the reader (as well as the author!) should come to see that there
are some synergistic forces between mathematics and economics. One would be
remiss to think that our previous application even comes close in demonstrating
fully how differential equations can be used in economic modeling. I hope that the
paper was informative as well as a tad bit interesting, enough so that the reader
will be provoked enough to try and explore more of what differential equations have
to offer in other fields.

Acknowledgments. It is a pleasure to thank my mentor, Owen Barrett, for his
guidance and insight throughout the entire process. Despite choosing an unortho-
dox topic, he still provided me more support than I could ever ask for. I also would
like to thank the University of Chicago Mathematics Department as well as Peter
May for making the Math REU possible.

REFERENCES

[1] R. Beals. Analysis: An Introduction. Cambridge University Press. 2004.

[2] S. Smale, M. W. Hirsch, R. L. Devaney. Differential Equations, Dynamical Systems, and an
Introduction to Chaos. Academic Press. 2013.

[3] Wei-Bin Zhang. Differential Equations, Bifurcations, and Chaos in Economics. World Scientific
Publishing Co. Pte. Lt. 2005.



